JPH0452893B2 - - Google Patents

Info

Publication number
JPH0452893B2
JPH0452893B2 JP59030543A JP3054384A JPH0452893B2 JP H0452893 B2 JPH0452893 B2 JP H0452893B2 JP 59030543 A JP59030543 A JP 59030543A JP 3054384 A JP3054384 A JP 3054384A JP H0452893 B2 JPH0452893 B2 JP H0452893B2
Authority
JP
Japan
Prior art keywords
layer
electrode
reaction
blood
filtration layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59030543A
Other languages
Japanese (ja)
Other versions
JPS60173458A (en
Inventor
Mariko Kawaguri
Shiro Nankai
Takashi Iijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59030543A priority Critical patent/JPS60173458A/en
Publication of JPS60173458A publication Critical patent/JPS60173458A/en
Publication of JPH0452893B2 publication Critical patent/JPH0452893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Description

【発明の詳細な説明】 産業上の利用分野 本発明は種々の生体試料中の特定成分を迅速、
かつ容易に定量することのできるバイオセンサに
関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is a method for quickly and efficiently extracting specific components from various biological samples.
The invention also relates to a biosensor that can be easily quantified.

従来例の構成とその問題点 近年、酵素の有する特異的触媒作用を利用した
種々のバイオセンサが開発され、特に臨床検査分
野への応用が試みられている。検査項目及び検体
数が増加している現在、迅速に精度よく測定でき
るバイオセツサが望まれている。
Configuration of conventional examples and their problems Recently, various biosensors that utilize the specific catalytic action of enzymes have been developed, and their application to the field of clinical testing is being attempted. Nowadays, as the number of test items and specimens increases, a bioseparator that can quickly and accurately perform measurements is desired.

グルコースセンサに例をとると、糖尿病の増加
が激しい今日、血液中の血糖値を測定し管理する
には、以前のように血球等の有形成分を遠心分離
し血液中の血漿分を取り出して測定するのでは非
常に時間がかかるため、全血で測定できるセンサ
が要求されている。簡易型としては、尿検査の時
に使用されている検査紙と同様に、ステイツク状
の支持体に糖(グルコース)にのみ反応する酵素
および酵素反応時又は酵素反応の生成物により変
化する色素を含有する担体を設置したものがら
う。この担体に血液を添加し、一定時間後の色素
の変化を目又は光により測定する方式であるが、
血液中の色素による妨害が大きく精度は低い。
Taking glucose sensors as an example, in order to measure and manage blood sugar levels in today's world where diabetes is rapidly increasing, it is no longer possible to centrifuge blood cells and other formed components and extract plasma from the blood, as in the past. Since it takes a very long time to measure, there is a need for a sensor that can measure whole blood. The simple type is similar to the test strips used in urine tests, and contains an enzyme that reacts only with sugar (glucose) and a dye that changes during the enzyme reaction or depending on the product of the enzyme reaction, on a stick-like support. The one with a carrier installed is required. This method involves adding blood to this carrier and measuring the change in pigment after a certain period of time by eye or light.
Accuracy is low due to interference from pigments in the blood.

そこで、第1図のような多層式の分析担体が開
発されている。透明な支持体1の上に試薬層2、
展開層3、防水層4、濾過層5が順に積層した構
造となつている。血液サンプルを上部から滴下す
ると、まず濾過層5により血液中の赤血球、血小
板などの固形成分が除去され、防水層4にある小
孔4aから展開層3へ均一に浸透し、試薬層2に
おいて反応が進行する。反応終了後、透明な支持
体1を通して矢印の方向から光をあて、分光分析
により基質濃度を測定する方式である。従来の簡
易なステイツク状の担体にくらべ、複雑な構造で
あるが、血球除去などにより精度は向上した。し
かし、血液の浸透および反応に時間がかかるた
め、サンプルの乾燥を防ぐ防水層4が必要となつ
たり、反応を速めるために高温でインキユベート
する必要があり、装置および担体が複雑化すると
いう問題がある。
Therefore, a multilayer analytical carrier as shown in FIG. 1 has been developed. A reagent layer 2 on a transparent support 1,
It has a structure in which a spreading layer 3, a waterproof layer 4, and a filtration layer 5 are laminated in this order. When a blood sample is dropped from the top, solid components such as red blood cells and platelets in the blood are first removed by the filtration layer 5, uniformly permeates into the development layer 3 through the small holes 4a in the waterproof layer 4, and reacts in the reagent layer 2. progresses. After the reaction is completed, light is irradiated through the transparent support 1 in the direction of the arrow, and the substrate concentration is measured by spectroscopic analysis. Although it has a more complex structure than the conventional simple stick-shaped carrier, it has improved accuracy due to blood cell removal and other factors. However, since it takes time for blood to permeate and react, a waterproof layer 4 is required to prevent the sample from drying out, and it is necessary to incubate at a high temperature to speed up the reaction, making the equipment and carrier complex. be.

最近、酵素反応と電極反応を結びつけて基質濃
度を測定するバイオセンサが開発されている。グ
ルコースセンサに例をとると、第2図のように、
グルコースオキシダーゼ固定化電極6を容器7に
入れ、緩衝液8で満たし、スターラ9で攪拌して
いる中に試料液を添加する。グルコースオキシダ
ーゼ固定化電極6には定電圧が印加されており、
試料中のグルコースと反応して生成した過酸化水
素を検知して電流が流れグルコース濃度が測定で
きる。この方式を用いれば、血液中の色素などに
妨害されず迅速に測定できる。しかし、攪拌装置
が不可欠なためアワが発生したり液の乱れが精度
に影響するという問題があつた。又希釈している
ため、緩衝液の量や試料の添加量に精度が要求さ
れ操作が複雑化する不都合があつた。
Recently, biosensors have been developed that measure substrate concentration by combining enzyme reactions and electrode reactions. Taking a glucose sensor as an example, as shown in Figure 2,
The glucose oxidase immobilized electrode 6 is placed in a container 7, filled with a buffer solution 8, and while stirring with a stirrer 9, a sample solution is added. A constant voltage is applied to the glucose oxidase immobilized electrode 6,
Hydrogen peroxide produced by reaction with glucose in the sample is detected, and a current flows to measure the glucose concentration. Using this method, measurements can be made quickly without being interfered with by pigments in the blood. However, since a stirring device is essential, there are problems in that bubbles occur and the turbulence of the liquid affects accuracy. Furthermore, since the method is diluted, precision is required in the amount of buffer solution and the amount of sample added, making the operation complicated.

発明の目的 本発明は、上記の問題点を克服し、生体試料中
の特定成分を簡易に、迅速かつ精度よく測定でき
るバイオセンサを得ることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to overcome the above-mentioned problems and to obtain a biosensor that can easily, quickly, and accurately measure a specific component in a biological sample.

発明の構成 本発明のバイオセンサは、絶縁性の基板上に少
なくとも測定極と対極からなる電極系を有し、前
記電極系を少なくとも酸化還元酵素および酸化還
元酵素と共役する酸化型色素を含有してなる反応
層と3μm以下の孔径を有するメンブランフイル
ターよりなる濾過層とで積層被覆したことを特徴
とする。
Structure of the Invention The biosensor of the present invention has an electrode system consisting of at least a measurement electrode and a counter electrode on an insulating substrate, and the electrode system contains at least an oxidoreductase and an oxidized dye conjugated with the oxidoreductase. It is characterized in that it is laminated and coated with a reaction layer consisting of a membrane filter and a filtration layer consisting of a membrane filter having a pore size of 3 μm or less.

本発明のバイオセンサを用いることにより、生
体試料の測定を簡易に、精度よく測定することが
できる。
By using the biosensor of the present invention, biological samples can be measured easily and accurately.

実施例の説明 本発明のバイオセンサの1つとして、グルコー
スセンサを例に説明する。第3図にグルコースセ
ンサの一実施例の模式図を示す。塩化ビニル樹脂
からなる絶縁性の基板10に白金を埋め込み、測
定極11と対極12とする。前記電極系を覆うよ
うに、ナイロン不織布13を設置する。このナイ
ロン不織布13の網目間隔はかなり粗く直径6〜
7μmの血球は容易に通過するが、酸化還元酵素
としてグルコースオキシダーゼ14と酸化還元酵
素と共役する酸化型色素としてフエリシアン化カ
リウム15を、溶解含浸後乾燥状態で担持してい
る。このナイロン不織布13の上部に、多孔性
(孔径1μm)のポリカーボネートからなる濾過層
16を設置する。
Description of Examples A glucose sensor will be described as an example of one of the biosensors of the present invention. FIG. 3 shows a schematic diagram of an embodiment of a glucose sensor. Platinum is embedded in an insulating substrate 10 made of vinyl chloride resin to form a measurement electrode 11 and a counter electrode 12. A nylon nonwoven fabric 13 is placed so as to cover the electrode system. The mesh spacing of this nylon nonwoven fabric 13 is quite coarse, with a diameter of 6~
Although blood cells of 7 μm easily pass through, glucose oxidase 14 as an oxidoreductase and potassium ferricyanide 15 as an oxidized dye conjugated with the oxidoreductase are supported in a dry state after dissolution and impregnation. A filtration layer 16 made of porous polycarbonate (pore diameter: 1 μm) is installed on top of this nylon nonwoven fabric 13.

このセンサに血液を添加すると、濾過層により
赤血球などの大きな分子が過され、ナイロン不
織布13からなる反応層において血液中のグルコ
ースがグルコースオキシダーゼ14により酸化さ
れる際、フエリシアン化カリウム15が共役して
還元されフエロシアン化カリウムが生成する。こ
のフエロシアン化カリウムを、対極12を基準に
測定極11の電位を0Vから+0.5Vまで0.1V/秒
の速度で掃引することにより酸化する。この時得
られる酸化電流は、フエロシアン化カリウムの濃
度に比例し、フエロシアン化カリウムは基質濃度
に比例して生成するため、酸化電流を測定するこ
とにより基質であるグルコースの濃度が検知でき
る。得られた電流値は、グルコースの標準液で測
定したところ、800mg/dlまでグルコースの濃度
とよい直線性を示した。酵素と酸化型色素からな
る反応層および濾過層は、測定毎に交換したが、
標準液および血液のサンプル両方において再現性
は良好であつた。又、血液の添加量を20〜140μ
の範囲で変化させたが、酸化型色素及び酵素量
が充分なため、添加量に関係なく一定の値を示し
た。
When blood is added to this sensor, large molecules such as red blood cells are passed through the filtration layer, and when glucose in the blood is oxidized by glucose oxidase 14 in the reaction layer made of nylon nonwoven fabric 13, potassium ferricyanide 15 is conjugated and reduced. and potassium ferrocyanide is produced. This potassium ferrocyanide is oxidized by sweeping the potential of the measurement electrode 11 from 0V to +0.5V at a rate of 0.1V/sec with respect to the counter electrode 12. The oxidation current obtained at this time is proportional to the concentration of potassium ferrocyanide, and since potassium ferrocyanide is produced in proportion to the substrate concentration, the concentration of glucose, which is the substrate, can be detected by measuring the oxidation current. When the obtained current value was measured using a glucose standard solution, it showed good linearity with the glucose concentration up to 800 mg/dl. The reaction layer and filtration layer consisting of enzyme and oxidized dye were replaced after each measurement.
Reproducibility was good for both standards and blood samples. Also, the amount of blood added should be 20 to 140μ.
However, since the amount of oxidized dye and enzyme was sufficient, it showed a constant value regardless of the amount added.

濾過層16として、孔径3μm以下の多数の微
細な孔を有するポリカーボネートの多孔体を用い
ることにより、血液中の血球や粘性の物質があら
かじめ過でき、電極の汚れを少なくすることが
できた。白金は非常に安定な材料なので電極には
最適である。しかし、血液中の液体成分を通過さ
せ血球等の有形成分の通過を阻止する濾過層がな
いと、長期間使用しているうちに電極上に血球が
付着し、得られる電流値が低下するため、電極を
アルコールで洗浄する必要があつたが、濾過層に
より電極を水洗だけで応答が再現性よく保持でき
るようになつた。又、ポリカーボネートの多孔体
を界面活性剤として例えばポリエチレングリコー
ルアルキルフエニルエーテル(商品名:トリトン
X)の1%溶液中に浸漬後乾燥して使用すると、
血液の濾過がすみやかになり、再現性がさらに向
上した。血液はかなり粘度があるため、濾過速度
が遅いという問題点があつたが、界面活性剤で処
理した濾過層を用いることにより、濾過がすみや
かになり、すばやく均一に酵素および色素と反応
でき、サンプル添加後1分程度という短時間に反
応が完結した。界面活性剤を使用しない場合は、
反応が完結するまで血液添加後1分30秒程度必要
とするので、測定の迅速化に大きな効果があつ
た。
By using a porous polycarbonate material having a large number of fine pores with a pore diameter of 3 μm or less as the filtration layer 16, blood cells and viscous substances in the blood can be filtered out in advance, and staining of the electrodes can be reduced. Platinum is a very stable material, making it ideal for electrodes. However, if there is no filtration layer that allows liquid components in the blood to pass through but blocks solid components such as blood cells from passing through, blood cells will adhere to the electrodes over long periods of use, resulting in a decrease in the current value obtained. Therefore, it was necessary to wash the electrodes with alcohol, but with the filtration layer, the response can now be maintained with good reproducibility just by washing the electrodes with water. Also, when a porous polycarbonate body is used as a surfactant, for example, by immersing it in a 1% solution of polyethylene glycol alkyl phenyl ether (trade name: Triton X) and then drying it,
Blood filtration became faster and reproducibility was further improved. Since blood is quite viscous, there was a problem that the filtration rate was slow. However, by using a filtration layer treated with a surfactant, filtration is quick, and the reaction with enzymes and dyes is quick and uniform, allowing sample The reaction was completed within a short time of about 1 minute after the addition. If no surfactant is used,
It took about 1 minute and 30 seconds for the reaction to complete after blood was added, so this had a great effect on speeding up the measurement.

測定極および対極に白金を用いて2電極系で測
定する場合は、対極の面積を測定極のそれより十
分大きくした方が、対極の分極が少なくなり、良
好な応答が得られた。又、対極を銀塩化銀にする
と、電位は安定し、対極の面積も小さくできるた
め小型化が可能になつた。
When measuring with a two-electrode system using platinum for the measurement electrode and the counter electrode, when the area of the counter electrode was made sufficiently larger than that of the measurement electrode, the polarization of the counter electrode was reduced and a good response was obtained. Furthermore, by using silver silver chloride as the counter electrode, the potential becomes stable and the area of the counter electrode can be reduced, making it possible to miniaturize the device.

第4図のように、塩化ビニル樹脂の基板10に
それぞれ白金を埋め込み、測定極11、対極12
および参照極17からなる3電極で電極系を構成
した。参照極を用いた3電極とすることにより、
電位が安定して、応答再現性が向上した。また、
上記に述べた様に対極面積を大きくする必要もな
くなり小型化できた。電極系を形成するには上記
のように白金を樹脂に埋めこんでもよいが、基板
上に蒸着法あるいはスパツタ法により白金層を形
成して電極系を構成することもできる。
As shown in FIG. 4, platinum is embedded in a vinyl chloride resin substrate 10, and a measurement electrode 11 and a counter electrode 12 are embedded.
The electrode system was composed of three electrodes including a reference electrode 17 and a reference electrode 17. By using three electrodes using a reference electrode,
The potential became stable and response reproducibility improved. Also,
As mentioned above, there is no need to increase the area of the opposite electrode, and the size can be reduced. To form the electrode system, platinum may be embedded in the resin as described above, but the electrode system may also be formed by forming a platinum layer on the substrate by vapor deposition or sputtering.

酸化型色素及び酵素よりなる反応層は、試料液
をすみやかに吸収し酵素反応をおこなわせること
ができるように、親水性の多孔体膜であることが
望ましい。たとえば、ろ紙やパルプの不織布、セ
ラミツクの多孔体、ガラスの多孔体などを用いる
と、試料液が均一にすばやく浸透し再現性も良好
であつた。さらに、ナイロン不織布において、前
記の界面活性剤で処理したのは、処理しなかつた
ものより試料液の浸透がすみやかであり、測定の
迅速化に効果があつた。
The reaction layer consisting of an oxidized dye and an enzyme is desirably a hydrophilic porous membrane so that it can quickly absorb a sample liquid and carry out an enzymatic reaction. For example, when filter paper, pulp nonwoven fabric, porous ceramic material, porous glass material, etc. were used, the sample liquid penetrated uniformly and quickly, and the reproducibility was also good. Furthermore, in the nylon nonwoven fabric treated with the above-mentioned surfactant, the sample liquid permeated more quickly than in the untreated fabric, which was effective in speeding up the measurement.

酵素と酸化型色素を細かく粉砕混合後、加圧し
た生計体を反応層とすると、血液の液体成分によ
り酵素および酸化型色素がすみやかに溶け均一に
混合するため、反応の迅速化に大きく貢献した。
また、酸化型色素と酵素を加圧成形する際、結着
剤として、SiO2などを少量混合すると、成形体
の強度が増すので取り扱いが簡易となる。結着剤
としては、酵素反応及び電極反応に無関係で親水
性のものが適している。
After finely pulverizing and mixing enzymes and oxidized pigments, pressurized living bodies were used as the reaction layer, and the liquid components of blood quickly dissolved the enzymes and oxidized pigments to mix uniformly, greatly contributing to speeding up the reaction. .
Furthermore, when press molding the oxidized dye and enzyme, if a small amount of SiO 2 or the like is mixed as a binder, the strength of the molded product will increase, making it easier to handle. As the binder, a hydrophilic binder that is unrelated to enzyme reactions and electrode reactions is suitable.

酸化型色素および酵素は、なるべく血液の液体
成分に速く溶ける状態におくことが望ましい。そ
こで、酸化型色素の水溶液をナイロン不織布に含
浸後、熱風乾燥すると真空乾燥したものより非常
に細かい結晶となり、液体にとけやすくなつた。
又、酸化型色素の水溶液を浸漬したナイロン不織
布を、エタノールのような水に対する溶解度の大
きい有機溶媒中に浸漬後真空乾燥すると、さらに
細かい結晶を担持することができた。酵素は熱な
どに弱いため、含浸後真空乾燥を行なつた。
It is desirable that the oxidized pigment and enzyme be in a state where they dissolve as quickly as possible in the liquid components of blood. Therefore, when a nylon nonwoven fabric was impregnated with an aqueous solution of the oxidized pigment and then dried with hot air, the fabric became much finer crystals than those dried in vacuum, making them easier to dissolve in liquids.
Furthermore, when a nylon nonwoven fabric soaked in an aqueous solution of an oxidized dye was immersed in an organic solvent with high solubility in water, such as ethanol, and then vacuum-dried, even finer crystals could be supported. Since enzymes are sensitive to heat, vacuum drying was performed after impregnation.

そこで、第5図の構成からなるセンサを試み
た。電極系は第4図と同様で、その上にポリカー
ボネート多孔体膜からなる濾過層16、次にグル
コースオキシダーゼ14を担持したナイロン不織
布18、その上部にフエリシアン化カリウム15
を含浸後エタノールに浸漬し乾燥して担持したナ
イロン不織布19を設置する。なお、ポリカーボ
ネート多孔体膜およびナイロン不織布は、あらか
じめ前記の界面活性剤で処理した。
Therefore, we tried a sensor with the configuration shown in FIG. The electrode system is the same as that shown in FIG. 4, with a filtration layer 16 made of a porous polycarbonate membrane on top of the filtration layer 16, then a nylon nonwoven fabric 18 carrying glucose oxidase 14, and potassium ferricyanide 15 on top of it.
A nylon nonwoven fabric 19 is installed, which is impregnated, dipped in ethanol, dried, and supported. Note that the polycarbonate porous membrane and the nylon nonwoven fabric were previously treated with the above-mentioned surfactant.

このセンサに血液を添加すると、すみやかにナ
イロン不織布の層に浸透し、フエリシアン化カリ
ウム15とグルコースオキシダーゼ14が溶解し
て反応が進みながら、血液の液体成分のみ濾過層
16を通過し電極系に至る。フエリシアン化カリ
ウムを細かい結晶状態で担持してあるので、すみ
やかに溶解し酵素と共役して反応でき、反応時間
が約1分間以内と短縮できた。濾過層は、第5図
のように電極上においても、反応層の上部におい
てもよい。又、色素担持層19と酵素担持層18
ではさんでもよい。液の浸透は、濾過層が反応層
の下に設置した時が一番早く反応時間が短かかつ
た。しかし、反応層の上部に濾過層を設置する
と、先に血液中の固体成分が濾過できるので、反
応層において血球などにより妨害がないため、ス
ムーズに反応が進むという利点があり、高精度で
あつた。濾過層としては、不織布、化学繊維、紙
(過)、ガラスの多孔体などが考えられるが、血
球の有形成分を濾別するには3μm以下の孔径を
有するメンブランフイルターが必要となる。そこ
で、メンブランフイルター一層又は、それに前記
の不織布、化学繊維、紙などを積層してもよい。
When blood is added to this sensor, it quickly permeates the nylon nonwoven fabric layer, potassium ferricyanide 15 and glucose oxidase 14 are dissolved, and while the reaction progresses, only the liquid component of the blood passes through the filtration layer 16 and reaches the electrode system. Since potassium ferricyanide is supported in a fine crystalline state, it can be quickly dissolved and reacted by conjugating with the enzyme, and the reaction time can be shortened to within about 1 minute. The filtration layer may be placed on the electrode, as shown in FIG. 5, or on top of the reaction layer. Moreover, the dye-supporting layer 19 and the enzyme-supporting layer 18
You can put it in between. The permeation of the liquid was fastest when the filtration layer was placed below the reaction layer, and the reaction time was shortest. However, if a filtration layer is installed above the reaction layer, the solid components in the blood can be filtered out first, so there is no interference from blood cells in the reaction layer, so the reaction proceeds smoothly, resulting in high precision and Ta. Porous materials such as nonwoven fabric, chemical fibers, paper (filter), and glass can be considered as the filtration layer, but a membrane filter with a pore size of 3 μm or less is required to filter out the formed components of blood cells. Therefore, a membrane filter may be used as a single layer, or the above-mentioned nonwoven fabric, chemical fiber, paper, etc. may be laminated thereon.

界面活性剤としては、前記の例の他に、ポリオ
キシエチレングリセリン脂肪酸エステル、ポリオ
キシエチレンアルキルエーテル、ポリエチレング
リコール脂肪酸エステルなども使用できる。界面
活性剤により、濾過層だけでなく色素及び酵素も
処理しておくことにより、濾過および浸漬速度が
ますます速くなり、反応も速くできる。
As the surfactant, in addition to the above examples, polyoxyethylene glycerin fatty acid ester, polyoxyethylene alkyl ether, polyethylene glycol fatty acid ester, etc. can also be used. By treating not only the filtration layer but also the dye and enzyme with a surfactant, the filtration and dipping speeds can be further increased, and the reaction can also be faster.

色素としては、上記に用いたフエリシアン化カ
リウムが安定に反応するので適しているが、P−
ベンゾキノンを使えば、反応速度が早いので高速
化に適している。又、2,6−ジクロロフエノー
ル、インドフエノール、メチレンブルー、フエナ
ジンメトサルフエート、β−ナフトキノン4−ス
ルホン酸カリウムなども使用できる。
Potassium ferricyanide used above is suitable as a dye because it reacts stably, but P-
If benzoquinone is used, the reaction rate is fast, so it is suitable for speeding up the reaction. Further, 2,6-dichlorophenol, indophenol, methylene blue, phenazine methosulfate, potassium β-naphthoquinone 4-sulfonate, etc. can also be used.

なお、上記実施例におけるセンサはグルコース
に限らず、アルコールセンサやコレステロールセ
ンサなど、酸化還元酵素の関与する系に用いるこ
とができる。又、酵素は固定化した状態で担持す
ることにより長期保存においても安定に活性を維
持することができる。
Note that the sensor in the above embodiments is not limited to glucose, and can be used in systems involving redox enzymes, such as alcohol sensors and cholesterol sensors. Furthermore, by supporting the enzyme in an immobilized state, the activity can be stably maintained even during long-term storage.

発明の効果 本発明のセンサによれば、直接試料液を含浸さ
せて微量の特性成分を簡易に、しかも迅速に精度
よく測定することができる。また、濾過層によ
り、電極を長期間安定に保持できる。さらに、界
面活性剤により浸透が速くなり反応時間が短縮で
きる。
Effects of the Invention According to the sensor of the present invention, it is possible to directly impregnate a sample liquid and measure a trace amount of a characteristic component simply, quickly, and accurately. Furthermore, the filter layer allows the electrode to be stably maintained for a long period of time. Furthermore, surfactants can speed up penetration and shorten reaction time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のグルコースセンサの
構成を示す略図、第3図、第4図及び第5図は本
発明の実施例であるグルコースセンサの模式図で
ある。 10……基板、11……測定極、12……対
極、13……多孔体(反応層)、14……酵素、
15……色素、16……濾過層、17……参照
極。
FIGS. 1 and 2 are schematic diagrams showing the configuration of a conventional glucose sensor, and FIGS. 3, 4, and 5 are schematic diagrams of a glucose sensor according to an embodiment of the present invention. 10... Substrate, 11... Measurement electrode, 12... Counter electrode, 13... Porous body (reaction layer), 14... Enzyme,
15...Dye, 16...Filtering layer, 17...Reference electrode.

Claims (1)

【特許請求の範囲】 1 絶縁性の基板上に少なくとも測定極と対極か
らなる電極系を設け、この電極系を酸化還元酵素
および酸化還元酵素と共役する酸化型色素を含有
する反応層と濾過層とで積層被覆したバイオセン
サ。 2 濾過層が界面活性材により処理されている特
許請求の範囲第1項記載のバイオセンサ。 3 測定局が白金である特許請求の範囲第1項記
載のバイオセンサ。 4 対極が白金または銀塩化銀である特許請求の
範囲第1項記載のバイオセンサ。 5 反応層および濾過層が親水性の多孔体膜であ
る特許請求の範囲第1項記載のバイオセンサ。 6 酸化還元酵素および酸化型色素が親水性の多
孔体膜に乾燥状態で保持されている特許請求の範
囲第5項記載のバイオセンサ。
[Scope of Claims] 1. An electrode system consisting of at least a measurement electrode and a counter electrode is provided on an insulating substrate, and this electrode system is connected to a reaction layer and a filtration layer containing an oxidized-reductase and an oxidized dye conjugated with the oxido-reductase. A biosensor coated with a layer of 2. The biosensor according to claim 1, wherein the filtration layer is treated with a surfactant. 3. The biosensor according to claim 1, wherein the measuring station is platinum. 4. The biosensor according to claim 1, wherein the counter electrode is platinum or silver silver chloride. 5. The biosensor according to claim 1, wherein the reaction layer and the filtration layer are hydrophilic porous membranes. 6. The biosensor according to claim 5, wherein the oxidoreductase and the oxidized dye are held in a dry state in a hydrophilic porous membrane.
JP59030543A 1984-02-20 1984-02-20 Biosensor Granted JPS60173458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59030543A JPS60173458A (en) 1984-02-20 1984-02-20 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030543A JPS60173458A (en) 1984-02-20 1984-02-20 Biosensor

Publications (2)

Publication Number Publication Date
JPS60173458A JPS60173458A (en) 1985-09-06
JPH0452893B2 true JPH0452893B2 (en) 1992-08-25

Family

ID=12306703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030543A Granted JPS60173458A (en) 1984-02-20 1984-02-20 Biosensor

Country Status (1)

Country Link
JP (1) JPS60173458A (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654304B2 (en) * 1986-08-28 1994-07-20 松下電器産業株式会社 Biosensor
USRE36268E (en) * 1988-03-15 1999-08-17 Boehringer Mannheim Corporation Method and apparatus for amperometric diagnostic analysis
US5508171A (en) * 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
CA2069946C (en) * 1989-12-15 1999-01-26 Klaus H. Pollmann Redox mediator reagent and biosensor
ATE227844T1 (en) 1997-02-06 2002-11-15 Therasense Inc SMALL VOLUME SENSOR FOR IN-VITRO DETERMINATION
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US7063775B2 (en) 2000-05-16 2006-06-20 Arkray, Inc. Biosensor and method for manufacturing the same
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
EP1718198A4 (en) 2004-02-17 2008-06-04 Therasense Inc Method and system for providing data communication in continuous glucose monitoring and management system
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20100213057A1 (en) 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024444A (en) * 1983-07-19 1985-02-07 Matsushita Electric Ind Co Ltd Bio-sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024444A (en) * 1983-07-19 1985-02-07 Matsushita Electric Ind Co Ltd Bio-sensor

Also Published As

Publication number Publication date
JPS60173458A (en) 1985-09-06

Similar Documents

Publication Publication Date Title
JPH0452893B2 (en)
US5171689A (en) Solid state bio-sensor
JPH0430543B2 (en)
EP0136362A1 (en) Biosensor
JPS60173459A (en) Biosensor
US5229282A (en) Preparation of biosensor having a layer containing an enzyme, electron acceptor and hydrophilic polymer on an electrode system
EP0359831B1 (en) Biosensor and process for its production
US5185256A (en) Method for making a biosensor
EP0230472A1 (en) Biosensor and method of manufacturing same
JPH0524453B2 (en)
JPS63128252A (en) Biosensor
JPS60185153A (en) Immobilized enzyme membrane
JPS6024444A (en) Bio-sensor
JPH04221B2 (en)
JPH01134246A (en) Biosensor
JPH01134245A (en) Biosensor
JPS6150055A (en) Biosensor
JPH058776B2 (en)
JPS6191558A (en) Biosensor
JPH0315699B2 (en)
JPS61213663A (en) Biosensor
JP2543057B2 (en) Biosensor manufacturing method and biosensor electrode plate manufacturing method
JPS62137559A (en) Biosensor
JPS62108146A (en) Biosensor
JPS63139243A (en) Glucose sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term