JPS62108146A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPS62108146A
JPS62108146A JP60249204A JP24920485A JPS62108146A JP S62108146 A JPS62108146 A JP S62108146A JP 60249204 A JP60249204 A JP 60249204A JP 24920485 A JP24920485 A JP 24920485A JP S62108146 A JPS62108146 A JP S62108146A
Authority
JP
Japan
Prior art keywords
layer
electrode
reaction
blood
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60249204A
Other languages
Japanese (ja)
Other versions
JPH0676984B2 (en
Inventor
Mariko Kawaguri
真理子 河栗
Shiro Nankai
史朗 南海
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60249204A priority Critical patent/JPH0676984B2/en
Priority to DE3687646T priority patent/DE3687646T3/en
Priority to US07/027,204 priority patent/US4897173A/en
Priority to EP86903608A priority patent/EP0230472B2/en
Priority to PCT/JP1986/000311 priority patent/WO1986007632A1/en
Publication of JPS62108146A publication Critical patent/JPS62108146A/en
Priority to US07/774,129 priority patent/US5185256A/en
Publication of JPH0676984B2 publication Critical patent/JPH0676984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily and quickly measure the specific component of a living body sample by providing a liquid retaining layer consisting of a hydrophilic porous body, filter layer and reaction layer contg. oxidoreductase and oxidizing type dye which conjugates therewith no electrode parts. CONSTITUTION:Measuring electrodes 3, 4, 5 are provided on a substrate 1. A space part 2 is opened thereon and the hydrophilic liquid retaining layer 6 consisting of rayon, etc., the filter layer 7 and the reaction layer 8 are provided thereon. Glucose oxidase and the potassium ferrocyanide which conjugates therewith are incorporated into the reaction layer 8 in the stage of detecting, for example, the glucose in blood. The glucose is oxidized and is reduced to the potassium ferricyanide when the sample is dropped onto the reaction layer 8. The blood cells are then filtered by the filter layer 7 and are penetrated into the liqiud retaining layer 6. The glucose in the blood is electrically measured by the measuring electrode 3. Since the filtrate is quickly penetrated into the filter layer and the liquid retaining layer in the above-mentioned manner, the trace sample is measured in a short time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はバイオセ/すに関し、生体試料中の特定成分を
検知することが可能であり、医療分野や食品工学などに
幅広く応用できるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to biochemistry and is capable of detecting specific components in biological samples, and can be widely applied to the medical field, food engineering, etc.

従来の技術 医療技術の進歩とともに血液や尿中の特定成分を測定す
ることにより健康のチェック、病気の状態、治療の拗果
などがわかるようにな〕た。しかし、従来は病院の臨床
検査室で大型の機械や複雑な手法で調べているため、時
間や費用がかかるという問題があった。そこで、もつと
簡易にその場で測定できるセンサが望まれている。その
1つの試みとして第4図のような多層式の分析担体が提
案されている。透明な支持体11の上に試薬層12、展
開層13.防水層14.濾過層16が順に積層した構造
になっている。血液サンプルを上部から滴下すると、ま
ず濾過層15により血液中の赤血球、血小板などの固形
成分が除去され、防水層14にある小孔から展開層13
へ均一に浸透し試薬層12において反応が進行する0反
応終了後、透明な支持体11を通して矢印の方向から光
をあて、分光分析により基質濃度を測定する方式である
。この方式は、微量の血液を滴下することにより簡易に
測定できるというメリットがある。
Conventional Technology With advances in medical technology, it has become possible to check health, determine disease status, and determine the outcome of treatment by measuring specific components in blood and urine. However, in the past, tests were carried out in hospital clinical laboratories using large machines and complicated methods, which was time-consuming and costly. Therefore, there is a need for a sensor that can easily perform measurements on the spot. As one such attempt, a multilayer analysis carrier as shown in FIG. 4 has been proposed. A reagent layer 12, a developing layer 13. Waterproof layer 14. It has a structure in which filtration layers 16 are laminated in order. When a blood sample is dropped from the top, solid components such as red blood cells and platelets in the blood are first removed by the filtration layer 15, and then passed through the small holes in the waterproof layer 14 to the expansion layer 13.
After completion of the reaction in which the substrate uniformly permeates into the reagent layer 12 and the reaction proceeds in the reagent layer 12, light is applied from the direction of the arrow through the transparent support 11, and the substrate concentration is measured by spectroscopic analysis. This method has the advantage that it can be easily measured by dropping a small amount of blood.

しかし、血液の浸透および反応に時間がかかるため、サ
ンプルの乾燥を防ぐ防水層14が必要となったり、反応
を速めるために高温でインキュベ−トする必要があり、
装置および担体が複雑化するという問題がある。
However, since it takes time for blood to permeate and react, a waterproof layer 14 is required to prevent the sample from drying out, and it is necessary to incubate at a high temperature to speed up the reaction.
There is a problem that the equipment and carrier become complicated.

発明が解決しようとする問題点 本発明のバイオセンサは、上記の問題点である装置や担
体の複雑化をさけ、簡易な装置および担体で迅速に精度
よく基質が測定できることを目的とする。
Problems to be Solved by the Invention The purpose of the biosensor of the present invention is to avoid the above-mentioned problem of complicating the device and carrier, and to be able to quickly and accurately measure a substrate with a simple device and carrier.

問題点を解決するための手段 本発明のバイオセンサは電極部の上に保液層。Means to solve problems The biosensor of the present invention has a liquid retaining layer on top of the electrode part.

濾過層および反応層を枠体にはさんで設置し、さらに電
極部上の空間部内に保液層が保持されるようにしたもの
である。
A filtration layer and a reaction layer are placed between the frames, and a liquid retaining layer is held in the space above the electrode section.

作   用 このような構成とすることで反応層上に血液を滴下する
と反応層で酸化還元酵素および前記酵素と共役する酸化
型色素がすみやかに反応する。次に濾過層において赤血
球および血小板が濾過される。さらに、何も担持されて
いない保液層が濾過された反応液をすみやかに電極部に
誘導し、そこで電極反応により反応量を検知する。この
ように短時間で、血液サンプルが反応し濾過されるため
、簡易な装置および担体で精度よく基質の測定が可能と
なった。
Function With such a configuration, when blood is dropped onto the reaction layer, the oxidoreductase and the oxidized dye conjugated with the enzyme react promptly in the reaction layer. Red blood cells and platelets are then filtered in the filter layer. Further, the liquid holding layer, which does not support anything, promptly guides the filtered reaction liquid to the electrode section, where the amount of reaction is detected by the electrode reaction. Since the blood sample is reacted and filtered in such a short time, it has become possible to accurately measure the substrate using a simple device and carrier.

実施例 バイオセンサの1つとして、グルコースセンサを例に説
明する。酸化還元酵素としてグルコースオキシダーゼを
、酸化還元酵素と共役する酸化型色素としてフェリシア
ン化カリウムを用いた。第1図A、BiCグルコースセ
ンサの一実施例における互いに直交した模式断面図を示
す。電極部はポリ塩化ビニル樹脂からなる絶縁性の基板
1に、空間部2として幅3.4M、深さ0.15−の溝
を形成し白金を埋めこんでおり、測定極3.対極4.お
よび参照極5からなる電極系を構成した。前記電極系を
覆うように枠体9および10に反応層8゜濾過層7.保
液層6をはさんだ測定チップを設置する。反応層8はバ
ルブの不織布か・らなシ、グルコースオキシダーゼ20
0+115+とフェリシアン化カリウム40079をそ
れぞれリン酸緩衝液(pH5,6)I OCに溶かした
高濃度の溶液を含浸し、エタノールのような水に対する
溶解度の大きい有機溶媒中に浸漬後真空乾燥してグルコ
ースオキシダーゼおよびフェリシアン化カリウムの細か
い結晶を高密度に担持している。濾過層7は孔径1μm
のポリカーボネート製多孔体膜で血球中の赤血球などの
固形成分を除去する。保液層6として、幅2朧の帯状の
レーヨン紙を用いた。レーヨン紙の両端は枠体に固定さ
れている。測定チップを電極側から見た図を第2図Bに
示し電極部の上面図を第2図Cに示した。さらにレーヨ
ン紙は電極部の幅3.4胴の溝の内部にはまりこむよう
な位置に保持されており電極部の溝以外の部分によって
第1図の断面図Bのように測定チップの濾過層7が支え
られている。上記の反応層8.濾過層7.保液層6を枠
体9,10を用いて圧着またはエポキシ樹脂等の接着剤
により固定している。第2図Aはこのセンサの組立前の
分解斜視図である。
EXAMPLE A glucose sensor will be explained as an example of a biosensor. Glucose oxidase was used as the oxidoreductase, and potassium ferricyanide was used as the oxidized dye conjugated with the oxidoreductase. FIG. 1A shows a mutually orthogonal schematic cross-sectional view of an embodiment of a BiC glucose sensor. The electrode part is made of an insulating substrate 1 made of polyvinyl chloride resin, with a groove 3.4 m wide and 0.15 m deep as a space 2 filled with platinum. Opposite 4. and a reference electrode 5, an electrode system was constructed. A reaction layer 8 and a filtration layer 7 are provided on the frames 9 and 10 so as to cover the electrode system. A measuring chip sandwiching the liquid retaining layer 6 is installed. The reaction layer 8 is a nonwoven fabric of the valve, glucose oxidase 20
0+115+ and potassium ferricyanide 40079 dissolved in phosphate buffer (pH 5, 6) IOC are impregnated, immersed in an organic solvent with high solubility in water such as ethanol, and dried under vacuum to remove glucose oxidase. and supports fine crystals of potassium ferricyanide at high density. The filtration layer 7 has a pore diameter of 1 μm.
This porous polycarbonate membrane removes solid components such as red blood cells from blood cells. As the liquid retaining layer 6, a band-shaped rayon paper with a width of 2 mm was used. Both ends of the rayon paper are fixed to the frame. FIG. 2B shows a view of the measurement chip from the electrode side, and FIG. 2C shows a top view of the electrode section. Furthermore, the rayon paper is held in such a position that it fits inside the groove with a width of 3.4 mm in the electrode part, and the filtration layer of the measuring chip is formed by the part other than the groove in the electrode part, as shown in cross-sectional view B in Figure 1. 7 is supported. Reaction layer 8 above. Filtration layer7. The liquid retaining layer 6 is fixed using frames 9 and 10 by pressure bonding or adhesive such as epoxy resin. FIG. 2A is an exploded perspective view of this sensor before assembly.

・  バルブの不織布からなる反応層8上に、試料液と
して血液30plを添加し充分浸透させた後、参照極5
を基準に測定極3の電圧をO〜+0.1vの間で鋸歯状
にo、1v/秒で変化させた。この場合、白金からなる
参照極5の電位は試料液に溶解しているフェリシアン化
カリウムとフェロシアン化カリウムの濃度比で決定され
る。添加された血液中のグルコースがバルブの不織布8
に担持されているグルコースオキシダーゼにより酸化さ
れる際、酵素−色素共役反応によりフェリシアン化カリ
ウムが還元され、フェロシアン化カリウムが生成する。
・After adding 30 pl of blood as a sample liquid onto the reaction layer 8 made of non-woven fabric of the valve and allowing it to fully penetrate, the reference electrode 5 was added.
The voltage of the measurement electrode 3 was changed in a sawtooth manner from O to +0.1 V at a rate of 1 V/sec. In this case, the potential of the reference electrode 5 made of platinum is determined by the concentration ratio of potassium ferricyanide and potassium ferrocyanide dissolved in the sample solution. Added glucose in the blood valve non-woven fabric 8
When oxidized by glucose oxidase supported on , potassium ferricyanide is reduced by an enzyme-dye coupling reaction to produce potassium ferrocyanide.

続いて反応した血液がポリカーボネート多孔体膜7を通
過する際、赤血球などの大きな固形成分が濾過される。
Subsequently, when the reacted blood passes through the porous polycarbonate membrane 7, large solid components such as red blood cells are filtered out.

血液のような高粘度でかつ微量のサンプルを濾過させる
のはむずかしいが、下にレーヨン紙6のような親水性の
薄膜を設置することによりすみやかに濾過できる。さら
に、濾過された反応液は、帯状のレーヨンを均一にひろ
がり、その下の電極部に供給される0反応液中のフェリ
シアン化カリウムを測定極3の電圧を掃引することによ
り酸化し、その時流れる酸化電流を測定する0この酸化
電流は色素の変化量に比例し、色素が充分に存在すれば
色素の変化量は基質濃度に対応するため、グルコースの
濃度が検知できる。
Although it is difficult to filter a highly viscous and minute sample such as blood, it can be quickly filtered by placing a hydrophilic thin film such as rayon paper 6 underneath. Furthermore, the filtered reaction solution is uniformly spread over the band-shaped rayon, and the potassium ferricyanide in the 0 reaction solution supplied to the electrode section below is oxidized by sweeping the voltage of the measurement electrode 3, and the oxidized Measuring the current 0 This oxidation current is proportional to the amount of change in the dye, and if enough dye is present, the amount of change in the dye corresponds to the substrate concentration, so the concentration of glucose can be detected.

このグルコースセンサを用いると400■/dlという
高濃度のグルコースが2分という短時間で測定できた。
Using this glucose sensor, glucose at a high concentration of 400 μ/dl could be measured in a short time of 2 minutes.

これは、従来例のように濾過して反応を行なわせるので
はなく、まず反応を行なわせる構成であり、高濃度の基
質に充分対応できる酵素と色素がとけやすい状態で担持
されているため短時間で反応が終了したと考えられる。
This system allows the reaction to occur first, rather than through filtration as in conventional methods, and the enzyme and dye, which can handle high-concentration substrates, are supported in a state that is easy to dissolve, so it takes only a short time. It is thought that the reaction was completed within a few hours.

さらに、濾過層7の下に親水性のある薄いレーヨン紙6
を置くことによりわずか30)11という微量の血液の
濾過をすみやかにおこなわせることができ、これにより
電極上に均一に反応液を展開して安定した応答電流が得
られるようになった。保液層は、少なくとも、各電極の
上を覆っておりでき、るだけ小面積な形状が望ましい。
Furthermore, a hydrophilic thin rayon paper 6 is placed under the filtration layer 7.
By placing the electrode, it was possible to quickly filter a minute amount of blood, as small as 30) 11, and this made it possible to spread the reaction solution uniformly on the electrode and obtain a stable response current. The liquid retaining layer preferably covers at least each electrode and has a shape as small as possible.

保液層6を濾過層7と同じ形状にして枠体9,1oに組
みこむと、血液は枠体9,10により固定された保液層
の外周部分において早く濾過され、その部分に溜まるた
め反応液が電極部に供給されにくくなった。保液層6を
帯状にすることにより、溜まりやすい外周部の面積が減
り、レーヨン紙6がすみやかにぬれ、少ない血itでも
電極部に反応液を供給することができた。この様に保液
層であるレーヨン紙の大きさを小さくすることにより、
15/Ilという微量のサンプルでも集中的に反応液を
電極上へ供給することが可能となった。電極の溝の幅を
1.5順にしてレーヨン紙6が電極の溝を覆うようにし
たところ、反応液が供給される際に生じたアワがぬけな
くて、測定極上に付着し、測定の妨害をする場合があっ
た。そこで、電極の溝の幅を、レーヨン紙の幅より広く
し、第1図の断面Bのように空間部2にレーヨン紙6が
セットされるようにしたところ、アワの形成は見られず
、安定して測定できた。これは、レーヨン紙6と電極の
溝の間がおいているので、空気のぬけ道となり、アワが
形成されないためと考えられる。さらに、電極部に設け
た溝の深さを保液層であるレーヨン紙の厚みよシ大きく
することで、直接電極表面にレーヨン紙6が接触するこ
とがなく、測定極3の反応面積を常に一定に保ち再現性
のよい応答が得られた。実施例では、厚み60 、am
という薄膜のレーヨン紙を用いたが、厚みを増すと液の
保持量が増加し、サンプル量を多く必要とした。又、レ
ーヨン紙に酵素や色素を担持したところ、濾過層7との
接触面が酵素や色素の結晶により接点が減少し濾過に時
間がかかった。以上より保液層eとしては、親水性の薄
膜で何も担持されていないことが望ましく、形状は電極
の溝より小さく最小限の面積で、電極系の上を覆ってい
ることが必要である。
When the liquid retaining layer 6 has the same shape as the filtration layer 7 and is incorporated into the frames 9 and 1o, blood is quickly filtered at the outer peripheral portion of the liquid retaining layer fixed by the frames 9 and 10, and collects there. It became difficult for the reaction solution to be supplied to the electrode section. By making the liquid retaining layer 6 into a band shape, the area of the outer periphery where it tends to accumulate was reduced, the rayon paper 6 was quickly wetted, and the reaction liquid could be supplied to the electrode part even with a small amount of blood. By reducing the size of the rayon paper that is the liquid-retaining layer in this way,
Even with a trace amount of sample of 15/Il, it became possible to intensively supply the reaction solution onto the electrode. When the rayon paper 6 covered the electrode grooves by adjusting the width of the electrode grooves in order of 1.5, the wrinkles that occurred when the reaction solution was supplied did not come off and adhered to the top of the measurement electrode, causing problems in the measurement. There were cases of interference. Therefore, when we made the width of the electrode groove wider than the width of the rayon paper so that the rayon paper 6 was set in the space 2 as shown in cross section B in Figure 1, no formation of bubbles was observed. The measurements were stable. This is thought to be because the gap between the rayon paper 6 and the groove of the electrode provides a passage for air and prevents formation of wrinkles. Furthermore, by making the depth of the groove provided in the electrode part larger than the thickness of the rayon paper that is the liquid retaining layer, the rayon paper 6 does not come into direct contact with the electrode surface, and the reaction area of the measurement electrode 3 is always maintained. A response with good reproducibility was obtained by keeping it constant. In the example, the thickness is 60 am
A thin film of rayon paper was used, but as the thickness increased, the amount of liquid it held increased, necessitating a larger amount of sample. Furthermore, when enzymes and pigments were supported on rayon paper, the number of points of contact with the filtration layer 7 decreased due to enzyme and pigment crystals, and filtration took a long time. From the above, it is desirable that the liquid retaining layer e be a hydrophilic thin film that does not support anything, and that it should cover the top of the electrode system with a minimum area smaller than the groove of the electrode. .

本発明のバイオセンサは、試料液以外の希釈液などは必
要としないため、血液の添加量を15〜100μlで変
化させたところ、同一の血液では添加量に関係なく一定
の値を示した0このため、添加量を正確にする必要が彦
<、微量の血液を添加するだけで簡易に測定が可能とな
った。さらに、高濃度の酵素および酸化型色素を用いる
ことにより2分という短時間で反応が終了しているため
、高温でインキュベ゛−卜するための装置や蒸発を防ぐ
防水層が不要で、簡易な装置および担体で精度よく測定
できた。
The biosensor of the present invention does not require a diluent other than the sample solution, so when the amount of blood added was varied from 15 to 100 μl, the same blood showed a constant value of 0 regardless of the amount added. For this reason, it is necessary to accurately add the amount of blood, but it has become possible to easily measure by adding only a small amount of blood. Furthermore, by using highly concentrated enzymes and oxidized dyes, the reaction can be completed in as little as 2 minutes, so there is no need for high-temperature incubation equipment or a waterproof layer to prevent evaporation. The device and carrier were able to measure with high accuracy.

保液層としてレーヨン紙を用いたが、濾過層から微量の
液をすみやかに電極上に展開するには、親水性でかつ薄
い多孔性の膜であることが望ましい。レーヨン紙の他に
濾紙やナイロンの不織布なども使用できた。
Rayon paper was used as the liquid retaining layer, but in order to quickly spread a small amount of liquid from the filtration layer onto the electrode, it is desirable to use a hydrophilic and thin porous membrane. In addition to rayon paper, filter paper and nylon nonwoven fabric could also be used.

色素としては、上記実施例に用いたフェリシアン化カリ
ウムが安定に反応するので適しているが、p−ベンゾキ
ノンを使えば反応速度が早いので高速化に適している。
As the dye, potassium ferricyanide used in the above examples is suitable because it reacts stably, but p-benzoquinone is suitable for increasing the reaction rate because it has a fast reaction rate.

又、2.6−シクロロフエノールインドフエノール、メ
チレンブルー、フェナジンメトサルフェート、β−ナフ
トキノン4−スルホン酸カリウムなども使用できる。
Further, 2,6-cyclophenol indophenol, methylene blue, phenazine methosulfate, potassium β-naphthoquinone 4-sulfonate, etc. can also be used.

なお、上記実施例におけるセンサはグルコースに限ラス
、アルコールセンサやコレステロールセンサなど、酸化
還元酵素の関与する系に用いることができる。酸化還元
酵素としてはグルコースオキシダーゼを用いたが、他の
酵素、たとえばアルコールオキシダーゼ、キサンチンオ
キシダーゼ。
Note that the sensor in the above embodiments can be used not only for glucose but also for systems involving redox enzymes, such as alcohol sensors and cholesterol sensors. Although glucose oxidase was used as the oxidoreductase, other enzymes such as alcohol oxidase and xanthine oxidase were used.

コレステロールオキシダーゼ等も用いられる。なお、酵
素は架橋剤等で固定化しても用いることができた。
Cholesterol oxidase and the like are also used. Note that the enzyme could be used even if it was immobilized with a crosslinking agent or the like.

発明の効果 このように本発明のバイオセンサによれば、直、  接
微量なサンプルを滴下するだけで、特定成分を短時間に
精度よく測定することができた。
Effects of the Invention As described above, according to the biosensor of the present invention, it was possible to measure a specific component with high accuracy in a short period of time simply by directly dropping a small amount of sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bは本発明の1実施例におけるグルコースセ
ンサの断面図、第2図Aはその組立前の分解斜視図、四
Bは測定チップの下面図、同Cは電極部の上面図、第3
図は従来のバイオセンサの模式図である。 1・・・・・・基板、2・・・・・・溝、3・・・・・
・測定極、4・・・・・・対極、5・・・・・・参照極
、6・・・・・・保液層、7・・・・・・濾過層、8・
・・・・・反応層、9.1o・・・・・・枠体、11・
・・・・・支持体、12・・・・・・試薬層、13・・
・・・・展開層、14・・・・・・濾過層、15・・・
・・・防水層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
一一基凍 2・−清 3”−明定確 C−保液A 7−−−5戸遍1
1A and 1B are cross-sectional views of a glucose sensor according to an embodiment of the present invention, 2A is an exploded perspective view before assembly, 4B is a bottom view of the measuring chip, and 4C is a top view of the electrode section. , 3rd
The figure is a schematic diagram of a conventional biosensor. 1...Substrate, 2...Groove, 3...
・Measurement electrode, 4... Counter electrode, 5... Reference electrode, 6... Liquid retaining layer, 7... Filtration layer, 8...
...Reaction layer, 9.1o...Frame, 11.
... Support, 12 ... Reagent layer, 13 ...
...Development layer, 14...Filtering layer, 15...
...Waterproof layer. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
11 groups frozen 2・-clear 3"-clear definite C-retaining liquid A 7---5 doors 1

Claims (1)

【特許請求の範囲】[Claims] 絶縁性の基板に測定極、対極および参照極からなる電極
系を設けた電極部の上に、空間部を介して、保液層と多
孔体膜からなる濾過層および酸化還元酵素と前記酵素と
共役する酸化型色素を含んだ反応層を枠体にはさんで設
置し、前記保液層は親水性の多孔体からなり、少なくと
も前記空間部内に保持される形状であることを特徴とす
るバイオセンサ。
A filtration layer consisting of a liquid retaining layer and a porous membrane, an oxidoreductase, and the enzyme are placed on an electrode part, which has an electrode system consisting of a measurement electrode, a counter electrode, and a reference electrode on an insulating substrate, through a space. A bio-reactive layer comprising a reaction layer containing a conjugated oxidized dye is placed between frames, and the liquid retaining layer is made of a hydrophilic porous material and has a shape that is retained at least within the space. sensor.
JP60249204A 1985-06-21 1985-11-07 Biosensor Expired - Lifetime JPH0676984B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60249204A JPH0676984B2 (en) 1985-11-07 1985-11-07 Biosensor
DE3687646T DE3687646T3 (en) 1985-06-21 1986-06-19 BIOSENSOR AND THEIR PRODUCTION.
US07/027,204 US4897173A (en) 1985-06-21 1986-06-19 Biosensor and method for making the same
EP86903608A EP0230472B2 (en) 1985-06-21 1986-06-19 Biosensor and method of manufacturing same
PCT/JP1986/000311 WO1986007632A1 (en) 1985-06-21 1986-06-19 Biosensor and method of manufacturing same
US07/774,129 US5185256A (en) 1985-06-21 1991-10-15 Method for making a biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60249204A JPH0676984B2 (en) 1985-11-07 1985-11-07 Biosensor

Publications (2)

Publication Number Publication Date
JPS62108146A true JPS62108146A (en) 1987-05-19
JPH0676984B2 JPH0676984B2 (en) 1994-09-28

Family

ID=17189457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60249204A Expired - Lifetime JPH0676984B2 (en) 1985-06-21 1985-11-07 Biosensor

Country Status (1)

Country Link
JP (1) JPH0676984B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719887B2 (en) * 2000-12-27 2004-04-13 Matsushita Electric Industrial Co., Ltd. Biosensor
CN110568045A (en) * 2019-09-12 2019-12-13 浙江大学山东工业技术研究院 Electrochemical biosensor capable of rapidly detecting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213663A (en) * 1985-03-19 1986-09-22 Matsushita Electric Ind Co Ltd Biosensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213663A (en) * 1985-03-19 1986-09-22 Matsushita Electric Ind Co Ltd Biosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719887B2 (en) * 2000-12-27 2004-04-13 Matsushita Electric Industrial Co., Ltd. Biosensor
CN110568045A (en) * 2019-09-12 2019-12-13 浙江大学山东工业技术研究院 Electrochemical biosensor capable of rapidly detecting

Also Published As

Publication number Publication date
JPH0676984B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US4897173A (en) Biosensor and method for making the same
US5185256A (en) Method for making a biosensor
EP0359831B2 (en) Biosensor and process for its production
AU754095B2 (en) Microfabricated aperture-based sensor
EP0136362A1 (en) Biosensor
JPH0640086B2 (en) Biosensor
JPH01131446A (en) Sensor
JPS6212847A (en) Membrane through which liquid and solute can be permeated, manufacture thereof and utilization thereof
JPS63128252A (en) Biosensor
JPS60173458A (en) Biosensor
JPH0524453B2 (en)
JPH0430543B2 (en)
JPS62108146A (en) Biosensor
Davis Advances in biomedical sensor technology: a review of the 1985 patent literature
JPH043500B2 (en)
JPS60211350A (en) Biosensor
JPH01134246A (en) Biosensor
JPS61213663A (en) Biosensor
JPH0640089B2 (en) Biosensor
JPS62108145A (en) Biosensor
JPS61241651A (en) Biosensor
JP2543057B2 (en) Biosensor manufacturing method and biosensor electrode plate manufacturing method
JPS6275343A (en) Biosensor
JPS6150054A (en) Biosensor
JPS6150055A (en) Biosensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term