JPS61241330A - Polyethylene molded article having improved adhesiveness - Google Patents

Polyethylene molded article having improved adhesiveness

Info

Publication number
JPS61241330A
JPS61241330A JP8344685A JP8344685A JPS61241330A JP S61241330 A JPS61241330 A JP S61241330A JP 8344685 A JP8344685 A JP 8344685A JP 8344685 A JP8344685 A JP 8344685A JP S61241330 A JPS61241330 A JP S61241330A
Authority
JP
Japan
Prior art keywords
polyethylene
treatment
molded article
strength
polyethylene molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8344685A
Other languages
Japanese (ja)
Other versions
JPH078925B2 (en
Inventor
Shigenori Fukuoka
福岡 重紀
Hiroshi Yasuda
浩 安田
Hiroshige Sugiyama
博茂 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP60083446A priority Critical patent/JPH078925B2/en
Publication of JPS61241330A publication Critical patent/JPS61241330A/en
Publication of JPH078925B2 publication Critical patent/JPH078925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Graft Or Block Polymers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:A composition having high strength, high elasticity, high surface tension and extremely improved adhesiveness, consisting of a specific polyethylene which is irradiated with ultraviolet rays or treated with a chemical reagent. CONSTITUTION:A molded article having >=180kg/mm<2> tensile strength, >=2,700kg/mm<2> modulus in tension and >=40erg/cm<2> surface free energy, comprising a polyethylene having at least 700,000 intrinsic-viscosity molecular weight. The molded article is fiber or film and has many channels on the surface. It is obtained by treating the polyethylene having preferably 1,000,000 viscosity- average molecular weight by ultraviolet-light irradiation, corona discharge or fluorine gas treatment. Preferably the physical treatment and/or chemical surface activating treatment is combined with steam treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は接着性の改良されたポリエチレン成形品に関す
るものであり、更に詳しくは高強力、高弾性でかつ高い
表面張力をもつ接着性の改良されたメリエチレン成形品
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a polyethylene molded article with improved adhesive properties, and more specifically, to a polyethylene molded article with improved adhesive properties that has high strength, high elasticity, and high surface tension. This invention relates to polyethylene molded products.

(従来技術およびその問題点) 従来プラスチック成形品にプラズマ処理や化学処理によ
り改良された接着性を付与することは公知である。ポリ
エチレンに関してもその成形品は表面が不活性でほとん
どの材料との相容性がわるく、接着性に欠けるという欠
点を持ち、紫外線照射処理、コロナ放電処理や低温プラ
ズマ処理などの物理的処理、酸やアルカリを用いる化学
処理による接着性改良が実施されている。しかし通常の
ポリエチレン成形品はもともと低強力、低弾性率でかつ
、接着力を向上させるための紫外線照射処理や低温プラ
ズマ処理あるいは化学処理を施すと相当の強力低下が伴
なうので、他の素材と複合しても複合体の接lfi力以
下のところでポリエチレン成形品自体が破壊することが
あり、そのため研究はなされていたかポリエチレンの複
合素材の開発はおくれでいる。
(Prior Art and its Problems) It is known to impart improved adhesion to conventional plastic molded articles by plasma treatment or chemical treatment. Polyethylene molded products also have the disadvantage of having an inert surface, poor compatibility with most materials, and lack of adhesion. Adhesion has been improved by chemical treatment using alkali or alkali. However, regular polyethylene molded products originally have low strength and low elastic modulus, and if they are subjected to ultraviolet irradiation treatment, low-temperature plasma treatment, or chemical treatment to improve adhesive strength, the strength will decrease considerably, so other materials may be used. Even when composited with polyethylene, the polyethylene molded product itself may be destroyed if the contact force is less than the contact force of the composite, and for this reason, the development of polyethylene composite materials has been delayed, although research has been conducted.

きわめて高い強力と引張弾性率をもつポリエチレン繊維
、フィルムの如き成形品も既知の材料でぁす、P、Sm
!th (polymar 21巻1341頁198゜
年)らや、B、Kalb (Macromoleeul
ar chem、y 180巻2983頁1979年)
らが文献などに発表している。また本発明者らも特願昭
58−159990,58−198074などによりポ
リエチレンなど可撓性高分子からなる高強力、高引張弾
性率繊維を安定に高生産速度で製造する方法をみいだし
ている。
Moldings such as polyethylene fibers and films with extremely high strength and tensile modulus are also known materials, P, Sm.
! th (Polymar Vol. 21, p. 1341, 198°) Raya, B., Kalb (Macromoleul
ar chem, y vol. 180, p. 2983, 1979)
have published in the literature. In addition, the present inventors have also discovered a method for stably producing high-strength, high-tensile modulus fibers made of flexible polymers such as polyethylene at a high production rate through Japanese Patent Applications No. 58-159990 and 58-198074. .

これら高物性の成形品はもともと不活性なポリエチレン
ポリマーである上に、高い結晶性をもつため接着性に劣
っているが、高強力、高弾性ポリエチレン成形品の接着
性改善については研究がなされていない。
These molded products with high physical properties are inherently inert polyethylene polymers and have high crystallinity, so they have poor adhesion, but research has not been conducted to improve the adhesion of high-strength, high-modulus polyethylene molded products. do not have.

(発明が解決しようとする問題点) 即ち本発明はポリエチレン成形品の接着性の改善におい
てホ゛リエチレン自身の低い表面張力、接着性は改善さ
れるが大きい強度低下が伴なうという欠点を解消するこ
とにある。
(Problems to be Solved by the Invention) In other words, the present invention solves the disadvantages of polyethylene itself, such as its low surface tension and its own low surface tension, which improve adhesion but are accompanied by a large decrease in strength, in improving the adhesion of polyethylene molded products. It is in.

(発明が解決しようとする問題点) 本発明は粘度平均分子量が少なくとも700.000の
ポリエチレンからなり、引張強度がtsoKf/J以上
ゝ51張以上性51張zrooKt/j以上、かつ6面
自由エネルギーが40工ルグ/cI1以上である接着性
の改善されたポリエチレン成形品である。
(Problems to be Solved by the Invention) The present invention is made of polyethylene having a viscosity average molecular weight of at least 700.000, has a tensile strength of at least tsoKf/J, a tensile strength of at least 51 tensile strength of at least 51 zrooKt/j, and a six-plane free energy. This is a polyethylene molded product with improved adhesion of 40 kg/cI1 or more.

更に詳しく言えば、粘度平均分子量が少すくトも700
.000好ましくは1,000,000のポリエチレン
からなり、引張強度が180Kf/−以上・引張弾性率
がz700Kf/−以上、表面自由エネルギーが40エ
ルグ/−以上、好ましくは50エルグ/−以上であるポ
リエチレン成形品で、該ポリエチレン成形品は好ましく
は繊維またはフィルムであって、更に好ましくは該ポリ
エチレン成形品がそのljに多条溝を有する接着性の改
むされた高引張強力、高弾性y +)エチレン成形品で
ある。
To be more specific, the viscosity average molecular weight is 700.
.. 000, preferably 1,000,000 polyethylene, having a tensile strength of 180 Kf/- or more, a tensile modulus of 700 Kf/- or more, and a surface free energy of 40 erg/- or more, preferably 50 erg/- or more. In the molded article, the polyethylene molded article is preferably a fiber or a film, more preferably the polyethylene molded article has an adhesive property, high tensile strength, high elasticity, and has multiple grooves in its lj. It is an ethylene molded product.

ここでいう多条溝とは、成形品の延伸方向に配列された
無数の多条溝であって、該多条溝としては表面上、巾方
向に平均歪jlioμm当り2ヶ以上特に5〜50ケ配
列していることが望ましい。該多条溝は溶剤を適当量含
むポリエチレンゲル成形品を延伸する際に溶剤蒸発量を
制御することによって付与することができる。
The multi-strip grooves referred to here are countless multi-strip grooves arranged in the stretching direction of the molded product, and on the surface, the multi-strip grooves have an average strain in the width direction of 2 or more, particularly 5 to 50 It is desirable that they be aligned. The multiple grooves can be provided by controlling the amount of solvent evaporated when stretching a polyethylene gel molded product containing an appropriate amount of solvent.

本発明でいう接着性の改善されたポリエチレン成形品を
得るための処理としては、紫外線照射処理、コロナ放電
処理、低温プラズマ処理や化学薬品による酸化処理、表
面グラフト重合処理やフッ素ガス処理などを応用するの
がよい。
In the present invention, treatments for obtaining polyethylene molded articles with improved adhesion include ultraviolet irradiation treatment, corona discharge treatment, low-temperature plasma treatment, oxidation treatment with chemicals, surface graft polymerization treatment, fluorine gas treatment, etc. It is better to do so.

紫外線照射処理、低温プラズマ処理やコロナ放電処理で
は空気、識素、窒素、ヘリウム、アルゴン、炭酸ガス、
アンモニア等のガス媒体中での処理でもよい。また重合
性不飽和結合をもつ化合物例えばアクリル酸、メタクリ
ル酸などのガス体中での、成形物表面にこれらの化合物
のポリマーが形成されるような処理であってもよい。
Ultraviolet irradiation treatment, low-temperature plasma treatment, and corona discharge treatment use air, nitrogen, nitrogen, helium, argon, carbon dioxide,
Treatment may also be carried out in a gas medium such as ammonia. It may also be a treatment in which a compound having a polymerizable unsaturated bond, such as acrylic acid or methacrylic acid, is used in a gaseous body to form a polymer of these compounds on the surface of the molded article.

化学薬品による酸化処理では重り四ム飄カリウA/IE
ff系、無水クロム酸/テトラクロルエタン系、塩素酸
塩/硫醇系などの液中処理があげられるが、最も好まし
いのはフッ素ガス処理である。
For oxidation treatment with chemicals, weights are 4 mm and 4 mm.
In-liquid treatments such as ff system, chromic anhydride/tetrachloroethane system, and chlorate/sulfur system are mentioned, but the most preferred is fluorine gas treatment.

この場合、用いるフッ素ガス濃度は特に限定されないが
、処理の安全性と処理効果を考えて1〜IO%がよく窒
素ガスなどでこの濃度に稀釈する。
In this case, the concentration of fluorine gas used is not particularly limited, but in consideration of treatment safety and treatment effect, it is preferably 1 to IO% and diluted with nitrogen gas or the like to this concentration.

処理温度も特に限定されないが20〜30℃の室温でよ
い。処理時間は処理効果の期待度にもよるが1分〜60
分、好ましくは3分〜30分でよい。
The treatment temperature is also not particularly limited, but may be a room temperature of 20 to 30°C. Processing time varies from 1 minute to 60 minutes depending on the expected treatment effect.
minutes, preferably 3 minutes to 30 minutes.

フッ業ガス処理効果を更に顕著ならしむるには、フッ素
ガス処理前に予め;ロナ放電処理や低温プラズマ処理、
紫外線照射、グ:−放電処理の如き物理処理や、濃厚酸
・アルカリ処理などの化学処理による表面活性化処理を
行なうとよいが好ましいのは水蒸気処理である。前記物
理的処理および/または化学的表面活性化処理と水蒸気
処理を組み合わせると更に好ましい易接着効果が得られ
る。
In order to make the fluorine gas treatment effect more pronounced, prior to the fluorine gas treatment, rona discharge treatment, low temperature plasma treatment,
Surface activation treatments such as physical treatments such as ultraviolet irradiation and discharge treatment and chemical treatments such as concentrated acid/alkali treatments are preferably carried out, but steam treatment is preferred. A more preferable adhesion promoting effect can be obtained by combining the physical treatment and/or chemical surface activation treatment with water vapor treatment.

(作 用) 高強力、高弾性ポリエチレン成形品分用いるためポリエ
チレン分子が高度に配向しておりそのため化学薬品によ
る酸化処理などでは薬剤の内部へ人 の浸メが少なく、繊維表面だけの化学変化にとどまり、
ガス媒体中での紫外線照射処理や低温プラズマ、コロナ
放電処理でもガスの内部への浸憑が少ないため繊維表面
の浸蝕にとどまることが大きな強度低下を伴うことなく
接着性が改善されている主因と思われる。また水蒸気前
処理及びフッ素処理の効果は明らかではないが、ポリエ
チレン成形品の表面に極微量の水分が収着するためにこ
の水分とフッ素との反応で酸化性物質の生成などが起り
、これが表面活性化に作用するのではないかと思われる
(Function) Because it uses a high-strength, high-elasticity polyethylene molded product, the polyethylene molecules are highly oriented. Therefore, during oxidation treatment with chemicals, there is less penetration of chemicals into the inside, and chemical changes occur only on the fiber surface. Stay,
Even during ultraviolet irradiation treatment in a gas medium, low-temperature plasma treatment, and corona discharge treatment, the gas does not penetrate into the interior of the fiber, so the erosion only occurs on the fiber surface, which is the main reason why the adhesion is improved without a significant decrease in strength. Seem. Furthermore, although the effects of steam pretreatment and fluorine treatment are not clear, since a very small amount of moisture is adsorbed on the surface of a polyethylene molded product, the reaction between this moisture and fluorine causes the formation of oxidizing substances, and this It seems that it acts on activation.

本発明により処理したポリエチレン成形品の表面自由エ
ネルギー(エルグ/al)は水及びヨウ化メチレン溶液
で測定した接触角を次式に代入して求めた。
The surface free energy (erg/al) of the polyethylene molded article treated according to the present invention was determined by substituting the contact angles measured with water and methylene iodide solutions into the following equation.

下記式(1)に水及びヨウ化メチレン溶液で測定した接
触角(Cosθ)と、水及びヨウ化メチレンのγア、r
ydS7Whの既知のl正代入り、り、7.d、γ、h
が未知数である二元連立方程式をつくり、r、とγ3h
を算出し、式(2)に代入して固体の表面自由エネルギ
ーを求める。
The following formula (1) is the contact angle (Cos θ) measured with water and methylene iodide solution, and the γa, r of water and methylene iodide.
Entering the known l positive substitution of ydS7Wh, 7. d, γ, h
Create a two-dimensional simultaneous equation where are unknowns, r, and γ3h
is calculated and substituted into equation (2) to obtain the surface free energy of the solid.

’s =’ a  + r ! h         
    ・・・(2)易接着化効果については、処理後
の当該成形品がフィルムの場合は処理面間に2液型のエ
ポキシ樹脂を混合塗布して、張り合せ、加熱または室温
放置してエポキシ樹脂を硬化させたのち、その料理強力
を測定した。当該成形品が繊維状である場合は、繊維束
に適度な撚りをかけて撚糸状にし、約10αの間閾をあ
けてエポキシ樹脂で固定し、テンシコン型引張試験機で
エポキシ樹脂による固定部分をつかんで4脹試験を行な
い、糸の樹脂から扱ける強力を測定した。当該成形品の
引張強度、引張弾性半の測定は東洋ボールドウィン社製
テンシアンを用い試料長(ゲージ長)30mm、伸長速
度30瓢/分の条件で単繊維のS−8曲線よりぢ[張り
強度と引張り彊性藁を算出した。
's =' a + r! h
...(2) Regarding the effect of facilitating adhesion, if the molded product after treatment is a film, mix and apply a two-component epoxy resin between the treated surfaces, paste it together, heat it, or leave it at room temperature to form the epoxy resin. After the resin was cured, its cooking strength was measured. If the molded product is fibrous, twist the fiber bundle appropriately to make it into a thread, fix it with epoxy resin with a threshold of about 10α, and test the part fixed with epoxy resin with a Tensicon tensile tester. A 4-pull test was carried out by grasping the thread to measure the strength with which the thread could be handled from the resin. The tensile strength and tensile elasticity of the molded product were measured using a Tensian manufactured by Toyo Baldwin Co., Ltd., using the S-8 curve of a single fiber at a sample length (gauge length) of 30 mm and an elongation rate of 30 g/min. The tensile strength of the straw was calculated.

以下実施例により説明する。This will be explained below using examples.

(実施例) 実施例1 引張強度30014/lJ、引張り弾性率7oooK4
/−1粘度平均分子量3.5 X 10 、厚さ150
紬 の高強力ポリエチレンフィルム及び引張強度78K
f/−1引張り弾性率5soKq/d、粘度平均分子量
5、OX 10’、厚さ150μmの通常のポリエチレ
ンフィルムを下記人〜Cの処理を行ない表面自白エネル
ギーr、(エルグ/cIi)、及びエポキシ樹脂による
接着力を測定した。結果を表1に示したO処理A:低温
空気プラズマ処理60分 B:硫酸60容量%のブロム醒飽和溶液処理り0℃×6
0分 c:処4人フィルムを更にアクリルr!!蒸気存在下で
低温プラズマ処理30分 表  1 以下余白 本発明による処理を施した高強力ポリエチレンフィルム
は未処理にちがい強力を保持し、改良された濡れ特性(
表面自由エネルギー)とすぐれた接着性を示す。これに
対し、同じ処理を施した通常のポリエチレンフィルムは
、濡れ特性の改善はみられるが初期(未処理)強力が低
くかつ処理による強力低下が大きく、実用強力を保持し
たF!I着性の改良は不可能にちかい。
(Example) Example 1 Tensile strength 30014/lJ, tensile modulus 7oooK4
/-1 viscosity average molecular weight 3.5 x 10, thickness 150
Tsumugi high strength polyethylene film and tensile strength 78K
f/-1 A normal polyethylene film with a tensile modulus of 5soKq/d, a viscosity average molecular weight of 5, OX 10', and a thickness of 150 μm was subjected to the following treatments to obtain surface self-evident energy r, (erg/cIi), and epoxy The adhesive strength of the resin was measured. The results are shown in Table 1. O treatment A: Low temperature air plasma treatment 60 minutes B: Treatment with 60 volume % bromine saturated solution of sulfuric acid at 0°C x 6
0 minutes c: The 4-person film is further acrylic r! ! Low-temperature plasma treatment for 30 minutes in the presence of steam Table 1 The margins below The high-strength polyethylene film treated according to the present invention retains its strength and has improved wetting properties (
(surface free energy) and exhibits excellent adhesion. On the other hand, ordinary polyethylene film subjected to the same treatment shows improvement in wetting properties, but its initial (untreated) strength is low and the strength decreases significantly due to treatment, and F! It is almost impossible to improve I adhesion.

実施例2 引張り強度200〜/−1引張弾性率6000 Kq 
/−1厚さ150μmの高強力ポリエチレンフィルム(
粘度平均分子量3.5 X 10’ )を表2に示す処
理を施した後、エポキシ接着剤を捻布して剥離強力を求
めた。結果を表2に示す。
Example 2 Tensile strength 200~/-1 Tensile modulus 6000 Kq
/-1 High strength polyethylene film with a thickness of 150 μm (
After performing the treatment shown in Table 2 to obtain a viscosity average molecular weight of 3.5 x 10'), the epoxy adhesive was twisted to determine the peel strength. The results are shown in Table 2.

以下余白 本発明処理による高強力ポリエチレンフィルムは改良さ
れた濡れ特性(表面自由エネルギー)とすぐれた接着性
を示している。これに対し比較例として示したフッ素ガ
ス処理をしないフィルムでは、濡れ特性及び接着性の改
善は詔められない。
The high-strength polyethylene film processed according to the invention exhibits improved wetting properties (surface free energy) and excellent adhesion. On the other hand, the film shown as a comparative example which was not subjected to fluorine gas treatment showed no improvement in wetting characteristics and adhesion.

フッ素ガス処理前の水蒸気による前処理効果がサンプル
1と2の比較で明らかである。
The effect of pretreatment with water vapor before fluorine gas treatment is clear from a comparison of Samples 1 and 2.

実施例3 引張り強度360聯/−1引張弾性率8000 Kf/
−1繊度500デニールの高強力ポリエチレン繊維(粘
度平均分子fM 1.9 X I O’ )のマルチフ
ィラメントを表3に示す条件でフッ素ガス処理した後、
メートル当り100回の撚りをかけ撚糸にし、先にのべ
たエポキシ援脂成形品を作製し、引抜き強力を測定した
。その結果を表3に示した。
Example 3 Tensile strength 360 kf/-1 Tensile modulus 8000 Kf/
-1 After treating a multifilament of high-strength polyethylene fiber (viscosity average molecular fM 1.9 X IO') with a fineness of 500 denier with fluorine gas under the conditions shown in Table 3,
The yarn was twisted 100 times per meter to make the epoxy-reinforced molded product, and its drawing strength was measured. The results are shown in Table 3.

以下余白 表3に示したサンプ/%/6とサンプル1の比較テフッ
素ガス処理の有効性が、サンプル7とサンプル11サン
プル8とサンプル2の比較で多条溝の有効性が、サンプ
ルlとサンプル2の比較で水蒸気前処理の有効性が示さ
れている。
Comparison of Samp/%/6 and Sample 1 shown in Margin Table 3 below shows the effectiveness of the tefluorine gas treatment, Sample 7 and Sample 11, Sample 8 and Sample 2, and the effectiveness of the multi-groove between Sample L and Sample 2. A comparison of sample 2 shows the effectiveness of steam pretreatment.

(効 果) 本発明によれば前記実り例で明らかなように強度低下少
なくして表面自由エネルギー(濡れ特性)の改善された
すぐれた接着性をもつポリエチレン成形品を提供するこ
とができる。これにより、他の素材と複合しても複合体
の接着強力以下のところでポリエチレン成形品自体が破
壊するようなことがなくなりポリエチレン成形品の複合
素材への応用がひろがる。
(Effects) According to the present invention, as is clear from the above-mentioned examples, it is possible to provide a polyethylene molded article having excellent adhesive properties with reduced strength reduction and improved surface free energy (wetting properties). As a result, even when combined with other materials, the polyethylene molded product itself will not be destroyed if the adhesive strength is lower than that of the composite, and the application of polyethylene molded products to composite materials will be expanded.

Claims (1)

【特許請求の範囲】 1、粘度平均分子量が少なくとも700,000のポリ
エチレンからなり、かつ引張強度が180Kg/mm^
2以上、引張弾性率が2700Kg/mm^2以上、表
面自由エネルギーが40エルグ/cm^2以上であるこ
とを特徴とする接着性の改良されたポリエチレン成形品
。 2、ポリエチレン成形品が繊維またはフィルムである特
許請求の範囲第1項記載の接着性の改良されたポリエチ
レン成形品。 3、ポリエチレン成形品がその表面に多条溝を有する特
許請求の範囲第1項または第2項記載の接着性の改良さ
れたポリエチレン成形品。
[Claims] 1. Made of polyethylene with a viscosity average molecular weight of at least 700,000 and a tensile strength of 180 Kg/mm^
2 or more, a tensile modulus of elasticity of 2700 Kg/mm^2 or more, and a surface free energy of 40 ergs/cm^2 or more. 2. A polyethylene molded article with improved adhesiveness according to claim 1, wherein the polyethylene molded article is a fiber or a film. 3. A polyethylene molded article with improved adhesiveness as claimed in claim 1 or 2, wherein the polyethylene molded article has multiple grooves on its surface.
JP60083446A 1985-04-18 1985-04-18 Polyethylene fiber with improved adhesion Expired - Fee Related JPH078925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083446A JPH078925B2 (en) 1985-04-18 1985-04-18 Polyethylene fiber with improved adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083446A JPH078925B2 (en) 1985-04-18 1985-04-18 Polyethylene fiber with improved adhesion

Publications (2)

Publication Number Publication Date
JPS61241330A true JPS61241330A (en) 1986-10-27
JPH078925B2 JPH078925B2 (en) 1995-02-01

Family

ID=13802663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083446A Expired - Fee Related JPH078925B2 (en) 1985-04-18 1985-04-18 Polyethylene fiber with improved adhesion

Country Status (1)

Country Link
JP (1) JPH078925B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194033A (en) * 1989-01-23 1990-07-31 Mitsui Petrochem Ind Ltd Production of polyolefin molding of improved adhesiveness
JPH04289266A (en) * 1991-03-18 1992-10-14 Railway Technical Res Inst Ultrahigh molecular weight polyethylene fiber and composite material reinforced with ultra-high-molecular weight polyethylene fiber
US5624627A (en) * 1991-12-27 1997-04-29 Mitsui Petrochemical Industries, Ltd. Process for preparing surface-modified biaxially oriented film of high molecular weight polyethylene
JP2009052037A (en) * 2007-07-31 2009-03-12 Stella Chemifa Corp Method of producing hollow construct
US9023450B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US9023451B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9023452B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making
US9163335B2 (en) 2011-09-06 2015-10-20 Honeywell International Inc. High performance ballistic composites and method of making
US9168719B2 (en) 2011-09-06 2015-10-27 Honeywell International Inc. Surface treated yarn and fabric with enhanced physical and adhesion properties and the process of making
US9222864B2 (en) 2011-09-06 2015-12-29 Honeywell International Inc. Apparatus and method to measure back face signature of armor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227420A (en) * 1983-06-10 1984-12-20 Mitsui Petrochem Ind Ltd Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227420A (en) * 1983-06-10 1984-12-20 Mitsui Petrochem Ind Ltd Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194033A (en) * 1989-01-23 1990-07-31 Mitsui Petrochem Ind Ltd Production of polyolefin molding of improved adhesiveness
JPH04289266A (en) * 1991-03-18 1992-10-14 Railway Technical Res Inst Ultrahigh molecular weight polyethylene fiber and composite material reinforced with ultra-high-molecular weight polyethylene fiber
US5624627A (en) * 1991-12-27 1997-04-29 Mitsui Petrochemical Industries, Ltd. Process for preparing surface-modified biaxially oriented film of high molecular weight polyethylene
US5650451A (en) * 1991-12-27 1997-07-22 Mitsui Petrochemical Industries, Ltd. Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same
US5674919A (en) * 1991-12-27 1997-10-07 Mitsui Petrochemical Industries, Ltd. Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface-modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same
US5840235A (en) * 1991-12-27 1998-11-24 Mitsui Petrochemical Industries, Ltd. Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface-modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same
JP2009052037A (en) * 2007-07-31 2009-03-12 Stella Chemifa Corp Method of producing hollow construct
US9023450B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US9023451B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9023452B2 (en) 2011-09-06 2015-05-05 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making
US9163335B2 (en) 2011-09-06 2015-10-20 Honeywell International Inc. High performance ballistic composites and method of making
US9168719B2 (en) 2011-09-06 2015-10-27 Honeywell International Inc. Surface treated yarn and fabric with enhanced physical and adhesion properties and the process of making
US9222864B2 (en) 2011-09-06 2015-12-29 Honeywell International Inc. Apparatus and method to measure back face signature of armor
US9718237B2 (en) 2011-09-06 2017-08-01 Honeywell International Inc. Rigid structure UHMWPE UD and composite and the process of making
US9821515B2 (en) 2011-09-06 2017-11-21 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US9880080B2 (en) 2011-09-06 2018-01-30 Honeywell International Inc. Rigid structural and low back face signature ballistic UD/articles and method of making
US10562238B2 (en) 2011-09-06 2020-02-18 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making
US11027501B2 (en) 2011-09-06 2021-06-08 Honeywell International Inc. High lap shear strength, low back face signature UD composite and the process of making

Also Published As

Publication number Publication date
JPH078925B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
Xing et al. Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation
Xu et al. Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy
JPS61241330A (en) Polyethylene molded article having improved adhesiveness
Vasilets et al. Microwave CO2 plasma-initiated vapour phase graft polymerization of acrylic acid onto polytetrafluoroethylene for immobilization of human thrombomodulin
Busnel et al. Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure
US5183701A (en) Articles of highly oriented polyolefins of ultrahigh molecular weight, process for their manufacture, and their use
CN101205686A (en) Method for improving interfacial properties of aramid fiber/epoxy resin composite material
Xing et al. Crystal structure and mechanical properties of UHMWPE-g-PMA fiber prepared by radiation grafting
Mori et al. Surface modification of aramid fibre by graft polymerization
JPS60146078A (en) Production of polyolefine filament having high bonding strength to high-molecular matrix and production of reinforced matrix material
US20230066187A1 (en) Method for altering adhesion properties of a surface by plasma coating
Yao et al. Surface modification by continuous graft copolymerization. IV. Photoinitiated graft copolymerization onto polypropylene fiber surface
Grancio Cold rolled ABS. Part 1: The effect of rubber particle size on the tensile properties of ABS before and after cold rolling
JPS61276830A (en) Production of polyolefin product
Karlsson et al. Solid-supported wettable hydrogels prepared by ozone induced grafting
US3695915A (en) Process for improving the adhesion of polyolefin surfaces
Qin et al. Improved adhesion performances of aramid fibers with vinyl epoxy via supercritical carbon dioxide modification
Jia et al. Preparation and characterization of surface modified ppta fibers by ultrasonic-assisted hydrogen peroxide solutions
Andreopoulos et al. A review on various treatments of UHMPE fibers
Muraoka et al. Sulfonation of UHMW-PE fibers for adhesion promotion in epoxy polymers
Needles The graft photopolymerization of acrylates and methacrylates on wool in dimethyl sulfoxide
Novák et al. Polypropylene fabrics pre-treated by atmospheric plasma
JP6936406B1 (en) Improved material surface modification
JPS6259637A (en) Improvement of adhesiveness
Shao et al. Effect of water vapor addition on the microwave-excited ar plasma-induced poly (ethylene glycol) polymerization and immobilization of L-cysteine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees