JPS61241984A - Integrated type optical battery and manufacture thereof - Google Patents

Integrated type optical battery and manufacture thereof

Info

Publication number
JPS61241984A
JPS61241984A JP60083303A JP8330385A JPS61241984A JP S61241984 A JPS61241984 A JP S61241984A JP 60083303 A JP60083303 A JP 60083303A JP 8330385 A JP8330385 A JP 8330385A JP S61241984 A JPS61241984 A JP S61241984A
Authority
JP
Japan
Prior art keywords
layer
substrate
layers
photovoltaic cell
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60083303A
Other languages
Japanese (ja)
Inventor
Takeshi Nishikawa
武 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP60083303A priority Critical patent/JPS61241984A/en
Publication of JPS61241984A publication Critical patent/JPS61241984A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve moisture-proof, corrosion prevention and short-circuit property, by forming a plurality of conducting layers, optical-battery forming layers and a light transmitting electrode layers, in which said layers are linked, on the insulating waterproof surface of a substrate, and providing an insulating transparent waterproof layer thereon. CONSTITUTION:On an insulating waterproof surface 2 of a substrate 1, a plurality of conducting layers 3, optical-battery forming layers 5 and 6, and a ight transmitting electrode layer 7, in which said layers are linked, are formed. An insulating transparent waterproof layer is further provided thereon. For the substrate 1, an inorganic material substrate, a plastic plate, an insulated metal plate, and the like are used. The conducting layers 3, 4 and 4' are the conducting layers, which are formed by printing, evaporation, painting and the like. The light transmitting electrode layer 7 means a conducting electrode layer, which transmits light to a semiconductor layer. An electrode having a lattice shape, a stripe shape and the like, or substantially transparent electrode and the like are used. The transparent waterproof layer means a light transmitting waterproof protecting layer, which covers each constituent layer on the substrate 1. An inorganic applied film, a cover coat layer, and the like are used. Thus, moisture proof, corrosion resistance and short-circuit property can be improved.

Description

【発明の詳細な説明】 利用分野 本発明は、集積型光電池、該集積型光電池からなる集成
パネル、および該集積型光電池の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to integrated photovoltaic cells, assembled panels comprising the integrated photovoltaic cells, and methods for making the integrated photovoltaic cells.

従来の技術および問題点 太陽電池等の光電池は、出力が限定されているので、複
数個の光電池を組合せて使用するのが普通である。光電
池は一般に屋外で使用されるので、光電池の防湿および
リード線接点の防蝕等に問題があった。また、直列接続
した電池が故障すると、該電池系全体の機能が失われる
Prior Art and Problems Since photovoltaic cells such as solar cells have limited output, it is common to use a combination of a plurality of photovoltaic cells. Since photovoltaic cells are generally used outdoors, there have been problems with moisture proofing of photovoltaic cells and corrosion protection of lead wire contacts. Furthermore, if a series-connected battery fails, the entire battery system loses its functionality.

従って、−個の基板上に複数個の単位光電池を直列なら
びに並列に接続収容した集積型の電池が望ましいが、上
記の防湿および防蝕等の問題ならびに短絡および製造工
程上の難点等に原因して、実用性のある集積型光電池は
未開発の状態である。
Therefore, it is desirable to have an integrated type battery in which a plurality of unit photovoltaic cells are connected and housed in series and in parallel on a single substrate. However, practical integrated photovoltaic cells remain undeveloped.

解決するための手段 本発明の一目的は、上記の問題点を克服した集積型光電
池を提供することである。本発明の別の目的は、複数個
の該集積型光電池からなる光電池パネルを提供すること
である。本発明の他の目的は、該集積型光電池の製法を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an integrated photovoltaic cell that overcomes the above-mentioned problems. Another object of the present invention is to provide a photovoltaic panel comprising a plurality of such integrated photovoltaic cells. Another object of the present invention is to provide a method for manufacturing the integrated photovoltaic cell.

本発明者は、電気絶縁性基板、必要に応じて電気絶縁性
の防水III層、導電層、光電池形成層、透光性電極層
、連結手段および電気絶縁性透明防水層を組合せた構成
によって、上記の問題点を克服した。以下、必要に応じ
て添付図面を参照して記述するが、本発明はこれらによ
って限定されるものではない。
The present inventor has achieved the following by combining an electrically insulating substrate, an electrically insulating waterproof III layer, a conductive layer, a photovoltaic cell forming layer, a translucent electrode layer, a connecting means, and an electrically insulating transparent waterproof layer as necessary. The above problems have been overcome. The present invention will be described below with reference to the accompanying drawings as necessary, but the present invention is not limited thereto.

すなわち本発明によって、基板1の絶縁性防水面2上の
好ましくは二側端および端部より内側に複数個の相互に
分離して設けた導電層(3,4゜4′)、該内側の各導
電層3上に複数個の間隔をあけて設けた少くも一層の光
電池形成層(5,6)、各光電池形成層6上に設けた透
光性電極層7、例えば各電!@層7の一端を隣りの導電
層(3,4)に接続し更に他端の導電層4′を隣りの導
電層3と接続する連結部分(8,9)(単位光電池を直
列および並列に接続する限り、連結パターンは任意であ
る)、および該光電池板上に設けた絶縁性透明防水層(
図示を省略)、を備えたことを特徴とする、単位光電池
を直列および並列に連結した集積型光電池が提供される
。上記の二側端の導電層(4,4’)は、結線状の導電
体であってもよく、そして出力用の端子に通常接続され
ている。なお、本発明において光電池とは、p−n型ま
たはp−1−n方のような太陽電池およびその他生導体
型光電池等の、光電効果によって電気を発生する電池を
意味する。従って、上記の光電池形成層には、これらの
半導体の構成がすべて適用できる。
That is, according to the present invention, a plurality of conductive layers (3, 4° 4') provided on the insulating waterproof surface 2 of the substrate 1, preferably on the two side ends and inside the end, separated from each other; At least one photovoltaic cell-forming layer (5, 6) provided on each conductive layer 3 at intervals, a transparent electrode layer 7 provided on each photovoltaic cell-forming layer 6, for example, each cell! @ Connecting portion (8, 9) that connects one end of the layer 7 to the adjacent conductive layer (3, 4) and further connects the other end of the conductive layer 4' to the adjacent conductive layer 3 (unit photovoltaic cells are connected in series and parallel) As long as the connection is made, the connection pattern is arbitrary), and the insulating transparent waterproof layer provided on the photovoltaic board (
An integrated photovoltaic cell in which unit photovoltaic cells are connected in series and in parallel is provided. The conductive layers (4, 4') at the two side ends may be wired conductors and are usually connected to terminals for output. In the present invention, the photovoltaic cell means a cell that generates electricity by the photoelectric effect, such as a p-n type or p-1-n type solar cell and other bioconductor type photovoltaic cells. Therefore, all of these semiconductor structures can be applied to the photovoltaic cell formation layer described above.

本発明の集積型光電池は、上記の導電層として帯状の導
電層3を採用することによって、工業的に有利に製造で
きる。すなわち、基板1の絶縁性防水層2上の好ましく
は二側端および端部より内側に相互に分離した複数個の
実質的に帯状(例えば矩形状等の導電層を結線した態様
も包含される)の導電層を形成し、内側の各帯状導電層
3上に複数個の間隔をあけた少くも一層の光電池形成層
5゜6を形成し、各光電池形成層6上に透光性電極層7
を形成し、(例えば該電極層7の一端を隣りの帯状導電
層(3,4)に接続し、そして他端の帯状導電層4′を
隣りの帯状導電m3に接続して)単位光電池を直列およ
び並列に連結し、次いで該光電池板上に絶縁性透明防水
層(図示を省略)を形成する工程を特徴とする、集積型
光電池の製法が提供される。なお、上記の矩形状等の導
電層の結線ならびに上記の二側端の導電層(4,4’)
は単位光電池の連結時に形成することも当然可能である
The integrated photovoltaic cell of the present invention can be manufactured industrially advantageously by employing the strip-shaped conductive layer 3 as the conductive layer. That is, it also includes an embodiment in which a plurality of substantially strip-shaped (for example, rectangular) conductive layers separated from each other, preferably on the two side ends and inside the end on the insulating waterproof layer 2 of the substrate 1 are connected. ), a plurality of at least one photovoltaic cell forming layer 5 6 spaced apart is formed on each inner strip-shaped conductive layer 3 , and a transparent electrode layer is formed on each photovoltaic cell forming layer 6 . 7
(for example, by connecting one end of the electrode layer 7 to the adjacent strip-shaped conductive layer (3, 4), and connecting the other end of the strip-shaped conductive layer 4' to the adjacent strip-shaped conductive layer m3) to form a unit photovoltaic cell. A method for manufacturing an integrated photovoltaic cell is provided, which is characterized by the steps of connecting in series and parallel and then forming an insulating transparent waterproof layer (not shown) on the photovoltaic plate. In addition, the connection of the above-mentioned rectangular conductive layer, etc. and the above-mentioned conductive layer at the two side ends (4, 4')
Of course, it is also possible to form when unit photovoltaic cells are connected.

上記の集積型電池およびその製法において、二側端の連
続性導電層(4,4’)を、該電池基板の二側部を通っ
て該二側端の基板裏面まで延長し−(或いは該二側部お
よび裏面の二側端部に金属ベースト等を適用して)、そ
して該側部の導電層を絶縁性防水層にて被覆した態様が
例示される。この場合、該導電層を適用する基板の側面
および裏面の部分は、絶縁防水性であるのが望ましい。
In the above integrated battery and its manufacturing method, the continuous conductive layer (4, 4') at the two side ends is extended through the two sides of the battery substrate to the back surface of the substrate at the two side ends. An example is an embodiment in which a metal base or the like is applied to the two side parts and the two side ends of the back surface), and the conductive layer on the side parts is covered with an insulating waterproof layer. In this case, it is desirable that the side and back surfaces of the substrate to which the conductive layer is applied are insulating and waterproof.

該電池基板1の′裏面12の二側端に導電層14を有す
る場合、第2図に例示するように、該電池を縦横方向に
各複数個配置し該裏面の各導電層14をろう付金屈材ま
たは導電性テープ13等の導電性材料にて連結した集成
パネルが更に得られる。このような集成パネルでは、構
成電池の一個ないし数個が内部接続機能を失っても、他
の電池が接続している限りパネル全体としての機能が発
揮され−る。なお、集積型電池に関して説明したが、構
成電池が多数個の単独光電池からなる場合にも同様な集
成パネルが得られる。
When the battery substrate 1 has conductive layers 14 on the two side ends of the back surface 12, as illustrated in FIG. An assembled panel is further obtained which is connected by a conductive material such as gold flexure material or conductive tape 13. In such an assembled panel, even if one or several constituent batteries lose their internal connection function, the panel as a whole will continue to function as long as other batteries are connected. Although the explanation has been made regarding an integrated type battery, a similar assembled panel can also be obtained when the constituent battery is composed of a large number of individual photovoltaic cells.

作用および効果 基板1の絶縁性防水面2上に、複数個の導電層3および
光電池形成層(5,6)およびこれらを連結した透光性
電極層7を形成し、更にその上に絶縁性透明防水層を設
けることによって、集積型光電池の場合に予想される防
湿、防蝕、短絡性、製造工程等の問題点が解消された。
Functions and effects A plurality of conductive layers 3 and photovoltaic cell formation layers (5, 6), and a translucent electrode layer 7 connecting these layers are formed on the insulating waterproof surface 2 of the substrate 1, and an insulating By providing a transparent waterproof layer, problems such as moisture resistance, corrosion resistance, short-circuit resistance, manufacturing process, etc. that would be expected in the case of integrated photovoltaic cells were solved.

従って、充分に実用性のある新規な集積型光電池および
該電池の集成パネルが提供される。
Accordingly, a novel integrated photovoltaic cell and an assembled panel thereof are provided which are fully practical.

具体的な態様 上記の基板1とは、光電池の基板として充分な強度を有
しそして一般に電気絶縁性の基板を意味する。無機材料
系基板、プラスチック板、絶縁処理された金属板等が例
示されるが、耐熱性のあるものが好ましい。
Specific Embodiments The above substrate 1 means a substrate that has sufficient strength as a substrate for a photovoltaic cell and is generally electrically insulating. Examples include inorganic material substrates, plastic plates, and insulated metal plates, but those with heat resistance are preferred.

絶縁性防水面2とは、例えば吸湿性のある無機材料系基
板を用いる場合、その表面に施釉または防水塗膜処理を
した絶縁性表面を意味する。基板が絶縁防水性表面を本
来有する場合は、一般に処理を必要としない。
The insulating waterproof surface 2 means, for example, when a hygroscopic inorganic substrate is used, an insulating surface that is glazed or treated with a waterproof coating. If the substrate inherently has an insulating waterproof surface, no treatment is generally required.

導電M (3,4,4’)とは、プリントまたは蒸着ま
たは塗装等によって形成される導電性の層を意味する。
Conductive M (3,4,4') means a conductive layer formed by printing, vapor deposition, painting, or the like.

なお、矩形状等の導電層を間隔をあけて形成し、後記の
電極層の形成時に結線することも可能である。
Note that it is also possible to form rectangular conductive layers at intervals and connect them at the time of forming an electrode layer, which will be described later.

光電池形成層(5,6>とは、光電池の主要部分である
−ないし三層程度の主に半導体成分からなる層を意味す
る。
The photovoltaic cell forming layer (5, 6>) means a layer consisting mainly of semiconductor components, which is the main part of a photovoltaic cell and has about three to three layers.

透光性電極層7とは、光を該半導体層に透光する導電性
電極層を意味し、格子状もしくはストライブ状等の電極
または実質的に透明性の電極等が例示される。
The light-transmitting electrode layer 7 refers to a conductive electrode layer that transmits light to the semiconductor layer, and includes, for example, a grid-like or stripe-like electrode or a substantially transparent electrode.

透明防水層とは、光電池板すなわち基板上の各構成層を
覆う透光性の防水保護層を意味し、無機系の塗膜または
釉層等が例示される。
The transparent waterproof layer refers to a light-transmitting waterproof protective layer that covers each constituent layer on a photovoltaic cell plate, that is, a substrate, and includes, for example, an inorganic coating film or a glaze layer.

上記の各構成層は、スクリーン印刷、塗装、または転写
等のコーティングおよび焼成による工程、或いは蒸着ま
たはスパッタリング等による工程等によってそれぞれ適
用できる。製造工程上はコーティングおよび焼成による
工程が一般に望ましい。
Each of the above constituent layers can be applied by a coating process such as screen printing, painting, or transfer and baking, or by a process such as vapor deposition or sputtering. In terms of the manufacturing process, coating and firing processes are generally preferred.

この場合、各構成層は600〜800℃程度の耐熱性が
必要である。従って該基板としては、耐熱ガラス板そし
て特に防水処理をした無機材料系基板(例えばセラミッ
ク系タイル基板)等が一般に望ましい。
In this case, each constituent layer needs to have heat resistance of about 600 to 800°C. Therefore, as the substrate, it is generally desirable to use a heat-resistant glass plate, and especially a waterproof treated inorganic material-based substrate (for example, a ceramic tile substrate).

丈J目引 各辺が約100mm、厚さが約5mmの施釉セラミック
タイル1を約550度に加熱した。この加熱した施釉タ
イルの施釉面2に、5nCI2が5%含有されたInC
l、溶液を幅約4mmのマスキングを用いてスプレーし
た。該タイルの施釉面2上に、■n203 による膜厚
約1ミクロンの約11111III幅の帯状導電層3お
よび二側端の約2mm幅の導電層4.4′が析出形成さ
れた。
A glazed ceramic tile 1 having a length of about 100 mm on each side and a thickness of about 5 mm was heated to about 550 degrees. InC containing 5% of 5nCI2 on the glazed surface 2 of the heated glazed tile.
1, the solution was sprayed using a masking approximately 4 mm wide. On the glazed surface 2 of the tile, a band-shaped conductive layer 3 of about 11111III width and a film thickness of about 1 micron and a conductive layer 4.4' of about 2 mm width at the two side edges were deposited.

次に、300メツシユの篩目を通過するCd Teの粉
体82.64 [t%(IN>と、プロピレングリコー
ルの溶液16.53重量%(2cc)と、CdC1□0
.83重口%(0,1!II )とを混練してペースト
状にした。該ペーストを前記導電層3上に、幅約12m
mx長さ約20++++nの寸法にて約10mmの間隔
をあけて、約60ミクロンの厚さにスクリーン印刷した
。このタイルを窒素雰囲気中ににて約680℃の温度で
30分間焼成し、導電層3上にCd Teによるp型半
導体層5を形成させた。焼成時に該タイルを窒素雰囲気
中に入れるのは、Cd Tcの酸化を防止するためであ
る。
Next, 82.64 [t% (IN>) of CdTe powder passing through a 300-mesh sieve, 16.53 wt% (2 cc) of propylene glycol solution, and CdC1□0
.. 83% by weight (0.1!II) were kneaded to form a paste. Apply the paste on the conductive layer 3 in a width of about 12 m.
It was screen printed to a thickness of about 60 microns with dimensions of m x length of about 20+++n and spaced about 10 mm apart. This tile was fired for 30 minutes at a temperature of about 680° C. in a nitrogen atmosphere to form a p-type semiconductor layer 5 of CdTe on the conductive layer 3. The reason why the tile is placed in a nitrogen atmosphere during firing is to prevent oxidation of Cd Tc.

次に300メツシユの篩目を通過するCdSの粉体80
重量%(10g)と、プロピレングリコールの1116
1ffi% (2cc) ト、Cd C1□4tli最
% (o、sg )とを混練してペースト状にした。該
ベース1−を幅約13mmx長さ約18mmの寸法にて
該CdTe半導体層5上に約40ミクロンの厚さにスク
リーン印刷した。このタイルを窒素雰囲気中にて約63
0℃の温度で20分間焼成し、該Cd Teによる半導
体層5上面にCdSによるn方半導体層6を形成させた
Next, 80% of CdS powder passes through a 300-mesh sieve.
Weight % (10g) and 1116 of propylene glycol
1ffi% (2cc) and Cd C1□4tlimax% (o,sg) were kneaded to form a paste. The base 1- was screen printed on the CdTe semiconductor layer 5 to a thickness of about 40 microns with dimensions of about 13 mm wide x about 18 mm long. This tile was placed in a nitrogen atmosphere for approximately 63 hours.
Firing was performed at a temperature of 0° C. for 20 minutes to form an n-type semiconductor layer 6 made of CdS on the upper surface of the semiconductor layer 5 made of CdTe.

該CdS半導体層6上に、幅約10mmx長さ約16m
mの寸法にて銀ペースI・を格子状にスクリーン印刷し
た、同時に、該格子状プリントの一端を隣りの導電層3
,4にそして他端の導電層4′を隣りの導電層3に連結
するようにスクリーン印刷した。
On the CdS semiconductor layer 6, about 10 mm wide x about 16 m long
Silver paste I was screen-printed in a grid pattern with dimensions of
, 4, and screen printing was performed to connect the conductive layer 4' at the other end to the adjacent conductive layer 3.

更に、二側端の導電層4.4′に接続して、該タイル基
板1の二側面および該二側面に連がるタイル基板の裏面
の二側端に銀ペーストを塗布した(この二側面および裏
面の二喘部への銀べ・−ストの適用は、好ましい一態様
である)。
Furthermore, silver paste was applied to the two side surfaces of the tile substrate 1 and the two side edges of the back surface of the tile substrate connected to the two side surfaces, connected to the conductive layer 4.4' at the two side edges. and the application of silver base to the two panes on the back is a preferred embodiment).

次いで、該光電池板上および銀ペーストを適用した該二
側面上に、無機質塗料を約80ミクロンの厚さに塗装し
、窒素雰囲気下で約550℃にて焼成した。このように
して、格子状電極層7、単位光電池を接続する連結部分
(8,9)、および絶縁性透明防水層等を形成した。
An inorganic paint was then applied to a thickness of about 80 microns on the photovoltaic plate and on the two sides to which the silver paste had been applied, and baked at about 550° C. under a nitrogen atmosphere. In this way, the grid-like electrode layer 7, the connecting portions (8, 9) for connecting the unit photovoltaic cells, the insulating transparent waterproof layer, etc. were formed.

得られた約10cm平方の集積型光電池の出力は、AM
(エアーマス)1の太陽光下にて、約3.0ボルト、約
15n+A/平方cmであった。
The output of the resulting approximately 10 cm square integrated photovoltaic cell is AM
(Air mass) Under sunlight of 1, it was about 3.0 volts and about 15 n+A/cm2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の集積型光電池の製造工程を例示する
平面略図である。第2図は、該集積型光電池を複数個集
成したパネルを例示する裏平面略図である。 1・・・基板、2・・・絶縁性防水名、3・・・帯状導
電層、5.6・・・光@地形成層、7・・・透光性電極
層、13・・・導電性テープ、14光電池基板裏面の導
電層。
FIG. 1 is a schematic plan view illustrating the manufacturing process of the integrated photovoltaic cell of the present invention. FIG. 2 is a schematic back plan view illustrating a panel in which a plurality of the integrated photovoltaic cells are assembled. 1...Substrate, 2...Insulating waterproof name, 3...Striped conductive layer, 5.6...Light @ ground formation layer, 7...Transparent electrode layer, 13...Conductive conductive layer on the back side of the photovoltaic cell substrate.

Claims (1)

【特許請求の範囲】 1)基板の絶縁性防水面上の二側端および端部より内側
に複数個の相互に分離して設けた導電層、該内側の各導
電層上に複数個の間隔をあけて設けた光電池形成層、各
光電池形成層上に設けた透光性電極層、各単位光電池を
直列および並列に接続する連結部分、および該光電池板
上に設けた絶縁性透明防水層、を備えたことを特徴とす
る、単位光電池を直列および並列に連結した集積型光電
池。 2)基板の二側端の導電層に接続して該基板の裏面の二
側端部に導電層を有する、特許請求の範囲第1項の集積
型光電池。 3)該光電池を縦横方向に各複数個配置しそして基板裏
面の導電層を導電性材料にて連結して集成パネルを形成
した、特許請求の範囲第2項の集積型光電池。 4)基板の絶縁性防水面上の端部より内側に相互に分離
した複数個の実質的に帯状の導電層を形成し、内側の各
帯状導電層上に複数個の間隔をあけた光電池形成層を形
成し、各光電池形成層上に透光性電極層を形成し、単位
光電池を直列および並列に連結し、次いで該光電池板上
に絶縁性透明防水層を形成する工程を特徴とする、集積
型光電池の製法。
[Scope of Claims] 1) A plurality of conductive layers provided separately from each other at two side ends and inside the end on the insulating waterproof surface of the substrate, and a plurality of conductive layers at intervals on each of the inside conductive layers. A photovoltaic cell forming layer provided with an opening, a translucent electrode layer provided on each photovoltaic cell forming layer, a connecting portion connecting each unit photovoltaic cell in series and parallel, and an insulating transparent waterproof layer provided on the photovoltaic plate, An integrated photovoltaic cell comprising unit photovoltaic cells connected in series and parallel. 2) An integrated photovoltaic cell according to claim 1, having a conductive layer at two side ends of the back surface of the substrate connected to the conductive layer at the two side ends of the substrate. 3) The integrated photovoltaic cell according to claim 2, wherein a plurality of the photovoltaic cells are arranged in the vertical and horizontal directions and the conductive layers on the back surfaces of the substrates are connected with a conductive material to form an assembled panel. 4) Forming a plurality of substantially strip-shaped conductive layers separated from each other inwardly from the edge on the insulating waterproof surface of the substrate, and forming a plurality of spaced apart photovoltaic cells on each inner strip-shaped conductive layer. forming a transparent electrode layer on each photovoltaic cell forming layer, connecting unit photovoltaic cells in series and parallel, and then forming an insulating transparent waterproof layer on the photovoltaic cell plate. Manufacturing method for integrated photovoltaic cells.
JP60083303A 1985-04-18 1985-04-18 Integrated type optical battery and manufacture thereof Pending JPS61241984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083303A JPS61241984A (en) 1985-04-18 1985-04-18 Integrated type optical battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083303A JPS61241984A (en) 1985-04-18 1985-04-18 Integrated type optical battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61241984A true JPS61241984A (en) 1986-10-28

Family

ID=13798639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083303A Pending JPS61241984A (en) 1985-04-18 1985-04-18 Integrated type optical battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61241984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413774A (en) * 1987-07-08 1989-01-18 Hitachi Ltd Photoelectric conversion device
EP2118929A2 (en) * 2007-02-01 2009-11-18 Corus UK LTD. A power generating element for conversion of light into electricity and process for manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413774A (en) * 1987-07-08 1989-01-18 Hitachi Ltd Photoelectric conversion device
EP2118929A2 (en) * 2007-02-01 2009-11-18 Corus UK LTD. A power generating element for conversion of light into electricity and process for manufacturing thereof

Similar Documents

Publication Publication Date Title
CN101220700B (en) Methods and systems for asphalt roof integrated photovoltaic modules
JP2744847B2 (en) Improved solar cell and method for manufacturing the same
US7390961B2 (en) Interconnection of solar cells in a solar cell module
US4127424A (en) Photovoltaic cell array
US4233085A (en) Solar panel module
US3977904A (en) Semi-conductor battery
US4540843A (en) Solar cell
US4254546A (en) Photovoltaic cell array
US4849029A (en) Energy conversion structures
US3571915A (en) Method of making an integrated solar cell array
US20210036173A1 (en) Stabilized shingled solar cell strings and methods for their production
US4283590A (en) Method for production of solar cells and solar cells produced thereby
US20200176623A1 (en) Solar cell element and solar cell module
JPH0652795B2 (en) Flexible amorphous semiconductor solar cell
JPS61241984A (en) Integrated type optical battery and manufacture thereof
JPH1065198A (en) Right-angled triangular solar cell module and manufacturing method thereof
US11581843B2 (en) Solar roof tile free of back encapsulant layer
US20120295395A1 (en) Method for producing an array of thin-film photovoltaic cells having a totally separated integrated bypass diode associated with a plurality of cells and method for producing a panel incorporating the same
JPH0314052Y2 (en)
WO2015146413A1 (en) Solar cell and solar cell module using same
JPS56114384A (en) Solar battery
JPS5651880A (en) Amorphous semiconductor photocell
JPS63119273A (en) Photoelectric converter
JPH06334205A (en) Solar cell
JPS61128576A (en) Solar cell with substrate made the ceramic and manufacture thereof