JPS61243261A - Air-conditioning system utilizing latent heat - Google Patents

Air-conditioning system utilizing latent heat

Info

Publication number
JPS61243261A
JPS61243261A JP8215485A JP8215485A JPS61243261A JP S61243261 A JPS61243261 A JP S61243261A JP 8215485 A JP8215485 A JP 8215485A JP 8215485 A JP8215485 A JP 8215485A JP S61243261 A JPS61243261 A JP S61243261A
Authority
JP
Japan
Prior art keywords
heating
heat
latent heat
during
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8215485A
Other languages
Japanese (ja)
Other versions
JPH0585816B2 (en
Inventor
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP8215485A priority Critical patent/JPS61243261A/en
Publication of JPS61243261A publication Critical patent/JPS61243261A/en
Publication of JPH0585816B2 publication Critical patent/JPH0585816B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、夜間電力を利用して得られた蓄冷・蓄熱源を
昼間の冷暖房運転の熱エネルギーとして利用し、冷暖房
コストの低減を図った冷暖房システムに関する。
[Detailed Description of the Invention] "Industrial Application Field" The present invention aims to reduce heating and cooling costs by using cold storage and heat storage sources obtained using nighttime electricity as thermal energy for heating and cooling operations during the day. Regarding heating and cooling systems.

「従来の技術」 夏期の冷房において夜間電力を使用することは電力負荷
平準化に役立つものとして特に奨励されており、従来よ
り安価な深夜電力を利用して冷凍機を運転して、昼間の
冷房分を氷の潜熱でアイスバンク等の蓄冷槽に蓄冷し、
昼間冷房運転時は、その冷房負荷をそのまま冷房機に負
わさずに、主として氷潜熱で冷房を行い、一方、冬期暖
房時には前記冷房機はヒートポンプとして稼動し、夜間
電力で温水を作り、これを地下に据え付けた大きな蓄熱
槽に蓄熱し、該蓄熱槽内の熱エネルギーを利用して昼間
の暖房運転を行う、いわゆる深夜電力利用型の冷暖房シ
ステムは公知である。
``Conventional technology'' The use of nighttime electricity for cooling during the summer is particularly encouraged as it helps level out the electricity load. The remaining heat is stored in a cold storage tank such as an ice bank using the latent heat of ice.
During daytime cooling operation, the cooling load is not directly transferred to the air conditioner, and cooling is mainly performed using ice latent heat.On the other hand, during winter heating, the air conditioner operates as a heat pump, producing hot water using nighttime electricity, which is then pumped underground. 2. Description of the Related Art A so-called late-night power-using type air-conditioning/heating system is known, which stores heat in a large heat storage tank installed in a large heat storage tank and performs daytime heating operation using the thermal energy in the heat storage tank.

「発明が解決しようとする問題点」 しかしながら夏期冷房における蓄冷槽と異なり、冬期暖
房の為に使用する蓄熱槽は顕熱利用である為に、蓄冷槽
より相当大なる容積を必要とし、強度上及び保温の面よ
り機械設備と隔離して地下設置となる為に、地下タンク
を設ける為の建築コストが大になるのみならず、圧縮機
その他の機械設備とを接続する為の配管工事費がが余分
にかかる。
``Problem to be solved by the invention'' However, unlike the cold storage tank used for summer cooling, the heat storage tank used for winter heating uses sensible heat, so it requires a considerably larger volume than the cold storage tank, and has a higher strength. In addition, since it is installed underground and isolated from mechanical equipment for heat retention, not only does the construction cost for installing an underground tank increase, but also the piping work cost to connect the compressor and other mechanical equipment. costs extra.

又ビル冷暖房では前記機械設備を一般に屋上に配置する
のが常であるが、前記のような構成を取ると、揚水の為
のポンプ動力が余計にかかり、運転コストも大になる。
In addition, in the case of heating and cooling buildings, the mechanical equipment is generally placed on the rooftop, but if such a configuration is adopted, pump power for pumping water is required, and operating costs are also increased.

又機械設備を下に置くと冷媒配管が複雑となり、やはり
効率が良くない。
Also, if the mechanical equipment is placed below, the refrigerant piping becomes complicated and efficiency is not good.

一方蓄冷槽を冬期における蓄熱槽としての兼用利用が出
来れば前記欠点は解消されるが、蓄冷槽はその融点温度
が0°Cであり、前記冬期暖房に温水蓄熱として利用す
る温度域(20〜30℃)が異なり、熱量が不足する為
に兼用が不可能であり、どうしても20〜30℃の温水
蓄熱が可能な蓄熱槽を蓄冷槽と別個に必要となる。
On the other hand, if the cold storage tank could be used also as a heat storage tank in the winter, the above disadvantages would be solved, but the melting point of the cold storage tank is 0°C, and the temperature range (20 to 30°C) and cannot be used in combination due to insufficient heat capacity, and a heat storage tank capable of storing hot water at 20 to 30°C is required separately from the cold storage tank.

又前記欠点を少しでも解消する為に、蓄冷槽と温水貯湯
とを兼用して利用する事も考えられるが、このように構
成すると冷凍機の動力及び能力をその分過大に見込まね
ばならず、やはり設置費用と運転コストが大になる。
Also, in order to eliminate the above-mentioned drawbacks, it is possible to use both the cold storage tank and hot water storage, but with this configuration, the power and capacity of the refrigerator must be overestimated by that amount, After all, installation costs and operating costs will be high.

この為、夜間電力を利用して得られた蓄冷・蓄熱源を昼
間の冷暖房運転の熱エネルギーとして利用する冷暖房シ
ステムが冷暖房コストの面からも又、電力利用の平準化
の面からも有利であり、社会的要請の適っているにも拘
らず、昼間のみに冷暖房運転を行う冷暖房システムから
の転換が中々進まないのが現状であった。
For this reason, a heating and cooling system that uses cold storage and heat storage sources obtained using nighttime electricity as thermal energy for heating and cooling operations during the day is advantageous from the standpoint of both heating and cooling costs and leveling out electricity usage. Despite meeting social demands, the current situation is that there has been little progress in converting from air-conditioning and heating systems that operate only during the day.

次に参考までに昼間のみに冷暖房運転を行う冷暖房シス
テムの問題を圧縮効率、の面から検討してみるに、冬期
暖房時におけるヒートポンプによる暖房運転は、外気熱
源で蒸発温度がマイナス以下、例えば冬期外気温度が一
5℃の場合ヒートポンプシステムの蒸発温度(−1O℃
)となり、又加温温水温度50℃必要である為に凝縮温
度(55℃)となり、両者の差はΔt 85℃あり、高
い圧縮比を必要とする。一方夏期冷房時では冷房システ
ムの蒸発温度が一5°C1空冷凝縮温度40℃でその差
がΔt 45°Cである為、圧縮比は冬期暖房時に比し
て小となる。
Next, for reference, let's examine the problem of air-conditioning systems that perform air-conditioning operations only during the day from the perspective of compression efficiency.Heating operation using a heat pump during winter heating requires that the evaporation temperature of the outside air heat source be below minus, e.g. When the outside temperature is 15℃, the evaporation temperature of the heat pump system (-1O℃
), and since the heated water temperature needs to be 50°C, the condensation temperature is 55°C, and the difference between the two is Δt 85°C, requiring a high compression ratio. On the other hand, during summer cooling, the evaporation temperature of the cooling system is 15°C, and the air cooling condensation temperature is 40°C, and the difference therebetween is Δt 45°C, so the compression ratio is smaller than during winter heating.

従って前記冷暖房システムに単段圧縮機を用いた場合の
動力比較を行うと、前記条件では、暖房動力が冷房動力
より二割以上大になる為に、冷凍機の動力はヒートポン
プの最大圧縮比で決めなければならず、この結果、冷房
時における圧縮機の動力力率が低下し、年間余分な契約
となり、電力コストがその分余計にかかることとなり、
又、圧縮比のアンバランスによる動力の不均衡により過
大動力となる恐れもある。
Therefore, when comparing the power when a single-stage compressor is used in the above-mentioned heating and cooling system, under the above conditions, the heating power is more than 20% greater than the cooling power, so the power of the refrigerator is the maximum compression ratio of the heat pump. As a result, the power factor of the compressor during cooling will decrease, resulting in an extra yearly contract and additional electricity costs.
Furthermore, there is a risk that excessive power will be generated due to power imbalance due to unbalanced compression ratio.

本発明は従来技術のかかる欠点を解消し、深夜電力利用
によるコストダウンを図りつつも、冷房及び暖房時のい
ずれにも潜熱利用を図ることにより、システム全体の小
形化を図り、この結果、小容積化と共に建設コストの大
幅低減を図った冷暖房システムを提供することを目的と
する。 又本発明の他の目的とする所は、前記蓄冷槽と
蓄熱槽を一体化して冷房時の蓄冷と暖房時の蓄熱のいず
れにも利用可能に構成し、従って、圧縮機その他の機械
設備と前記一体化した蓄冷・熱槽を屋上環にユニー/ 
ト化及びパッケイジ化して設置することが出来、この結
果、一層の小容積化と配管工事費用の低減、ポンプ動力
その他の運転コストの低減化を図った冷暖房システムを
提供することにある。
The present invention eliminates the drawbacks of the prior art, reduces costs by using late-night electricity, and uses latent heat for both cooling and heating, thereby reducing the size of the entire system. The objective is to provide a heating and cooling system that increases volume and significantly reduces construction costs. Another object of the present invention is to integrate the cold storage tank and the heat storage tank so that they can be used for both cold storage during cooling and heat storage during heating. The above-mentioned integrated cold storage/thermal tank is installed on the rooftop ring.
The object of the present invention is to provide an air-conditioning and heating system that can be installed as a single unit and packaged, and as a result, the volume is further reduced, piping work costs are reduced, and pump power and other operating costs are reduced.

「問題点を解決しようとする手段」 本第1発明はかかる技術的課題を達成する為に、夜間電
力を利用して得られた蓄冷・蓄熱源を昼間の冷暖房運転
の熱エネルギーとして利用する冷暖房システムにおいて
、前記熱エネルギーを夏期冷房時は氷槽熱として蓄冷し
、冬期は暖房時は15〜30℃の常温付近の潜熱として
蓄熱した事を特徴とする冷暖房システムを提案する。
"Means for Solving Problems" In order to achieve the above technical problem, the first invention aims to utilize a cold storage/heat storage source obtained using nighttime electricity as thermal energy for daytime air conditioning/heating operation. We propose an air conditioning/heating system characterized in that the thermal energy is stored as ice tank heat during summer cooling, and as latent heat around normal temperature of 15 to 30° C. during winter heating.

即ち本発明によれば、例えばヒートポンプ装置の蓄熱槽
として、すくなくとも10〜30℃の常温付近の潜熱と
して蓄熱可能な蓄熱槽を用い、該装置により冬期暖房を
行うに際し、先ず外気熱源を利用して夜間にヒートポン
プの低段側圧縮運転を行い、その熱エネルギーを常温付
近の潜熱として前記蓄熱槽に貯えられ、昼間に前記熱エ
ネルギーを熱源としてヒートポンプを高段側圧縮運転と
なる如く運転し、の時間差により二段圧縮運転を行う暖
房システムとして構成し。
That is, according to the present invention, for example, when a heat storage tank capable of storing latent heat near room temperature of at least 10 to 30° C. is used as a heat storage tank of a heat pump device, and when the device performs winter heating, first, an outside air heat source is used. The heat pump is operated in a low-stage compression mode at night, and the heat energy is stored in the heat storage tank as latent heat near normal temperature, and during the day, the heat pump is operated in a high-stage compression mode using the thermal energy as a heat source. It is configured as a heating system that performs two-stage compression operation depending on the time difference.

一方、夏期冷房時においては冷凍機により主として夜間
運転により氷槽熱による蓄冷を行い、その熱エネルギー
が主として昼間の冷房用に使用される冷房システムとし
て構成する。
On the other hand, during summer cooling, the refrigerator is operated mainly at night to store cold by using ice tank heat, and the cooling system is configured such that the thermal energy is mainly used for daytime cooling.

この場合、冬期暖房時に使用される氷槽熱を蓄冷する。In this case, the ice tank heat used during winter heating is stored.

蓄冷槽等の氷槽熱を利用した蓄冷槽内に、冬期暖房時に
使用される常温付近の融点を有する潜熱蓄熱剤、例えば
樹脂系カプセル内に潜熱蓄熱剤を封入したものを充填す
ることにより、蓄冷・熱槽の共用化が図られる。
By filling a cold storage tank that uses ice tank heat, such as a cold storage tank, with a latent heat storage agent that has a melting point near room temperature and is used during winter heating, for example, a latent heat storage agent sealed in a resin capsule. Common use of cold storage and heat tanks will be planned.

又前記蓄冷槽は、略常温付近の融点を有する潜熱蓄熱剤
を封入したカプセルと清水を封入したカプセルとを混在
又は積層して構成してもよく、この場合は前記蓄冷槽と
チラー間は不凍液で循環するよう構成するのが好ましい
The cold storage tank may be constructed by mixing or stacking capsules filled with a latent heat storage agent having a melting point near room temperature and capsules filled with fresh water. In this case, an antifreeze solution is provided between the cold storage tank and the chiller. It is preferable to configure it so that it circulates.

更に冬期暖房時における熱エネルギーの蓄積にはンーラ
温水器を用いることも可能であり、前記蓄冷熱槽とンー
ラ温水器とを連通して構成することも可能である。
Furthermore, it is also possible to use a Nura water heater to store thermal energy during winter heating, and it is also possible to configure the cold storage heat tank and the Nura water heater to be connected.

又第2発明においては、前記第1発明が、冬期の昼間に
おける暖房時において例え低圧縮比であるにしても、高
段圧縮運転が必要があるのに鑑み、冬期の夜間時におい
ては外気熱源によるヒートポンプを用いて夜間二段圧縮
運転を行い、該二段圧縮運転により得られた40〜60
℃の高段側凝縮温度を潜熱として蓄熱槽に貯え、昼間の
暖房時に、前記潜熱を利用して暖房運転を行うことによ
り、昼間の暖房時においては原則として圧縮運転を行う
必要がない冷暖房システムを提供することにある。
Further, in the second invention, in view of the fact that the first invention requires high compression operation even if the compression ratio is low during daytime heating in winter, the outside air heat source is used at night in winter. A two-stage compression operation was carried out at night using a heat pump with a temperature of 40 to 60
An air-conditioning/heating system that stores the condensation temperature on the higher stage of °C as latent heat in a heat storage tank, and performs heating operation using the latent heat during daytime heating, thereby eliminating the need for compression operation during daytime heating in principle. Our goal is to provide the following.

「作用」 かかる第1発明によれば、特に冬期暖房時において、外
気熱源とするヒートポンプ運転が15〜30°Cの常温
付近の潜熱として蓄熱させる為に、二段圧縮機の低段側
圧縮運転となり、一方この蓄熱を昼間において高段圧縮
機の熱源として利用して暖房に使用する加温温水温度5
0℃まで上昇させるものである為に、時間差を介して実
質的な二段圧縮運転となり、圧縮効率と動力コストの大
幅低減がij7能であり、面も時間差を介して運転を行
う為に、単一のrE縮機を二度使用することにより単段
圧縮機でも二段圧’mrN転が可能となり、装置の小形
化が可能である。
"Function" According to the first invention, in order to store heat as latent heat near normal temperature of 15 to 30°C, especially during winter heating, the heat pump operation using outside air as the heat source is performed in the low-stage compression operation of the two-stage compressor. On the other hand, this heat storage is used as a heat source for the high-stage compressor during the day, and the temperature of the heated hot water used for heating is 5.
Since the temperature is raised to 0°C, it is essentially a two-stage compression operation with a time difference, and the compression efficiency and power cost can be significantly reduced. By using a single rE compressor twice, it is possible to perform two-stage pressure 'mrN rotation even with a single-stage compressor, making it possible to downsize the device.

又、本発明によれば、冬期夏期いずれも潜熱利用が可能
である為に、特に冬期暖房時の蓄熱槽を従来技術に比し
て大幅に小形化が可能となり、而も前記蓄熱槽を夏期冷
房時に使用する蓄冷槽内に常温付近の融点を有する潜熱
蓄熱剤を封入したものを充填することにより、単一の蓄
冷熱槽により前記夜間電力を利用した冷暖房が可能とな
り、この結果、小形化した単一の蓄冷熱槽を前記圧縮機
等の機械設備と共に、ビルの屋上等に設置しても建築強
度上側等問題とならず、建設費の大幅低減、揚水を行う
ポンプ動力の不要化、配管の簡略化等が達成出来、運転
コスト及び保守コストも大幅に低減が可能である。
Further, according to the present invention, since latent heat can be utilized in both winter and summer, it is possible to significantly downsize the heat storage tank especially during winter heating compared to the conventional technology. By filling the cold storage tank used for cooling with a latent heat storage agent with a melting point near room temperature, it becomes possible to perform heating and cooling using the nighttime electricity using a single cold storage tank, resulting in a smaller size. Even if a single cold storage heat tank is installed together with mechanical equipment such as the compressor on the roof of a building, there will be no problem with building strength, significantly reducing construction costs, eliminating the need for pump power for pumping water, Piping can be simplified, and operating costs and maintenance costs can be significantly reduced.

又第2発明によれば、昼間の暖房時においては原則とし
て圧縮運転を行う必要がない為に前記第1発明の作用効
果に重畳して、より一層の深夜電力の有効利用が可能と
なり、又前記第1発明と同様に、氷潜熱を蓄冷する蓄冷
槽内に前記二段圧縮の高段側凝縮温度付近の融点を有す
る潜熱蓄熱剤を封入した部材を充填することにより小形
化した単一の蓄冷熱槽を用いることが可能となり、第1
発明と同様な効果を上げることが出来る。
Further, according to the second invention, since there is no need to perform compression operation during daytime heating in principle, in addition to the effects of the first invention, late-night power can be used more effectively, and Similar to the first invention, a single unit compacted by filling a cold storage tank for storing ice latent heat with a member encapsulating a latent heat storage agent having a melting point near the condensation temperature on the higher stage side of the two-stage compression. It became possible to use a cold storage heat tank, and the first
It is possible to achieve the same effect as an invention.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.

第3図は本発明に使用される蓄冷熱槽5で、公知の如く
、該槽5内には蒸発器として又凝縮器としても機能する
コイル管7がへアービン状に回転配置されると共に、槽
5上部にスプレ一部25を配置して構成される。
FIG. 3 shows a cold storage heat tank 5 used in the present invention. As is well known, in the tank 5, a coiled tube 7 which functions as an evaporator and a condenser is rotatably arranged in a hair bin shape. It is constructed by arranging a spray part 25 on the upper part of the tank 5.

又槽5内には略直径30〜60+smの球状ポール29
が充填されており、該ポール28内には融点が20〜2
2℃ 、融解潜熱が35〜37kcal/crn’有す
るCa1l 28H20が封入されている。
Also, inside the tank 5 is a spherical pole 29 with a diameter of approximately 30 to 60+sm.
The inside of the pole 28 has a melting point of 20 to 2.
Cal 28H20 having a temperature of 2°C and a latent heat of fusion of 35 to 37 kcal/crn' is enclosed.

尚、前記CaC12eH20は単一で用いてもよく、又
触媒を混入して融点が20〜22℃、25〜26℃、2
8〜29°Cになるように形成し、かかる潜熱剤を充填
した球状ポール29を順次積層して三段に分けて配置し
てもよい、この場合は前記スプレ一部25より清水を噴
霧し、コイル管7の外面に結氷を作るよう構成する。(
第1実施例) 又、前記球状ポール29内に、清水を封入したものと、
Ca1l 28H20の潜熱剤を封入したものを夫々上
層部と下層部とに半々に分けて充填させて構成してもよ
く、この場合は前記スプレ一部25より不凍液を噴霧す
るよう構成する。(第2実施例) 第1図はかかる蓄冷熱槽5を用いた本発明の実施例で。
Incidentally, the above CaC12eH20 may be used alone, or it may be mixed with a catalyst to give a melting point of 20 to 22°C, 25 to 26°C, 2.
The spherical poles 29 formed to have a temperature of 8 to 29°C and filled with such a latent heat agent may be sequentially stacked and arranged in three stages. In this case, fresh water is sprayed from the spray part 25. , is configured to form ice on the outer surface of the coiled tube 7. (
1st embodiment) In addition, fresh water is sealed in the spherical pole 29,
The latent heat agent of Ca11 28H20 may be filled in half into the upper layer and the lower layer, respectively. In this case, the antifreeze solution is sprayed from the spray portion 25. (Second Embodiment) FIG. 1 shows an embodiment of the present invention using such a cold storage heat storage tank 5.

先ず清水又はブラインの循環経路について説明するに、
21は清水又は不凍液からなるブラインを循環させる循
環ポンプ、4は熱交換器を内蔵するチラー4で、負荷と
接続された配管20、三方切換弁27、戻り管23を経
て、チラー4により一次冷却された後、三方切換弁28
、配管24を経て蓄冷熱槽5に戻り、夏期冷房時及び冬
期暖房時における夜間運転時(低段側圧縮運転)の循環
経路を構成する。
First, to explain the circulation route of fresh water or brine,
21 is a circulation pump that circulates brine made of fresh water or antifreeze, and 4 is a chiller 4 with a built-in heat exchanger.The chiller 4 provides primary cooling through piping 20 connected to the load, a three-way switching valve 27, and a return pipe 23. After the three-way switching valve 28
, and returns to the cold storage heat tank 5 via the piping 24, forming a circulation path during nighttime operation (low stage compression operation) during summer cooling and winter heating.

一方、冬期暖房時における昼間運転時(高段側圧縮運転
)においてはポンプ22とバイパス管28により蓄冷熱
槽5を通る循環経路とチラー4を通る循環経路とを夫々
個別に形成し、蓄冷熱槽5側ではコイル管7を蒸発器と
して、又チラー4側では凝縮器として夫々機能させる。
On the other hand, during daytime operation during winter heating (high-stage compression operation), the pump 22 and the bypass pipe 28 form a circulation path passing through the cold storage heat tank 5 and a circulation path passing through the chiller 4, respectively. The coil tube 7 is made to function as an evaporator on the tank 5 side, and as a condenser on the chiller 4 side.

尚、50はソーラ温水器で、循環ポンプ21の出口側の
配管20を分岐させてスプレ一部25と接続し、冬期の
清水又はブライン加温時、圧縮機lと共に該清水又はブ
ラインをソーラ温水器50にて加温させ、圧縮機lの負
荷軽減と電力コストの低減を図る。
In addition, 50 is a solar water heater, and the pipe 20 on the outlet side of the circulation pump 21 is branched and connected to the spray part 25, and when heating fresh water or brine in winter, the fresh water or brine is converted into solar hot water with the compressor l. The compressor 50 is used to heat the compressor 50, thereby reducing the load on the compressor 1 and reducing power costs.

次に冷媒循環系を説明するに、1は回転圧縮機、2は内
部に熱交換器3が内蔵された外気熱源式凝縮器兼蒸発器
で、四方切換弁17、三方切換弁18.18及び膨張弁
8 、8−1 、8〜2を介して、前記蓄冷熱槽5のコ
イル管7及びチラー4内熱交換器6と配管9〜1Gを介
して接続され、前記四方切換弁17と三方切換弁18.
19を適宜切り替えることにより後記する所定の冷媒循
環経路を構成する。
Next, to explain the refrigerant circulation system, 1 is a rotary compressor, 2 is an outside air heat source type condenser and evaporator with a built-in heat exchanger 3, a four-way switching valve 17, a three-way switching valve 18, 18, The expansion valves 8, 8-1, 8-2 are connected to the coil tube 7 of the cold storage heat tank 5 and the heat exchanger 6 in the chiller 4 via piping 9-1G, and the four-way switching valve 17 and the three-way Switching valve 18.
19 as appropriate to configure a predetermined refrigerant circulation path to be described later.

かかる構成に基づく作用を夏期冷房時と冬期暖房時に分
けて説明する。
The effects based on this configuration will be explained separately for summer cooling and winter heating.

A)夏期冷房時 A−1)夜間の熱エネルギー蓄熱 先ず蓄冷熱槽5の清水又はブライン循環経路を、ポンプ
21.バイパス管22によりバイパスさせると共に、冷
媒側で冷凍サイクルを構成し、前記蓄冷熱槽5に氷潜熱
を蓄冷する。
A) During summer cooling A-1) Nighttime thermal energy storage First, the fresh water or brine circulation path of the cold storage heat tank 5 is connected to the pump 21. The bypass pipe 22 provides a bypass, and a refrigeration cycle is configured on the refrigerant side, and ice latent heat is stored in the cold storage heat tank 5.

即ち第1実施例において、バイパス管22により負荷側
を通らない閉回路を循環する清水は先ずチラー4内の熱
交換器6 (蒸発器)で0°C以上の一次チラ一温度で
冷却され、配管24を通って蓄冷熱槽5内のスプレ一部
25よりの散水はコイル管7を(蒸発器)をどぶ付は浸
漬により二次冷却し、凍結点以下の温度でコイル管7外
面に結氷する。この場合においてカプセル内の蓄熱剤2
9のCaC12e)I20は固化状態にあり、顕熱とし
て0℃以下に保冷されることとなる。
That is, in the first embodiment, the fresh water circulating in the closed circuit that does not pass through the load side by the bypass pipe 22 is first cooled in the heat exchanger 6 (evaporator) in the chiller 4 to a primary chiller temperature of 0°C or higher, Sprinkling water from the spray part 25 in the cold storage heat tank 5 through the piping 24 cools the coiled tube 7 (evaporator) by immersion, and freezes on the outer surface of the coiled tube 7 at a temperature below the freezing point. do. In this case, the heat storage agent 2 in the capsule
CaC12e)I20 of No. 9 is in a solidified state and is kept cool at 0° C. or lower as sensible heat.

一方コイル管7内の奪熱された冷媒は、配管!4より三
方切彼弁18、四方切換弁17、三方切換弁18、を経
て圧縮機1により圧縮された後、外気熱源式凝縮器兼蒸
発器2の熱交換器3内に入り、ここで凝縮された後、膨
張弁88−2を介して蓄冷熱槽5内のコイル管7とチラ
ー4内の熱交換器6で蒸発気化し、前記清水を冷却する
。以下これを繰り返して氷潜熱の蓄冷と球状ポール29
の顕熱蓄冷を行う。
On the other hand, the heat-absorbed refrigerant inside the coil tube 7 is piped! After being compressed by the compressor 1 through the three-way switching valve 18, the four-way switching valve 17, and the three-way switching valve 18, it enters the heat exchanger 3 of the outside air heat source type condenser/evaporator 2, where it is condensed. After that, the fresh water is evaporated and vaporized by the coil tube 7 in the cold storage heat tank 5 and the heat exchanger 6 in the chiller 4 via the expansion valve 88-2, thereby cooling the fresh water. After that, repeat this process to cool the latent heat of the ice and use the spherical pole 29.
Performs sensible heat and cold storage.

尚、夜間の外気温度は昼間の外気温度より低い為に、昼
間冷房に比して低い圧縮比率で足り而も安い深夜電力を
使用する為、前記蓄冷の為の電力コストは低くて済む。
In addition, since the outside air temperature at night is lower than the outside air temperature during the day, the electricity cost for the cold storage is low because late-night electricity is used, which requires a lower compression ratio than daytime cooling and is also cheaper.

又、第2実施例の場合はスプレ一部25より噴霧される
不凍液自体ではなく球状ポール28内に封入された清水
が氷潜熱として蓄冷されることとなる。
Further, in the case of the second embodiment, not the antifreeze itself sprayed from the spray portion 25 but the fresh water sealed in the spherical pole 28 is stored as ice latent heat.

A−2)昼間の冷房運転 昼間は三方切換弁27を負荷側に切り替え、循環ポンプ
21により蓄冷熱槽5−負荷−チラー4間を清水又はブ
ラインが循環するよう構成し、昼間圧縮機1を停止させ
る。
A-2) Daytime cooling operation During the daytime, the three-way switching valve 27 is switched to the load side, and the circulation pump 21 is configured to circulate fresh water or brine between the cold storage heat storage tank 5, the load, and the chiller 4, and the compressor 1 is operated during the daytime. make it stop.

そして循環ポンプ2!を運転することにより、負荷側で
冷房に使われた清水は、戻り管23よリチラー4を経て
、又直接、蓄冷槽槽5上部よりスプレーされ、氷の潜熱
と冷水及び球状ポール29の顕熱の夜間貯えられた蓄冷
剤により繰り返し冷却され、所定の冷房運転がなされる
And circulation pump 2! By operating the system, the fresh water used for cooling on the load side passes through the return pipe 23, the rechiller 4, and is sprayed directly from the upper part of the cold storage tank 5, where the latent heat of the ice and the sensible heat of the cold water and the spherical pole 29 are mixed. It is repeatedly cooled by the cold storage agent stored during the night, and a predetermined cooling operation is performed.

この場合は圧縮機1の昼間運転停止により、電力コスト
の低減に加えて夏期の冷房ピークカットによる電力平準
化に役立つ。
In this case, by stopping the operation of the compressor 1 during the day, in addition to reducing power costs, it is useful for leveling out power by cutting cooling peaks in the summer.

又前記圧縮機l゛は停止させずにチラー4の熱交換器8
のみの冷房運転を行ってもよい。
In addition, the compressor l' is not stopped and the heat exchanger 8 of the chiller 4 is
It is also possible to perform only cooling operation.

即ち、前記蓄冷熱槽5内で冷却された清水又はブライン
は負荷側で冷房を行った後、チラー4により一次冷却さ
れた後、三方切換弁28、配管24を経て蓄冷熱槽5に
戻り、コイル管7に結氷した氷潜熱により二次冷却され
、以下これを繰り返して冷房運転を行うものである。
That is, after the fresh water or brine cooled in the cold storage heat tank 5 is cooled on the load side, it is primarily cooled by the chiller 4, and then returns to the cold storage heat tank 5 via the three-way switching valve 28 and the piping 24. Secondary cooling is performed by the latent heat of ice formed in the coiled tube 7, and this process is repeated thereafter to perform cooling operation.

従ってかかる場合においても昼間冷房においては前記蓄
冷熱槽5内に結氷した清水(コイル管7表面又は球状ポ
ール29内)、の氷潜熱を利用して二次冷却を行う為に
、圧縮機1側の冷凍サイクルはチラー4のみの冷却で足
り、而も該チラー4は0℃以上の一次冷却を行う為に、
低い圧縮比で足り、電力コストの大幅低減が可能である
Therefore, even in such a case, during daytime cooling, the compressor 1 side is used to perform secondary cooling using the ice latent heat of the fresh water frozen in the cold storage heat tank 5 (on the surface of the coil tube 7 or inside the spherical pole 29). The refrigeration cycle requires cooling only by the chiller 4, and since the chiller 4 performs primary cooling above 0°C,
A low compression ratio is sufficient, and power costs can be significantly reduced.

B)冬期暖房時 B−り夜間の熱エネルギー蓄熱 一方、冬期暖房加熱運転はヒートポンプ運転により圧縮
機lが夜間運転され、外気熱源により蒸発器兼凝縮器2
の熱交換器3 (蒸発器)により吸熱された冷媒は圧縮
機1により圧縮された後、四方切換弁17の点線を経て
配管14.15よりコイル管7及び熱交換器Bに導入さ
れ、配管20〜24内を循環する清水又は不凍液により
凝縮熱を放出する。
B) Storage of thermal energy at night during winter heating B- On the other hand, in winter heating operation, the compressor 1 is operated at night by heat pump operation, and the evaporator/condenser 2 is operated by the outside air heat source.
The refrigerant that has absorbed heat by the heat exchanger 3 (evaporator) is compressed by the compressor 1, and then is introduced into the coil tube 7 and the heat exchanger B through the piping 14.15 through the dotted line of the four-way switching valve 17. The heat of condensation is released by the fresh water or antifreeze circulating within 20-24.

そして前記凝縮熱により加温された清水又は不凍液がス
プレ一部25より噴霧されることにより、球状ポール2
9体に封入されているCaCl2θH20に、二段圧縮
における低段圧縮側の凝縮温度即ち中間温度で前記20
〜30℃前後の潜熱と顕熱を含む常温域に熱エネルギー
が蓄熱される。
Then, the fresh water or antifreeze heated by the heat of condensation is sprayed from the spray part 25, and the spherical pole 2
The above 20
Thermal energy is stored in the normal temperature range including latent heat and sensible heat around ~30°C.

B−2)昼間の暖房運転 昼間は三方切換弁27を負荷側に切り替え、蓄冷熱槽5
のコイル管7を蒸発器として、又チラー4側の熱交換器
8を凝縮器として使用すると共に、三方切換弁28を切
り替え、ポンプ21とバイパス管2Bにより蓄冷熱槽5
を通る循環経路とチラー4を通る循環経路とを夫々個別
に形成する。
B-2) Daytime heating operation During the day, the three-way switching valve 27 is switched to the load side, and the cold storage heat tank 5
The coiled pipe 7 is used as an evaporator, the heat exchanger 8 on the chiller 4 side is used as a condenser, the three-way switching valve 28 is switched, and the pump 21 and the bypass pipe 2B are used to cool the cold storage heat tank 5.
A circulation path passing through the chiller 4 and a circulation path passing through the chiller 4 are formed separately.

そして前記構成により、前記夜間運転により蓄熱された
20〜30°C前後の潜熱と顕熱を含む熱エネルギーを
熱源とし、チラー4側の暖房負荷と循環する循環経路内
の清水又は不凍液を、暖房に必要な50℃前後まで加温
するヒートポンプサイクルが構成され、低い圧力比によ
る圧縮運転で暖房運転が可能となり、従って電力コスト
の安い深夜電力を効率的に利用した時間差を有する二段
圧縮運転となり、昼間の電力消費量を大幅に低減し、電
力平準化を可能ならしめると共に、全体としても電力コ
ストが少なくて済む。
With the above configuration, thermal energy including latent heat and sensible heat of about 20 to 30°C accumulated during the nighttime operation is used as a heat source to heat the fresh water or antifreeze in the circulation path that circulates with the heating load on the chiller 4 side. The heat pump cycle is configured to heat the room to around 50℃, which is required for heating, and heating operation is possible with compression operation at a low pressure ratio.Therefore, it is a two-stage compression operation with a time difference that efficiently utilizes late-night electricity with low electricity costs. This greatly reduces daytime power consumption, enables power leveling, and reduces overall power costs.

第2図はフンパウンドタイプの二段圧縮機を用いた他の
実施例を示す。
FIG. 2 shows another embodiment using a two-stage compressor of the pound pound type.

二段圧縮機は、低段側圧縮機1−1と高段側圧縮機12
を備え、低段圧縮機1−1側の吐出管33は蓄冷熱槽5
内のコイル管7に連通し、一方、該コイル管7の出口側
は分岐して高段側圧縮機1−2側の吸入管14と、膨張
弁8−2を介してチラー4内の熱交換器6と夫々連通し
ている。又高段側圧縮機1−2側の吐出管9はチラー4
内の熱交換器6の他端と連通している。
The two-stage compressor is a low-stage compressor 1-1 and a high-stage compressor 12.
The discharge pipe 33 on the low stage compressor 1-1 side is connected to the cold storage heat tank 5.
On the other hand, the outlet side of the coiled tube 7 is branched and connected to the suction tube 14 on the high-stage compressor 1-2 side, and the heat inside the chiller 4 via the expansion valve 8-2. They communicate with the exchanger 6, respectively. Also, the discharge pipe 9 on the high-stage compressor 1-2 side is connected to the chiller 4.
It communicates with the other end of the heat exchanger 6 inside.

かかる実施例においても前記第1実施例と同様な効果が
得られるが、冬期暖房時の昼間運転においてピストン押
しのけ量の小さい高段側圧縮機1を用いて運転を行う為
に、圧縮効率と動力バランスが一層向上する。
In this embodiment, the same effect as in the first embodiment can be obtained, but since the high-stage compressor 1 with a small piston displacement is used during daytime operation during winter heating, the compression efficiency and power are reduced. Balance will further improve.

第4図は第2発明の実施例で、前記第1図に記載した実
施例とほぼ同一構成であるので第1図との差異を中心に
説明する。蓄熱槽5°内に充填された球状ポール28°
内には融点が55℃ 前後に設定したパラフィンを主成
分とする蓄熱剤が封入されており、一方圧縮機1°には
コンパウンド形の二段圧縮機を用いる。
FIG. 4 shows an embodiment of the second invention, which has almost the same configuration as the embodiment shown in FIG. 1, so the explanation will focus on the differences from FIG. 1. 28° spherical pole filled in 5° heat storage tank
A heat storage agent mainly composed of paraffin with a melting point of around 55° C. is sealed inside the compressor, and a compound-type two-stage compressor is used as the compressor 1°.

そしてかかる実施例においては、夏期冷房時は前記第1
実施例と全く同一の作用により夜間の熱エネルギー蓄熱
と昼間の冷房運転を行う。
In such an embodiment, during summer cooling, the first
Thermal energy storage during the night and cooling operation during the day are carried out in exactly the same manner as in the embodiment.

一方冬期暖房時においては、先ず夜間の熱エネルギー蓄
熱二段圧縮機のヒートポンプ運転により、外気熱源によ
り蒸発器兼凝縮器2の熱交換器3 (蒸発器)により吸
熱された冷媒は圧縮機lにより二段圧縮された後、蓄熱
槽5のコイル管7に導入され、配管20〜24内を循環
する清水又は不凍液にを介して60°C前後の凝縮熱を
球状ポール29′内に封入されているパラフィンに伝熱
し、該パラフィンを液化させ、50〜60℃前後の潜熱
と顕熱を含む熱エネルギーを蓄熱させる。
On the other hand, during winter heating, first, the heat pump operation of the thermal energy storage two-stage compressor is performed at night, and the refrigerant that has been absorbed by the heat exchanger 3 (evaporator) of the evaporator/condenser 2 by the outside air heat source is transferred to the compressor 1. After being compressed in two stages, it is introduced into the coiled pipe 7 of the heat storage tank 5, and the condensation heat of around 60°C is sealed in the spherical pole 29' through fresh water or antifreeze that circulates in the pipes 20 to 24. The heat is transferred to the paraffin, liquefies the paraffin, and stores thermal energy including latent heat and sensible heat around 50 to 60°C.

そして昼間の暖房運転 においては、昼間は三方切換弁
27を負荷側に切り替え、循環ポンプ21により蓄冷熱
槽5−負荷−チラー4間を清水又はブラインが循環する
よう構成し、二段圧縮機l°を停止状態で、循環ポンプ
21を運転することにより、清水又は不凍液を熱媒体と
して前記蓄熱剤29゛と暖房負荷との熱交換により暖房
運転が行われる。
In the daytime heating operation, the three-way switching valve 27 is switched to the load side during the day, and the circulation pump 21 is configured to circulate fresh water or brine between the cold storage heat tank 5, the load, and the chiller 4, and the two-stage compressor l By operating the circulation pump 21 in a stopped state, heating operation is performed by heat exchange between the heat storage agent 29' and the heating load using fresh water or antifreeze as a heat medium.

従って本実施例においては夏期冷房時と同様に冬期暖房
時においても圧縮機を昼間使用することなく、深夜電力
のみの利用で可能となり、より一層の深夜電力利用が可
能となる。
Therefore, in this embodiment, during winter heating as well as during summer cooling, the compressor is not used during the day, and only late-night power can be used, making it possible to use late-night power even further.

「発明の効果」 以上記載の如く本第1発明及び第2発明のいずれも、冬
期夏期いずれも潜熱利用が可能である為に、特に冬期暖
房時の蓄熱槽を従来技術に比して大幅に小形化が可能と
なり、該蓄熱槽を地下ではなく屋上に設置可能となり、
建設費の大幅低減。
"Effects of the Invention" As described above, both the first and second inventions allow the use of latent heat in both winter and summer, so the heat storage tank, especially during winter heating, can be used significantly compared to the conventional technology. It is possible to downsize and install the heat storage tank on the roof instead of underground.
Significant reduction in construction costs.

揚水を行うポンプ動力の不要化、配管の簡略化等が達成
出来、運転コスト及び保守コストを大幅に低減させるこ
とが出来る。
It is possible to eliminate the need for pump power for pumping water, simplify piping, etc., and significantly reduce operating and maintenance costs.

又本発明によれば、夏期冷房時に使用する蓄冷槽と前記
蓄熱槽を一体化することも可能であり、より一層の小形
化が可能となり、鎖車−の蓄冷熱槽を前記圧縮機等の機
械設備と共に、ビルの屋上等に設置しても建築強度上回
等問題とならず、既存のビルにおいても簡単に改造が可
能となる。
Also, according to the present invention, it is possible to integrate the heat storage tank with the cold storage tank used for summer cooling, which enables further downsizing, and the cold storage heat tank of the chain wheel can be used for the compressor, etc. Even if it is installed on the roof of a building along with mechanical equipment, there will be no problem of exceeding the strength of the building, and existing buildings can be easily remodeled.

又本発明によれば前記蓄熱槽の小形化が達成されたが故
に、時間差を介して実質的な二段圧縮運転を行う冷暖房
システムの実用化が容易になり、この結果、圧縮効率と
動力コストの大幅低減が可能となった。
Further, according to the present invention, since the heat storage tank is made smaller, it becomes easier to put into practical use an air-conditioning system that performs substantial two-stage compression operation through a time difference, and as a result, compression efficiency and power cost are reduced. It has become possible to significantly reduce the

更に第2発明によれば冬期夏期いずれも昼間の冷暖房時
に、圧縮機を運転させる必要がなく、より効果的に深夜
電力の宥効利用が図れる。
Furthermore, according to the second aspect of the invention, there is no need to operate the compressor during daytime cooling and heating in both winter and summer, and late-night power can be used more effectively.

等の種々の著効を有す。It has various effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本第1発明の実施例に係る冷暖房システムの概
略説明図、第2図は他の実施例に係る冷暖房システムの
概略説明図、第4図は第2発明の実施例に係る冷暖房シ
ステムの概略説明図、第3図は前記夫々の実施例に使用
される蓄冷熱槽の概略断面図である。 手続補正書 (自発) 昭和60年7月 4日
FIG. 1 is a schematic illustration of a heating and cooling system according to an embodiment of the first invention, FIG. 2 is a schematic illustration of a heating and cooling system according to another embodiment, and FIG. 4 is a heating and cooling system according to an embodiment of the second invention. A schematic explanatory diagram of the system, FIG. 3 is a schematic sectional view of a cold storage heat tank used in each of the above embodiments. Procedural amendment (voluntary) July 4, 1985

Claims (1)

【特許請求の範囲】 1)夜間電力を利用して得られた蓄冷・蓄熱源を昼間の
冷暖房運転の熱エネルギーとして利用する冷暖房システ
ムにおいて、前記熱エネルギーを夏期冷房時は氷潜熱と
して蓄冷し、冬期は暖房時は10〜30℃の常温付近の
潜熱として蓄熱した事を特徴とする冷暖房システム 2)前記熱エネルギーを、すくなくとも10〜30℃の
常温付近の潜熱として蓄熱可能な蓄熱槽を有するヒート
ポンプ装置であって、該装置で夜間に外気熱源とするヒ
ートポンプを低段側圧縮運転を行い、その熱エネルギー
を常温付近の潜熱として前記蓄熱槽に貯えられ、昼間に
前記熱エネルギーを熱源としてヒートポンプを高段側圧
縮運転となる如く運転し、時間差による二段圧縮運転を
行うことを特徴とする特許請求の範囲第1項記載の冷暖
房システム 3)夏期冷房時に冷凍機により主として夜間運転により
氷潜熱による蓄冷を行い、その熱エネルギーが主として
昼間の冷房用に使用されることを特徴とする特許請求の
範囲第1項又は第2項記載の冷暖房システム 4)氷潜熱を蓄冷する蓄冷槽内に前記常温付近の融点を
有する潜熱蓄熱剤を封入した部材を充填したことを特徴
とする特許請求の範囲第1項から第3項までのいずれか
1項記載の冷暖房システム5)潜熱蓄熱剤を樹脂系カプ
セル内に封入したものを前記蓄冷槽内に充填したことを
特徴とする特許請求の範囲第1項から第4項までのいず
れか1項記載の冷暖房システム 6)略常温付近の融点を有する潜熱蓄熱剤を封入したカ
プセルと清水を封入したカプセルとを混在又は積層して
蓄冷槽内に充填したことを特徴とする特許請求の範囲第
1項から第5項までのいずれか1項記載の冷暖房システ
ム 7)前記蓄冷槽とチラー間を不凍液で循環することを特
徴とする特許請求の範囲第1項から第6項までのいずれ
か1項記載の冷暖房システム 8)前記蓄冷熱槽とソーラ温水器とを連通した事を特徴
とする特許請求の範囲第4項から第7項までのいずれか
1項記載の冷凍及びヒートポンプの運転方法 9)夜間電力を利用して得られた蓄冷・蓄熱源を昼間の
冷暖房運転の熱エネルギーとして利用する冷暖房システ
ムにおいて、前記熱エネルギーを夏期冷房時は氷潜熱と
して蓄冷し、冬期暖房時は外気熱源によるヒートポンプ
を用いて夜間二段圧縮運転を行い、該二段圧縮運転によ
り得られた40〜60℃の高段側凝縮温度を潜熱として
蓄熱槽に貯え、昼間の暖房時に、前記潜熱を利用して暖
房運転を行うことを特徴とする冷暖房システム 10)氷潜熱を蓄冷する蓄冷槽内に前記高段側凝縮温度
付近の融点を有する潜熱蓄熱剤を封入した部材を充填し
た特許請求の範囲第9項記載の冷暖房システム
[Scope of Claims] 1) In a heating and cooling system that uses a cold storage/heat storage source obtained using nighttime electricity as thermal energy for heating and cooling operation during the day, the thermal energy is stored as ice latent heat during summer cooling; A heating and cooling system characterized in that heat is stored as latent heat around room temperature of 10 to 30°C during heating in winter.2) A heat pump having a heat storage tank capable of storing the thermal energy as latent heat around room temperature of at least 10 to 30°C. The device performs low-stage compression operation of a heat pump that uses outside air as a heat source at night, stores the thermal energy in the heat storage tank as latent heat near room temperature, and operates the heat pump using the thermal energy as a heat source during the day. The heating and cooling system according to claim 1, characterized in that the heating and cooling system operates in a high-stage compression mode and performs a two-stage compression mode based on a time difference. The heating and cooling system according to claim 1 or 2, characterized in that the heating and cooling system stores cold and the thermal energy is mainly used for cooling during the daytime. 5) A heating and cooling system according to any one of claims 1 to 3, characterized in that the latent heat storage agent is filled with a member encapsulating a latent heat storage agent having a melting point in the vicinity of 5) A resin-based capsule containing the latent heat storage agent 6) The air conditioning system according to any one of claims 1 to 4, characterized in that the cool storage tank is filled with latent heat storage having a melting point near normal temperature. The heating and cooling system according to any one of claims 1 to 5, characterized in that capsules encapsulating an agent and capsules encapsulating fresh water are mixed or stacked and filled in a cold storage tank. 7) The air conditioning system according to any one of claims 1 to 6, characterized in that antifreeze is circulated between the cold storage tank and the chiller. 8) The cold storage thermal tank and the solar water heater. 9) A method for operating a refrigeration and heat pump according to any one of claims 4 to 7, characterized in that In a heating and cooling system, the thermal energy is stored as ice latent heat during summer cooling, and during winter heating, a two-stage compression operation is performed at night using a heat pump using an outside air heat source. A heating and cooling system characterized in that the high-stage condensation temperature of 40 to 60°C obtained during operation is stored as latent heat in a heat storage tank, and during daytime heating, the latent heat is used to perform heating operation. 10) Ice latent heat The heating and cooling system according to claim 9, wherein a member enclosing a latent heat storage agent having a melting point near the condensation temperature on the high stage side is filled in a cold storage tank for storing cold.
JP8215485A 1985-04-19 1985-04-19 Air-conditioning system utilizing latent heat Granted JPS61243261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8215485A JPS61243261A (en) 1985-04-19 1985-04-19 Air-conditioning system utilizing latent heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215485A JPS61243261A (en) 1985-04-19 1985-04-19 Air-conditioning system utilizing latent heat

Publications (2)

Publication Number Publication Date
JPS61243261A true JPS61243261A (en) 1986-10-29
JPH0585816B2 JPH0585816B2 (en) 1993-12-08

Family

ID=13766516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215485A Granted JPS61243261A (en) 1985-04-19 1985-04-19 Air-conditioning system utilizing latent heat

Country Status (1)

Country Link
JP (1) JPS61243261A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961945A (en) * 1972-10-16 1974-06-15
JPS49124844A (en) * 1973-03-31 1974-11-29
JPS5066036A (en) * 1973-10-17 1975-06-04
JPS51145046A (en) * 1975-06-09 1976-12-13 Takasago Thermal Eng Co Lts A method to improve cooling capacity of water
JPS582539A (en) * 1981-06-30 1983-01-08 Toshiba Corp Heat accumulating type air conditioner
JPS5815792U (en) * 1981-07-23 1983-01-31 新日軽株式会社 round window
JPS6134065U (en) * 1984-07-31 1986-03-01 日本ビー・エー・シー株式会社 Ice storage heat pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525712A (en) * 1978-08-10 1980-02-23 Shii Ai Heizu Inc Vacuum furnace for continuous heat treatment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961945A (en) * 1972-10-16 1974-06-15
JPS49124844A (en) * 1973-03-31 1974-11-29
JPS5066036A (en) * 1973-10-17 1975-06-04
JPS51145046A (en) * 1975-06-09 1976-12-13 Takasago Thermal Eng Co Lts A method to improve cooling capacity of water
JPS582539A (en) * 1981-06-30 1983-01-08 Toshiba Corp Heat accumulating type air conditioner
JPS5815792U (en) * 1981-07-23 1983-01-31 新日軽株式会社 round window
JPS6134065U (en) * 1984-07-31 1986-03-01 日本ビー・エー・シー株式会社 Ice storage heat pump

Also Published As

Publication number Publication date
JPH0585816B2 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
US5497629A (en) Heating and cooling systems incorporating thermal storage
US5211029A (en) Combined multi-modal air conditioning apparatus and negative energy storage system
US5678626A (en) Air conditioning system with thermal energy storage and load leveling capacity
US5355688A (en) Heat pump and air conditioning system incorporating thermal storage
JP3609096B2 (en) Combined cooling system for water cooling and heat storage
CN104235978B (en) Cold storage and heat storage type air conditioner
JPH0219379B2 (en)
CN104344479A (en) Cold accumulation type energy-saving air conditioning system and operation method thereof
CN109883082B (en) Frostless air source energy storage type heat pump system and use method thereof
JP5503167B2 (en) Air conditioning system
JPS61243284A (en) Cold heat accumulating tank provided with plural temperature zone
US11015870B2 (en) Water tank for use in an air-conditioning or heating system
JP2000205774A (en) Capsulated heat storage apparatus
JP2007127291A (en) Heat utilizing system
JPS61243261A (en) Air-conditioning system utilizing latent heat
JP2000111190A (en) Cooler
JPS62153658A (en) Method of operating heat energy utilizer
KR102287461B1 (en) Hybrid adsorption chiller having dual condensers with renewable energy and method for operating the same
KR102329432B1 (en) Hybrid adsorption chiller having super colling chain with renewable energy and method for operating the same
JP3802237B2 (en) Air conditioner with ice storage tank
JP3043080B2 (en) Air conditioning system
KR100371682B1 (en) Cooling & Heating System of Hybrid Thermal Storage Using Midnight Electricity
JPH02219933A (en) Cold storage system
JP2000257921A (en) Air conditioner equipped with ice storage tank
JP2751695B2 (en) Heat storage type cooling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees