JPS61241651A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPS61241651A
JPS61241651A JP60083756A JP8375685A JPS61241651A JP S61241651 A JPS61241651 A JP S61241651A JP 60083756 A JP60083756 A JP 60083756A JP 8375685 A JP8375685 A JP 8375685A JP S61241651 A JPS61241651 A JP S61241651A
Authority
JP
Japan
Prior art keywords
layer
electrode
reaction
filtered
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60083756A
Other languages
Japanese (ja)
Other versions
JPH0660882B2 (en
Inventor
Mariko Kawaguri
真理子 河栗
Shiro Nankai
史朗 南海
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60083756A priority Critical patent/JPH0660882B2/en
Publication of JPS61241651A publication Critical patent/JPS61241651A/en
Publication of JPH0660882B2 publication Critical patent/JPH0660882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To make the quick and accurate measurement of a substrate with a simple instrument and carrier possible by constituting the title sensor in such a manner that a blood sample reacts quickly and is filtered. CONSTITUTION:Oxido-reductase and oxidation type dye which conjugates with the enzyme react quickly in a reaction layer when the blood is dropped to the biosensor. The red blood cells and platelet are then filtered in a filter layer 7 and the filtered reaction liquid arrives at the lower liquid holding layer 6. A liquid holding layer 6 is notched in the outside peripheral part to have a space part and therefore the reaction liquid spreads over the entire surface of the liquid holding layer 6 and is filled in the space part where the electrode part consisting of a counter electrode 4 and reference electrode 5 is exposed. The reaction liquid filtered by the liquid holding layer 6 is guided quickly to the electrode part in the above-mentioned manner and the reacting weight is detected by the electrode reaction. Since the blood sample reacts and filtered in the short period in the above-mentioned manner, the accurate measurement of the substrate with the simple instrument and carrier is made possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、生体試料中の特定成分を検知するバイオセン
サに関するものであシ、医療分野や食品工学などに幅広
く応用できる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a biosensor that detects a specific component in a biological sample, and can be widely applied to the medical field, food engineering, etc.

従来の技術 医療技術の進歩とともに、血液や尿中の特定成分を測定
することにより健康のチェック、病気の状態、治療の効
果などがわかるようになった。しかし、従来は病院の臨
床検査室で大型の機械や複雑な手法で調べているため、
時間や費用がかがるという問題があった。そこで、もっ
と簡易にその場で測定できるセンサが望まれてる。その
1つの試みとして第6図のような多層式の分析担体が提
案されている。透明な支持体11の上に試薬層12、展
開層13、防水層14、濾過層15が順に積層した構造
になっている。血液サンプルを上部から滴下すると、ま
ず濾過層16にょシ血液中の赤血球、血小板などの固形
成分が除去され、防水層14にある小孔から展開層13
へ均一に浸透し、試薬層12において反応が進行する。
Conventional Technology With advances in medical technology, it has become possible to check health, determine disease status, and determine the effectiveness of treatment by measuring specific components in blood and urine. However, in the past, tests were carried out in hospital clinical laboratories using large machines and complicated methods.
The problem was that it took time and cost. Therefore, there is a need for a sensor that can more easily measure on the spot. As one such attempt, a multilayer analysis carrier as shown in FIG. 6 has been proposed. It has a structure in which a reagent layer 12, a spreading layer 13, a waterproof layer 14, and a filtration layer 15 are laminated in this order on a transparent support 11. When a blood sample is dropped from the top, solid components such as red blood cells and platelets in the blood are first removed from the filtration layer 16, and then passed through the small holes in the waterproof layer 14 to the expansion layer 13.
The reaction proceeds in the reagent layer 12.

反応終了後、透明な支持体11を通して矢印の方向から
光を当て分光分析により基質濃度を測定する方式である
After the reaction is completed, light is irradiated from the direction of the arrow through the transparent support 11, and the substrate concentration is measured by spectroscopic analysis.

この方式は、微量の血液を滴下することにょシ簡易に測
定できるというメリットがある二発明が解決しようとす
る問題点 しかし上記の方式では、血液の浸透および反応に′時間
がかかるため、サンプルの乾燥を防ぐ防水層14が必要
となったり、反応を速めるために高温でインキュベート
する必要があり、装置および担体が複雑化するという問
題がある。
This method has the advantage of being able to easily measure by dropping a minute amount of blood.2 Problems that the invention aims to solveHowever, in the above method, it takes time for the blood to permeate and react. A waterproof layer 14 is required to prevent drying, and incubation at a high temperature is required to speed up the reaction, making the apparatus and carrier complicated.

本発明は、上記の問題点である装置や担体の複雑化をさ
け、簡易な装置および担体で迅速に精度よく基質が測定
できるようにすることを目的とする。
An object of the present invention is to avoid the above-mentioned problem of complicating devices and carriers, and to enable rapid and accurate measurement of substrates using simple devices and carriers.

問題点を解決するだめの手段 本発明は、絶縁性の基体に測定極、対極および参照極か
らなる電極系を設け、この電極部の上に、空間部を介し
て親水性の多孔体からなる保液層と多孔体膜からなる濾
過層および酸化還元酵素と前記酵素と共役する酸化型色
素を含んだ反応層を枠体にはさんで設置し、さらに前記
濾過層の周囲に空間部を形成するものである。
Means to Solve the Problems The present invention provides an electrode system consisting of a measurement electrode, a counter electrode, and a reference electrode on an insulating substrate, and a hydrophilic porous material is placed above the electrode part with a space therebetween. A filtration layer consisting of a liquid retaining layer and a porous membrane, and a reaction layer containing an oxidoreductase and an oxidized dye conjugated with the enzyme are placed between frames, and a space is further formed around the filtration layer. It is something to do.

作用 本発明のバイオセンサに血液を滴下すると、反応層で酸
化還元酵素およびこの酵素と共役する酸化型色素がすみ
やかに反応する。次に濾過層において赤血球および血小
板が濾過される。この濾過された反応液は下層の保液層
に達する。保液層は外周部を切シ欠いて空間部としてい
るので、反応液は保液層の全面にひろがり、電極の露出
している空間部に満たされる。このようにして、保液層
が濾過された反応液をすみやかに電極部に誘導し、そこ
で電極反応により反応量を検知する。このように短時間
で、血液サンプルが反応し濾過されるため、簡易な装置
および担体で精度よく基質の測定が可能となった。
Effect: When blood is dropped onto the biosensor of the present invention, the redox enzyme and the oxidized dye conjugated with this enzyme rapidly react in the reaction layer. Red blood cells and platelets are then filtered in the filter layer. This filtered reaction solution reaches the lower liquid retaining layer. Since the outer periphery of the liquid retaining layer is cut out to form a space, the reaction liquid spreads over the entire surface of the liquid retaining layer and fills the exposed space of the electrode. In this way, the liquid retaining layer quickly guides the filtered reaction liquid to the electrode section, where the amount of reaction is detected by the electrode reaction. Since the blood sample is reacted and filtered in such a short time, it has become possible to accurately measure the substrate using a simple device and carrier.

実施例 バイオセンサの1つとして、グルコースセンサを例に説
明する。酸化還元酵素としてグルコースオキシダーゼを
、酸化還元酵素と共役する酸化型色素としてフェリシア
ン化カリウムを用いた。第1図にグルコースセンサの一
実施例の構成を示す。
EXAMPLE A glucose sensor will be explained as an example of a biosensor. Glucose oxidase was used as the oxidoreductase, and potassium ferricyanide was used as the oxidized dye conjugated with the oxidoreductase. FIG. 1 shows the configuration of an embodiment of a glucose sensor.

塩化ビニル樹脂からなる円柱状の絶縁性基体1の上端面
に深さo、1mmの溝2を形成し、この溝2に露出する
ように白金を埋めこんで測定極3.対極4、および参照
極5からなる電極系を構成している。前記電極系を覆う
ように枠体9と10で反応層8.濾過層7.保液層6を
はさんだ測定チップ6− パ を設置する。
A groove 2 with a depth o and 1 mm is formed in the upper end surface of a cylindrical insulating substrate 1 made of vinyl chloride resin, and platinum is buried in the groove 2 so as to be exposed. An electrode system consisting of a counter electrode 4 and a reference electrode 5 is configured. A reaction layer 8. is formed by frames 9 and 10 so as to cover the electrode system. Filtration layer7. A measuring chip 6-pa sandwiching the liquid retaining layer 6 is installed.

反応層8はパルプの不織布からなり、グルコースオキシ
ダーゼ200mgとフェリシアン化カリウム400!n
gをPH5,6のリン酸緩衝液1ccに溶かした高濃度
の溶液を含浸し、エタノールのような水にぺする溶解度
の大きい有機溶媒中に浸漬後真空乾燥してグルコースオ
キシダーゼおよびフェリシアン化カリウムの細かい結晶
を高密度に担持している。濾過層7は孔径1μmのポリ
カーボネート多孔体膜で、血液中の赤血球などの固形成
分を除去するものである。保液層6は、例えばレーヨン
紙を用い、第2図に示すように濾過層7よシ径の小さい
円板状であるが、端部に突出部61Lを設け、枠体には
突出部のみ固定されるようにしている。
The reaction layer 8 is made of a nonwoven pulp fabric, and contains 200 mg of glucose oxidase and 400 mg of potassium ferricyanide. n
of glucose oxidase and potassium ferricyanide. Supports crystals at high density. The filtration layer 7 is a porous polycarbonate membrane with a pore diameter of 1 μm, and is used to remove solid components such as red blood cells from blood. The liquid retaining layer 6 is made of rayon paper, for example, and has a disk shape with a diameter smaller than that of the filtration layer 7 as shown in FIG. I'm trying to keep it fixed.

第3図に、測定チップを保液層6側から見た図を示しだ
。保液層の周辺部に空間ができるような形状というのは
、第3図において濾過層7の下に保液層がない部分がで
きるような保液層の形状を意味している。上記の反応層
8.濾過層7.保液層6を枠体9,10において圧着ま
たはエポキシ樹6 ・\−゛ 脂によシ固定している。
FIG. 3 shows a diagram of the measurement chip viewed from the liquid retaining layer 6 side. The shape that creates a space around the liquid retaining layer means the shape of the liquid retaining layer such that there is a part without the liquid retaining layer under the filtration layer 7 in FIG. 3. Reaction layer 8 above. Filtration layer7. The liquid retaining layer 6 is fixed to the frames 9 and 10 by pressure bonding or epoxy resin.

反応層8上に、試料液として血液を30μl添加し充分
浸透させた後、参照極5を基準に測定極3の電圧を0〜
十〇、I VO間で鋸歯状にo、1v/秒で変化させた
。この場合、白金からなる参照極5の電位は試料液に溶
解しているフェリシアン化カリウムとフェロシアン化カ
リウムの濃度比で決定される。添加された血液中のグル
コースが反応層8に担持されているグルコースオキシダ
ーゼによシ酸化される際、酵素−色素共役反応によりフ
ェリシアン化カリウムが還元されフェロシアン化カリウ
ムが生成する。続いて反応した血液がポリカーボネート
多孔体膜7を通過する際、赤血球などの大きな固体成分
が濾過される。血液のように高粘度で微量のサンプルの
場合、濾過が困難であるが、下にレーヨン紙のように親
水性の薄膜を保液層として設置することによシ、すみや
かに濾過でき、電極部に反応した血漿(濾過液)が達し
、保液層6によシミ極部の全面に均一に反応液が保持さ
れる。反応液中のフェロシアン化カリウムを測定極3の
電圧を掃引するととにより酸化し、その時酸化電流が流
れる。この酸化電流は色素の変化量に比例し、色素が充
分に存在すれば色素の変化量は基質濃度に対応するため
、電流値を測定すると基質であるグルコースの濃度が検
知できる。このグルコースセンサを用いると、400m
g/d/?といつ高濃度のグルコースが2分という短時
間で測定できた。これは従来例のように濾過して反応を
行なわせるのでなく、まず反応を行なわせる構成であり
、高濃度の基質に充分対応できる酵素と色素がとけやす
い状態で担持されているため短時間で反応が終了したと
考えられる。さらに、濾過層の下に親水性の薄い保液層
6を置くことによりわずか30μl という微量の血液
の濾過をすみやかにおこなわせ電極上に均一に展開して
安定した応答電流がとれるようになった。しかし、保液
層6が濾過層7と同じ形状のit枠体9,10に組みこ
むと、濾過された血液は、保液層6の外周部で枠体9,
10により固定された所が早く濾過されてその部分に血
漿がたまるため、電極部の溝2に液が満たされない場合
が生じる。そのため、保液層6の形状を第1図のように
して液のたまりやすい外周部に空間を設けると、濾過さ
れた血液はすばやく保液層6の全面にひろがシ溝2にも
液が満たされた。この溝2を設けることで直接電極表面
に測定チップが接触することが防げるため測定極3の反
応面積を常に一定に保ち再現性のよい応答が得られた。
After adding 30 μl of blood as a sample liquid onto the reaction layer 8 and allowing it to penetrate sufficiently, the voltage of the measurement electrode 3 is set to 0 to 1000 with reference to the reference electrode 5.
The voltage was changed in a sawtooth manner between 10 and I VO at 1 V/sec. In this case, the potential of the reference electrode 5 made of platinum is determined by the concentration ratio of potassium ferricyanide and potassium ferrocyanide dissolved in the sample solution. When the added glucose in the blood is oxidized by the glucose oxidase supported on the reaction layer 8, potassium ferricyanide is reduced by an enzyme-dye coupling reaction to produce potassium ferrocyanide. Subsequently, when the reacted blood passes through the porous polycarbonate membrane 7, large solid components such as red blood cells are filtered out. It is difficult to filter a small sample with high viscosity such as blood, but it can be quickly filtered by placing a hydrophilic thin film like rayon paper underneath as a liquid retaining layer. The reacted plasma (filtrate) reaches the stain, and the liquid retaining layer 6 holds the reaction liquid uniformly over the entire surface of the stain. Potassium ferrocyanide in the reaction solution is oxidized by sweeping the voltage of the measurement electrode 3, and an oxidation current flows at this time. This oxidation current is proportional to the amount of change in the dye, and if a sufficient amount of the dye is present, the amount of change in the dye corresponds to the substrate concentration. Therefore, by measuring the current value, the concentration of glucose, which is the substrate, can be detected. With this glucose sensor, 400 m
g/d/? High concentrations of glucose could be measured in just 2 minutes. This is a structure in which the reaction is carried out first, rather than by filtration as in the conventional case, and the enzyme and dye, which can handle high concentrations of substrates, are carried in an easily dissolvable state, so it can be carried out in a short time. It is considered that the reaction has finished. Furthermore, by placing a thin hydrophilic liquid retaining layer 6 under the filtration layer, a minute amount of blood, only 30 μl, can be quickly filtered and spread uniformly on the electrode, making it possible to obtain a stable response current. . However, when the liquid retaining layer 6 is assembled into the IT frames 9 and 10 having the same shape as the filtration layer 7, the filtered blood flows through the frames 9 and 10 at the outer periphery of the liquid retaining layer 6.
Since the part fixed by 10 is quickly filtered and plasma accumulates there, the groove 2 of the electrode part may not be filled with liquid. Therefore, if the shape of the liquid retaining layer 6 is made as shown in Fig. 1 and a space is provided at the outer periphery where the liquid tends to accumulate, the filtered blood will quickly spread over the entire surface of the liquid retaining layer 6 and the liquid will also flow into the grooves 2. Satisfied. By providing this groove 2, it was possible to prevent the measurement chip from coming into direct contact with the electrode surface, so that the reaction area of the measurement electrode 3 was always kept constant and a response with good reproducibility was obtained.

又、保液層6の面積が空間部を作るととで小さくなり、
血液の添加量も20μlとさらに少なくすることができ
た。保液層6を除去すると血液の瀞過がすみやかにでき
なくなり、電極上に十分な量の反応した血漿(反応液)
が浸透するのに時間がかかった。さらに、反応液の電極
上へのひろがシが不均一なだめ応答電流のばらつきが太
きくなり精度よく測定できなかった。
In addition, the area of the liquid retaining layer 6 becomes smaller when a space is created.
The amount of blood added could also be further reduced to 20 μl. When the liquid retaining layer 6 is removed, the blood cannot be filtered out quickly, and a sufficient amount of reacted plasma (reaction liquid) is deposited on the electrode.
It took a while for it to sink in. Furthermore, the reaction solution spread unevenly onto the electrode, resulting in large variations in the response current, making it impossible to measure accurately.

この例では、保液層として厚み60μmという薄膜のレ
ーヨン紙を用いたが、厚みを増すと液の保持量が増加し
十分々量の反応液を電極に浸透させるのに時間がか、か
り、血液量も多くを必要としだ。
In this example, a thin film of rayon paper with a thickness of 60 μm was used as the liquid retaining layer, but as the thickness increases, the amount of liquid retained increases, and it takes time to infiltrate a sufficient amount of reaction liquid into the electrode. It also requires a large amount of blood.

又、レーヨン紙に酵素や色素を担持したところ、9 ″
 ・ 濾過層7との接触面が酵素や色素の結晶により接点が減
少し濾過に時間がかかった。以上より保液層6としては
、親水性の薄膜であり、何も担持されていない多孔体が
望ましい。又、保液層の形状は第2図に示すような形状
以外でも第4図に示すような形状が使用でき、さらに基
体1の形状や枠体9,10の形状に合わせいろいろ変化
させることが可能である。
In addition, when enzymes and pigments were supported on rayon paper, 9″
- The number of contact points with the filtration layer 7 was reduced due to enzyme and pigment crystals, and filtration took a long time. From the above, it is desirable that the liquid retaining layer 6 be a hydrophilic thin film and a porous body that does not support anything. Moreover, the shape of the liquid retaining layer can be changed to the shape shown in FIG. 4 other than the shape shown in FIG. It is possible.

本発明のバイオセンサは、試料液以外の希釈液などは必
要としないため、血液の添加量を30〜 100μlに
変化させたところ、同一の血液では添加量に関係なく一
定の値を示した。このため、添加量を正確にする必要が
々く、微量の血液を添加するだけで簡易に測定が可能と
なった。さらに、高濃度の酵素および酸化型色素を用い
ることによ!l12分という短時間で反応が終了してい
るため、高温でインキュベートするだめの装置や蒸発を
防ぐ防水層が不要で、簡易な装置および担体で精度よく
測定できた。
Since the biosensor of the present invention does not require any diluent other than the sample solution, when the amount of blood added was varied from 30 to 100 μl, the same blood showed a constant value regardless of the amount added. For this reason, it is necessary to accurately add the amount of blood, and it has become possible to easily measure by adding only a small amount of blood. Furthermore, by using high concentrations of enzymes and oxidized dyes! Since the reaction was completed in a short time of 112 minutes, there was no need for equipment for high temperature incubation or a waterproof layer to prevent evaporation, and accurate measurements could be made using simple equipment and carriers.

保液層としてレーヨン紙を用いたが、濾過層から微量の
液をすみやかに電極上に展開するには、親水性でかつ薄
い多孔性の膜であることが望ましい。レーヨン紙の他に
濾紙やナイロンの不織布なども使用できた。
Rayon paper was used as the liquid retaining layer, but in order to quickly spread a small amount of liquid from the filtration layer onto the electrode, it is desirable to use a hydrophilic and thin porous membrane. In addition to rayon paper, filter paper and nylon nonwoven fabric could also be used.

色素としては、上記実施例に用いたフェリシアン化カリ
ウムが安定に反応するので適しているがP−ベンゾキノ
ンを使えば反応速度が早いので高速化に適している。又
、2,6−シクロロフエノールインドフエノール、メチ
レンブルー、フェナジンメトサルフェート、β−ナフト
キノン−4−ヌルホン酸カリウムなども使用でキル。
As the dye, potassium ferricyanide used in the above examples is suitable because it reacts stably, but P-benzoquinone is suitable for increasing the reaction speed because it has a fast reaction rate. Also, 2,6-cyclophenol indophenol, methylene blue, phenazine methosulfate, potassium β-naphthoquinone-4-nurphonate, etc. were used to kill the virus.

なお、上記実婢例におけるセンサはグルコースニ限ラス
、アルコールセンサやコレヌテロールセンサなど、酸化
還元酵素の関与する糸に用いることができる。酸化還元
酵素としてはグルコースオキシダーゼを用いたが、他の
酵素、たとえばアルコールオキシダーゼ、キサンチンオ
キシダーゼ、コレステロールオキシダーゼ等も用いられ
る。
Incidentally, the sensor in the above practical example can be used for threads in which redox enzymes are involved, such as glucose bilayer, alcohol sensor, and cholenuterol sensor. Although glucose oxidase was used as the oxidoreductase, other enzymes such as alcohol oxidase, xanthine oxidase, cholesterol oxidase, etc. may also be used.

発明の効果 9本発明のセンサによれば、直接微量なサンプル11 
ページ を滴下するだけで、特定成分を短時間に精度よく測定す
ることができる。
Effect of the invention 9 According to the sensor of the present invention, it is possible to directly collect a small amount of sample 11
By simply dropping a drop onto a page, specific components can be measured quickly and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のグルコースセンサの縦断面図
、第2図はその分解斜視図、第3図は第1図和−■′線
断面図、第4図は保液層の変形例を示す平面図、第6図
は従来のバイオセンサの縦断面図である。 1・・・・・・基体、2・・・・・・溝、3・・・・・
・測定極、4・・・・・・対極、5・・・・・・参照極
、e・・・・・・保液層、7・・・・・濾過層、8・・
・・・・反応層、9と10・・・・・・枠体、11・・
・・・・支持体、12・・・・・・試薬層、13・・・
・・展開層、14・・・・・・濾過層、15・・・・・
・防水層。
Fig. 1 is a longitudinal cross-sectional view of a glucose sensor according to an embodiment of the present invention, Fig. 2 is an exploded perspective view thereof, Fig. 3 is a cross-sectional view taken along the line 1-1 in Fig. 1, and Fig. 4 is a deformation of the liquid retaining layer. A plan view showing an example, and FIG. 6 is a longitudinal sectional view of a conventional biosensor. 1...Base body, 2...Groove, 3...
・Measurement electrode, 4...Counter electrode, 5...Reference electrode, e...Liquid retaining layer, 7...Filtering layer, 8...
...Reaction layer, 9 and 10... Frame, 11...
... Support, 12 ... Reagent layer, 13 ...
...Development layer, 14...Filtration layer, 15...
・Waterproof layer.

Claims (1)

【特許請求の範囲】[Claims] 絶縁性の基体に測定極、対極および参照極からなる電極
系を設けた電極部の上に、空間部を介して親水性の多孔
体からなる保液層と多孔体膜からなる濾過層および酸化
還元酵素と前記酵素と共役する酸化型色素を含んだ反応
層を枠体にはさんで設置し、さらに濾過層の周辺部に空
間部を形成したバイオセンサ。
A liquid retaining layer made of a hydrophilic porous material, a filtration layer made of a porous film, and an oxidation layer are placed on the electrode part, which has an electrode system consisting of a measurement electrode, a counter electrode, and a reference electrode on an insulating base, through a space. A biosensor in which a reaction layer containing a reductase and an oxidized dye conjugated with the enzyme is sandwiched between frames, and a space is formed around the filtration layer.
JP60083756A 1985-04-19 1985-04-19 Biosensor Expired - Fee Related JPH0660882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083756A JPH0660882B2 (en) 1985-04-19 1985-04-19 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083756A JPH0660882B2 (en) 1985-04-19 1985-04-19 Biosensor

Publications (2)

Publication Number Publication Date
JPS61241651A true JPS61241651A (en) 1986-10-27
JPH0660882B2 JPH0660882B2 (en) 1994-08-10

Family

ID=13811393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083756A Expired - Fee Related JPH0660882B2 (en) 1985-04-19 1985-04-19 Biosensor

Country Status (1)

Country Link
JP (1) JPH0660882B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213663A (en) * 1985-03-19 1986-09-22 Matsushita Electric Ind Co Ltd Biosensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213663A (en) * 1985-03-19 1986-09-22 Matsushita Electric Ind Co Ltd Biosensor

Also Published As

Publication number Publication date
JPH0660882B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US4897173A (en) Biosensor and method for making the same
US5185256A (en) Method for making a biosensor
KR100828450B1 (en) Immunosensor
RU2256171C2 (en) Electrochemical test strip for determining content of analyzed material
JP3173798B2 (en) Method and apparatus for determining an analyte of a body fluid
US5120420A (en) Biosensor and a process for preparation thereof
JPS63128252A (en) Biosensor
JPH0640086B2 (en) Biosensor
RU2178564C2 (en) Method and elongated multilayer indication strip for measuring concentration of substance under analysis
WO1984003562A1 (en) Biosensor
JPS63274839A (en) Testing tool having capacity measuring capillary clearance
JPH0452893B2 (en)
JPH0524453B2 (en)
JPH0430543B2 (en)
JPS63139246A (en) Biosensor
RU2278612C2 (en) Immune sensor
JPH03130662A (en) Device and method for separating plasma from blood and method of measuring analytic object in blood
JPS61241651A (en) Biosensor
JPH01134246A (en) Biosensor
JPH01134245A (en) Biosensor
JPS61213663A (en) Biosensor
JPH0676984B2 (en) Biosensor
JPS60211350A (en) Biosensor
JPS62108145A (en) Biosensor
JPS63317097A (en) Biosensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees