JPS59227420A - Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereof - Google Patents
Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereofInfo
- Publication number
- JPS59227420A JPS59227420A JP58102713A JP10271383A JPS59227420A JP S59227420 A JPS59227420 A JP S59227420A JP 58102713 A JP58102713 A JP 58102713A JP 10271383 A JP10271383 A JP 10271383A JP S59227420 A JPS59227420 A JP S59227420A
- Authority
- JP
- Japan
- Prior art keywords
- ultra
- molecular weight
- high molecular
- stretching
- weight polyolefin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/24—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0658—PE, i.e. polyethylene characterised by its molecular weight
- B29K2023/0683—UHMWPE, i.e. ultra high molecular weight polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/005—Oriented
- B29K2995/0053—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0088—Molecular weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2007/00—Flat articles, e.g. films or sheets
- B29L2007/008—Wide strips, e.g. films, webs
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、超高分子量ボリオレフインニ軸延伸フィルム
及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-high molecular weight polyolefin biaxially oriented film and a method for producing the same.
超高分子量ポリオレフィンの代表例である超高分子量ポ
リエチレンは汎用のポリエチレンに比べ耐衝撃性、耐摩
耗性、耐薬品性、引張強度等に優れており、エンジニア
リングプラスチックとして用途が拡がりつつある。しか
しながら汎用のポリエチレンに比較して溶融粘度が極め
て高く流動性が悪いため、従来の押出成形によって成形
することば非常に難しく、その殆どは圧縮成形によって
成形されており、一部ロッド等が極めて低速で押出成形
されているのが現状であった。Ultra-high molecular weight polyethylene, which is a typical example of ultra-high molecular weight polyolefin, has superior impact resistance, abrasion resistance, chemical resistance, tensile strength, etc. compared to general-purpose polyethylene, and its use as an engineering plastic is expanding. However, compared to general-purpose polyethylene, the melt viscosity is extremely high and the fluidity is poor, so it is extremely difficult to mold using conventional extrusion molding, and most of it is molded by compression molding, and some rods etc. Currently, it is extrusion molded.
また、超高分子量ポリオレフィンの製造方法としては、
超高分子量ポリエチレンの粉末を焼結した後、ポリエチ
レンの融点以上の温度に加熱して2枚のベルト間で加熱
、圧着、冷却してフィルムを製造方法する方法(特公昭
48−11576号公報)、あるいは焼結した超高分子
量ポリエチレンシートを二次転移点以上ないし融点未満
の温度範囲で加圧ロールで配向させる方法(特開昭53
−45376号)等が提案されているが、いずれも超高
分子量ポリエチレンの粉末を焼結させてシートを作るの
で成形に長時間を要し、また後者の方法では超高分子量
ポリエチレンは溶融粘度が高く流動性が悪いので、融点
未満の温度で加圧ロールで配向させても薄いフィルムを
得ることは、殆ど不可能であった。In addition, as a method for producing ultra-high molecular weight polyolefin,
A method of producing a film by sintering ultra-high molecular weight polyethylene powder, heating it to a temperature higher than the melting point of polyethylene, heating it between two belts, pressing it, and cooling it (Japanese Patent Publication No. 11576/1983). Alternatively, a method of orienting a sintered ultra-high molecular weight polyethylene sheet with a pressure roll at a temperature range from above the secondary transition point to below the melting point (Japanese Patent Application Laid-open No. 53
-45376), but all of them involve sintering ultra-high molecular weight polyethylene powder to make a sheet, which takes a long time to form, and in the latter method, ultra-high molecular weight polyethylene has a low melt viscosity. Due to the high fluidity and poor fluidity, it was almost impossible to obtain thin films even when oriented with pressure rolls at temperatures below the melting point.
一方、二軸延伸ポリプロピレンフィルム(OPPフィル
ム)の如く、フィルムを二軸延伸して高強力・薄肉フィ
ルムを製造することは良く知られているが、通常のポリ
プロピレンと異なり超高分子量ポリオレフィンは高強度
化に繋がる延伸可能な温度領域での粘度が極端に高いの
で二軸延伸フィルムを得ることは殆ど不可能であった。On the other hand, it is well known that high-strength, thin-walled films can be produced by biaxially stretching films, such as biaxially oriented polypropylene films (OPP films), but unlike ordinary polypropylene, ultra-high molecular weight polyolefins have high strength. It has been almost impossible to obtain a biaxially stretched film because the viscosity is extremely high in the temperature range where stretching is possible.
かかる状況に鑑み、本発明者らは、超高分子量ポリオレ
フィンの二軸延伸フィルムを得る方法について鋭意検討
した結果、超高分子量ポリオレフィンに特定の炭化水素
系可塑剤を混合することにより、二軸延伸フィルムが得
られることが分がり、本発明に到達しな。In view of this situation, the present inventors have conducted intensive studies on a method for obtaining a biaxially stretched film of ultra-high molecular weight polyolefin, and have found that by mixing a specific hydrocarbon plasticizer with ultra-high molecular weight polyolefin, biaxially stretched film can be obtained. It has now been found that a film can be obtained, leading to the present invention.
すなわち本発明は、少なくとも極限粘度〔η〕が5dl
/g以上の超高分子量ポリオレフィン(A)と、該超高
分子量ポリオレフィン(A)の融点を越える沸点を有す
る炭化水素系可塑剤(B)とからなるメルI・フローレ
ートが0.005ないし50 g/10m1nの混合物
を押出し、前記超高分子量ポリオレフィン(A)の融点
未満の延伸温度で二軸延伸することを特徴とする超高分
子量ポリオレフインニ軸延伸フィルムの製造方法及び前
記超高分子量ポリオレフィン(A)からなる縦方向の延
伸倍率が3倍以上及び横方向の延伸倍率が3倍以上であ
る二軸延伸フィルムを提供するものである。That is, in the present invention, the intrinsic viscosity [η] is at least 5 dl.
/g or more ultra-high molecular weight polyolefin (A) and a hydrocarbon plasticizer (B) having a boiling point exceeding the melting point of the ultra-high molecular weight polyolefin (A), the Mel I flow rate is 0.005 to 50. A method for producing a biaxially stretched film of an ultra-high molecular weight polyolefin, characterized in that a mixture of g/10 m1n is extruded and biaxially stretched at a stretching temperature lower than the melting point of the ultra-high molecular weight polyolefin (A), and the ultra-high molecular weight polyolefin (A) is The present invention provides a biaxially stretched film consisting of A) having a stretching ratio in the longitudinal direction of 3 times or more and a stretching ratio in the lateral direction of 3 times or more.
本発明の方法に用いる超高分子量ポリオレフィン(A)
は、デカリン溶媒135℃における極限粘度〔η〕が5
d17g以上、好ましくはフないし30a/gの範囲の
ものである。〔η〕が5〃/g未満のものは、分子量が
低く超高分子量ポリオレフィンの特徴である高強度フィ
ルムが得られない虞れがあり、一方〔η〕の上限はとく
に限定はされないが、30dl/gを越えるものは後述
の炭化水素系可塑剤(B)を添加しても熔融粘度が高く
押出成形性に劣る。かかる超高分子量ポリオレフィン(
A)は、エチレン、プロピレン、l−ブテン、4−メチ
ル−1−ペンテン、1−ヘキセン等ヲ所iWチーグラー
重合により重合することにより得られるポリオレフィン
の中で、はるかに分子量が高い範喝のものである。中で
もエチレンを主体とした超高分子量ポリエチレンは耐寒
性、耐衝撃性、自己潤滑性等に優れているので好ましい
。Ultra-high molecular weight polyolefin (A) used in the method of the present invention
The intrinsic viscosity [η] of the decalin solvent at 135°C is 5
d17g or more, preferably in the range of F to 30a/g. If [η] is less than 5/g, there is a risk that a high strength film, which is a characteristic of ultra-high molecular weight polyolefins, may not be obtained due to the low molecular weight.On the other hand, the upper limit of [η] is not particularly limited, but is 30 dl /g, the melt viscosity is high and the extrusion moldability is poor even if a hydrocarbon plasticizer (B) described below is added. Such ultra-high molecular weight polyolefins (
A) is a polyolefin with a much higher molecular weight among polyolefins obtained by polymerizing ethylene, propylene, l-butene, 4-methyl-1-pentene, 1-hexene, etc. by iW Ziegler polymerization. It is. Among them, ultra-high molecular weight polyethylene mainly composed of ethylene is preferred because it has excellent cold resistance, impact resistance, self-lubricating properties, and the like.
本発明の方法に用いる炭化水素系可塑剤(B)は、沸点
が前記超高分子量ポリオレフィン(A)の融点(A)を
越えるも′の、好ましくは沸点が融点(A) +10℃
以上で且つ融点(B)が350℃以下、更に好ましくは
沸点が融点(A)+50℃以上で融点(B)が40ない
し120°C及び分子量が2000以下の炭化水素系可
塑剤である。The hydrocarbon plasticizer (B) used in the method of the present invention has a boiling point that exceeds the melting point (A) of the ultra-high molecular weight polyolefin (A), and preferably has a boiling point that is higher than the melting point (A) +10°C.
It is a hydrocarbon plasticizer having a melting point (B) of 350° C. or less, more preferably a boiling point of 40 to 120° C., a melting point (B) of 40 to 120° C., and a molecular weight of 2,000 or less.
沸点が超高分子量ポリオレフィン(A)の融点(A)以
下のものは、前記超高分子量ポリオレフィン(A)と混
合して溶融押出した原反シートが発泡するので良好な二
軸延伸フィルムが得られない虞れがある。また常温で液
状のものは少量であれば押出成形性を阻害しないが、多
量に用いると例えばスクリュー押出機等を用いる場合に
、スクリューと混合物とが共回りを起こして定常な押出
成形ができない場合があるので、融点(B)が40°C
以上の炭化水素系可塑剤が最も好ましい。If the boiling point is lower than the melting point (A) of the ultra-high molecular weight polyolefin (A), the raw sheet mixed with the ultra-high molecular weight polyolefin (A) and melt-extruded will foam, so a good biaxially stretched film cannot be obtained. There is a possibility that there will be no. Also, if a small amount of liquid at room temperature is used, it will not impede extrusion moldability, but if a large amount is used, for example, when using a screw extruder, the screw and the mixture will rotate together, making steady extrusion molding impossible. Therefore, the melting point (B) is 40°C
The above hydrocarbon plasticizers are most preferred.
また、炭化水素系可塑剤(B)の分子量は、超高分子量
ポリオレフィン(A)に混合して、混合物のMFRを0
.005ないし50g/10m1n 、好ましくは0.
01ないし50g/min 、更に好ましくは0.1な
いしlog/minの範囲にするものであれば、とくに
限定はされないが、分子量が2000を越えるものは、
VFRを上記範囲にするには、多量に添加することにな
り、延いては、フィルムにした場合に超高分子量ポリオ
レフィン本来の特徴である優れた特性を発揮できない虞
れがある。尚本発明におけるVFRは、ASTM D
123Bに準l処するが、ポリプロピレンは条件L、ポ
リ4〜メチル−1−ペンテンは条件Tとし、ポリエチレ
ンを含むその他のポリオレフィンは条件Eとした。In addition, the molecular weight of the hydrocarbon plasticizer (B) is determined by mixing it with the ultra-high molecular weight polyolefin (A) so that the MFR of the mixture is 0.
.. 0.005 to 50 g/10 m1n, preferably 0.005 to 50 g/10 m1n.
There is no particular limitation as long as it is within the range of 0.01 to 50 g/min, more preferably 0.1 to log/min, but those with a molecular weight exceeding 2000,
In order to keep the VFR within the above range, a large amount must be added, and as a result, when formed into a film, there is a risk that the excellent properties inherent to ultra-high molecular weight polyolefins may not be exhibited. The VFR in the present invention is based on ASTM D
123B, but polypropylene was treated under Condition L, poly-4-methyl-1-pentene was treated under Condition T, and other polyolefins including polyethylene were treated under Condition E.
本発明に用いる前記炭化水素系可塑剤(B)としては、
具体的には、n−デカン、n−ドデカン、ドコザン、ト
リコサン、テトラコサン等のn−アルカン、流動パラフ
ィン、灯油、パラフィンワックス、低分子量ポリエチレ
ンあるいは低分子量ポリプロピレン、低分子量ポリブテ
ン等のα−オレフィンオリゴマー等の脂肪族炭化水素系
化合物、ナフタリン、テトラリン、ジエチルベンゼン、
デカリン、低分子量ポリスチレン等の芳香族炭化水素系
化合物あるいはその水素化誘導体、C5系石油樹脂、あ
るいはそれらのハロゲン化物、カプリン酸、ラウリン酸
、バルミチン酸、ステアリン酸、ベヘニン酸、オレイン
酸、エルカ酸等の高級脂肪酸、カプリルアルコール、ラ
ウリルアルコール、パルミチルアルコール、ステアリル
アルコール等の高級脂肪族アルコール、パルミチン酸ア
ミド、ステアリン酸アミド、オレイン酸アミド等の高級
脂肪酸アミド、ステアリン酸カルシウム、ラウリン酸カ
ルシウム、ステアリン酸亜鉛等の金属石鹸、ステアリン
酸モノグリセリド、オレイン酸モノグリセリド、ステア
リン酸ジグリセリド等の高級脂肪酸エステル等が挙げら
れる。The hydrocarbon plasticizer (B) used in the present invention includes:
Specifically, n-alkanes such as n-decane, n-dodecane, docozan, tricosane, and tetracosane, liquid paraffin, kerosene, paraffin wax, α-olefin oligomers such as low molecular weight polyethylene, low molecular weight polypropylene, and low molecular weight polybutene, etc. aliphatic hydrocarbon compounds, naphthalene, tetralin, diethylbenzene,
Decalin, aromatic hydrocarbon compounds such as low molecular weight polystyrene or their hydrogenated derivatives, C5 petroleum resins or their halides, capric acid, lauric acid, valmitic acid, stearic acid, behenic acid, oleic acid, erucic acid higher fatty acids such as caprylic alcohol, lauryl alcohol, palmityl alcohol, stearyl alcohol, higher fatty acid amides such as palmitic acid amide, stearic acid amide, oleic acid amide, calcium stearate, calcium laurate, zinc stearate and higher fatty acid esters such as stearic acid monoglyceride, oleic acid monoglyceride, and stearic acid diglyceride.
前記超高分子量ポリオレフィン(A)として超高分子量
ポリエチレンを選択した場合には、前記炭化水素系可塑
剤(B)としては相溶性の点からパラフィン系ワックス
が好ましい。When ultra-high molecular weight polyethylene is selected as the ultra-high molecular weight polyolefin (A), paraffin wax is preferable as the hydrocarbon plasticizer (B) from the viewpoint of compatibility.
前記パラフィン系ワックスとしては、飽和脂肪族炭化水
素化合物を主体とするもので、具体的にはドコサ/、ト
リコサン、テトラコサン、トリアコンタン等の炭素数2
2以上のn−アルカンあるいはそれらを主成分した低級
n−アルカン等との混合物、石油から分離精製された所
謂パラフィンワックス、エチレンあるいはエチレンと他
のα−オレフィンとを共重合して得られる低分子量重合
体である中・低圧法ポリエチレンワックス、高圧法ポリ
エチレンワックス、エチレン共重合ワックスあるいは中
・低圧法ポリエチレン、高圧法ポリエチレン等のポリエ
チレンを熱減成等により分子量を低下させたワックス及
びそれらのワックスの酸化物あるいはマレイン酸変性物
等の酸化ワックス、マレイン酸変性ワックス等が挙げら
れる。The paraffin waxes are mainly composed of saturated aliphatic hydrocarbon compounds, specifically those having 2 carbon atoms such as docosa/, tricosane, tetracosane, and triacontane.
Mixtures of two or more n-alkanes or lower n-alkanes based on them, so-called paraffin wax separated and refined from petroleum, low molecular weight obtained by copolymerizing ethylene or ethylene and other α-olefins. Waxes whose molecular weight has been lowered by thermal degradation of polyethylene such as medium/low pressure polyethylene wax, high pressure polyethylene wax, ethylene copolymer wax, medium/low pressure polyethylene, high pressure polyethylene, etc., which are polymers, and their waxes. Examples include oxidized waxes such as oxides or maleic acid-modified waxes, and maleic acid-modified waxes.
本発明における融点は、ASTM D 3417により
、示差走査型熱量計(D S C)により測定した値で
ある。また分子量はGPC法(ゲル・パーミェーション
・クロマトグラフィー)により、次の条件で測定した得
た重量平均分子9J (Flw)である。The melting point in the present invention is a value measured using a differential scanning calorimeter (D SC) according to ASTM D 3417. The molecular weight is a weight average molecule of 9J (Flw) measured by GPC method (gel permeation chromatography) under the following conditions.
装置:ウォーターズ社製 150c型
カラム:東洋曹達工業@製 TSK GMH−6(6
mmφX600 mm>
溶媒二〇−ジクロルベンゼン (ODCB)温度:13
5°C
流量: 1.Oml/min
注入濃度: 30 mg/20m1 OD CB(
注入量400μβ)
尚、東洋曹達工業側製及びプレッシャー・ケミカル社製
の標準ポリスチレンを用いてユニバーサル法によりカラ
ム溶出体積は較正した。Equipment: Waters Co., Ltd. 150c type column: Toyo Soda Kogyo@ TSK GMH-6 (6
mmφX600 mm> Solvent 20-dichlorobenzene (ODCB) Temperature: 13
5°C Flow rate: 1. Oml/min Injection concentration: 30 mg/20ml OD CB (
Injection volume: 400 μβ) The column elution volume was calibrated by the universal method using standard polystyrene manufactured by Toyo Soda Kogyo and Pressure Chemical.
本発明の方法は、前記超高分子量ポリオレフィン(A)
に前記炭化水素系可塑剤(B)を添加混合してMFRを
0.005ないし50g/10m1n 、好ましくは0
.01ないし50g/10m1n 、更に好ましくは0
.1ないしLog/10m1nの範囲にした混合物を熔
融混練後ダイより押出し、前記超高分子量ポリオレフィ
ン(A)の融点未満の温度で二軸延伸することにより、
超高分子量ボリオレフインニ軸延伸フィルムを製造する
方法である。The method of the present invention comprises the ultra-high molecular weight polyolefin (A)
The hydrocarbon plasticizer (B) is added and mixed to give an MFR of 0.005 to 50 g/10 m1n, preferably 0.
.. 01 to 50g/10mln, more preferably 0
.. 1 to Log/10 m1n is extruded from a die after melt-kneading, and biaxially stretched at a temperature below the melting point of the ultra-high molecular weight polyolefin (A).
This is a method for producing an ultra-high molecular weight polyolefin biaxially stretched film.
本発明の方法は、超高分子量ポリオレフィン(A)と炭
化水素系可塑剤(B)との混合物のMFRが上記範囲内
であれば超高分子量ポリオレフィン(A)の量は、とく
に限定はされないが、通常は超高分子量ポリオレフィン
(A)が15ないし80重量%、好ましくは30ないし
70重量%(混合物を100重量%とする)の範囲であ
る。超高分子量ポリオレフィン(A)の量が15重量%
未満では炭化水素系可塑剤(B)の量が多過ぎて、押出
された原反シートの延伸性が損われる場合がある。一方
、超高分子量ポリオレフィン(A)の量が80重量%を
越える量では、たとえ前記炭化水素系可塑剤(B)を添
加してもMFRが0.005以上にならず、溶融押出し
が困難であり、押出された原反フィルムの肌荒れが激し
く、また二軸延伸時にも多大な応力を必要とし、延伸性
にも劣る。In the method of the present invention, the amount of the ultra-high molecular weight polyolefin (A) is not particularly limited as long as the MFR of the mixture of the ultra-high molecular weight polyolefin (A) and the hydrocarbon plasticizer (B) is within the above range. The amount of ultra-high molecular weight polyolefin (A) is usually 15 to 80% by weight, preferably 30 to 70% by weight (representing 100% by weight of the mixture). The amount of ultra-high molecular weight polyolefin (A) is 15% by weight
If the amount is less than that, the amount of the hydrocarbon plasticizer (B) is too large, and the extensibility of the extruded raw sheet may be impaired. On the other hand, if the amount of the ultra-high molecular weight polyolefin (A) exceeds 80% by weight, the MFR will not exceed 0.005 even if the hydrocarbon plasticizer (B) is added, making melt extrusion difficult. However, the surface of the extruded original film is severely roughened, and a large amount of stress is required during biaxial stretching, resulting in poor stretchability.
超高分子量ポリオレフィン(A)と炭化水素系可塑剤(
B)との溶融混練は、例えばヘンシェルミキサー、■−
ブレンダー、リボンブレンダー、タンブラーブレンダー
等で混合後、−軸押出機、二軸押出機等のスクリュー押
出機、ニーダ−、バンバリーミキサ−等で、通常融点以
上ないし350℃、好ましくは融点+50℃以上ないし
300℃の温度で行い得る。溶融混練はフィルムの押出
成形に先立ち別途行ってもよいし、スクリュー押出機等
で溶融混練しながらグイよりフィルムを押出す連続法に
よって行ってもよい。Ultra-high molecular weight polyolefin (A) and hydrocarbon plasticizer (
B) can be melt-kneaded using, for example, a Henschel mixer, ■-
After mixing in a blender, ribbon blender, tumbler blender, etc., the mixture is mixed in a screw extruder such as a -screw extruder or twin-screw extruder, a kneader, a Banbury mixer, etc., usually from above the melting point to 350°C, preferably from above the melting point +50°C to above. It can be carried out at a temperature of 300°C. Melt-kneading may be performed separately prior to extrusion molding of the film, or may be performed by a continuous method in which the film is extruded from a gouey while being melt-kneaded using a screw extruder or the like.
押出温度は通常150ないし350℃、好ましくは19
0ないし300℃の温度で行い得る。押出温度が150
℃未満では熔融粘度が高く押出性に劣り、一方350℃
を越えると超高分子量ポリオレフィンが熱劣化により分
子量が低下する虞れがある。The extrusion temperature is usually 150 to 350°C, preferably 19°C.
It can be carried out at temperatures from 0 to 300°C. Extrusion temperature is 150
Below 350°C, the melt viscosity is high and extrudability is poor;
If it exceeds this amount, there is a risk that the molecular weight of the ultra-high molecular weight polyolefin will decrease due to thermal deterioration.
前記方法により押出されたフィルムは超高分子量ポリオ
レフィン(A)の融点(A)未満の温度、好ましくは融
点(A)未満の温度以下ないし60℃以上の温度で二軸
延伸される。延伸温度が融点(A)以上の温度では、延
伸による配向が不充分であり、機械的強度を発揮できな
い。また延伸温度が60℃以下では、延伸に多大な応力
を必要とするので好ましくない。The film extruded by the above method is biaxially stretched at a temperature below the melting point (A) of the ultra-high molecular weight polyolefin (A), preferably at a temperature from below the melting point (A) to 60° C. or above. When the stretching temperature is higher than the melting point (A), the orientation by stretching is insufficient and mechanical strength cannot be exhibited. Moreover, if the stretching temperature is 60° C. or lower, a large amount of stress is required for stretching, which is not preferable.
押出された原反フィルムを二軸延伸する方法はインフレ
ーションフィルム法による同時二軸延伸法、あるいはテ
ンター法による同時二軸延伸法、もしくはロール等によ
り縦方向に延伸後、テンターにより横方向に延伸する逐
次二軸延伸法が挙げられる。二軸延伸時の延伸温度が融
点(A)未満の温度で且つ超高分子量ポリオレフィン(
A)の引張試験における降伏点応力が消失する温度以上
の温度範囲であればいずれの方法に拠っても二軸延伸で
きるが、降伏点応力が消失する温度未満の温度で延伸す
る場合は、逐次延伸法では横延伸時にフィルムが縦割れ
を起こすので、同時二軸延伸法を採用するのが好ましい
。The method for biaxially stretching the extruded raw film is the simultaneous biaxial stretching method using the blown film method, the simultaneous biaxial stretching method using the tenter method, or stretching in the longitudinal direction with a roll etc. and then stretching in the transverse direction with a tenter. A sequential biaxial stretching method may be mentioned. The stretching temperature during biaxial stretching is lower than the melting point (A) and ultra-high molecular weight polyolefin (
Biaxial stretching is possible using any method as long as the temperature range is above the temperature at which the yield point stress disappears in the tensile test of A), but when stretching is carried out at a temperature below the temperature at which the yield point stress disappears, sequential stretching is possible. Since the stretching method causes longitudinal cracks in the film during transverse stretching, it is preferable to employ a simultaneous biaxial stretching method.
押出されたフィルムを二軸延伸する際にはグイより押出
された溶融状態のフィルムが冷却されて前記温度範囲内
に入った状態で行うか、一旦固化した後再度フィルムを
前記温度範囲内に加熱して行うが、後者の方法が温度範
囲の制御が容易であるので好ましい。また二輪延伸する
際の延伸倍率は、通常縦方向が3倍以上、好ましくは5
ないし20倍、横方向が3倍以上、好ましくは5ないし
20倍程度である。延伸倍率が3倍未満では延伸による
機械的強度の発現が出来ない。尚、延伸倍率が20倍を
越えると、延伸により成形された超高分子量ポリオレフ
インニ軸延伸フィルムの厚さが原反フィルムの400分
の1以下となるので延伸操作が困難である場合がある。When biaxially stretching the extruded film, the molten film extruded from the goose is cooled to within the above temperature range, or the film is once solidified and then heated again to within the above temperature range. However, the latter method is preferred because the temperature range can be easily controlled. In addition, the stretching ratio during two-wheel stretching is usually 3 times or more in the longitudinal direction, preferably 5 times or more.
The magnification is from 20 times to 3 times, preferably 3 times or more in the lateral direction, preferably about 5 to 20 times. If the stretching ratio is less than 3 times, mechanical strength cannot be developed by stretching. If the stretching ratio exceeds 20 times, the stretching operation may be difficult because the thickness of the biaxially stretched ultra-high molecular weight polyolefin film formed by stretching will be 1/400th or less of the original film.
また延伸温度が前記降伏点応力が消失する温度以上であ
れば、低倍率の延伸もできるが、その温度未満では3倍
以上に限られる。 本発明に用いる超高分子量ポリオレ
フィン(A)には、前記炭化水素系可塑剤(B)に加え
て、耐熱安定剤、耐候安定剤、滑剤、アンチブロッキン
グ剤、スリップ剤、顔料、染料、無機充填剤等通常ポリ
オレフィンに添加して使用される各種添加剤を本発明の
目的を損わない範囲で配合しておいてもよい。Further, if the stretching temperature is higher than the temperature at which the yield point stress disappears, it is possible to stretch at a low magnification, but if the stretching temperature is lower than that temperature, the stretching is limited to 3 times or more. In addition to the hydrocarbon plasticizer (B), the ultra-high molecular weight polyolefin (A) used in the present invention contains heat stabilizers, weather stabilizers, lubricants, anti-blocking agents, slip agents, pigments, dyes, and inorganic fillers. Various additives that are normally added to polyolefins, such as additives, may be blended within the range that does not impair the purpose of the present invention.
本発明の超高分子量ポリオレフインニ軸延伸フィルムの
厚さは、用途に応じて適宜選択され得るが通常50ない
し0.5μ、好ましくは20ないし2μの範囲である。The thickness of the ultra-high molecular weight polyolefin biaxially stretched film of the present invention can be appropriately selected depending on the application, but is usually in the range of 50 to 0.5μ, preferably 20 to 2μ.
又、該フィルムは単独で用いてもよいし、片面もしくは
両面をコロナ放電処理等を行って、必要に応じてアンカ
ー処理を行い、他の樹脂もしくは紙、セロファン、アル
ミニウム箔と積層して用いてもよい。In addition, the film may be used alone, or it may be used by subjecting one or both sides to corona discharge treatment, anchoring treatment as necessary, and laminating it with other resins, paper, cellophane, or aluminum foil. Good too.
本発明の超高分子量ボリオレフィンニ軸延伸フィルムは
、従来の通常のポリオレフィンフィルムでは得られない
高引張強度、高衝撃強度を有し且つ高弾性であるので包
装材料等のポリオレフィンフィルム分野に加えて高弾性
、高強度フィルム分野への利用が可能となり各種材料と
の複合化による補強材にも使用できる。さらには高延伸
により超薄膜化が計れるためにコンデンサーフィルム、
絶縁紙にも使用できる。The ultra-high molecular weight polyolefin biaxially stretched film of the present invention has high tensile strength, high impact strength, and high elasticity that cannot be obtained with conventional ordinary polyolefin films, so it can be used in the field of polyolefin films such as packaging materials. It can be used in the field of high elasticity and high strength films, and can also be used as a reinforcing material by combining with various materials. Furthermore, since it is possible to make ultra-thin films through high stretching, capacitor films,
Can also be used for insulating paper.
また本発明の超高分子量ポリオレフィンフィルムは均一
に炭化水素系可塑剤(B)が分散されているので、例え
ばn−へ牛サン、n−へブタン等により抽出することに
より副次的に生成する微孔を利用した選択膜、エレクト
レットフィルム等の機能材料への適性にも優れている。In addition, since the ultra-high molecular weight polyolefin film of the present invention has the hydrocarbon plasticizer (B) uniformly dispersed, it can be produced as a by-product by extraction with n-hegyusan, n-hebutane, etc. It is also highly suitable for functional materials such as selective membranes and electret films that utilize micropores.
次に実施例を挙げて、本発明を更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例1
超高分子量ポリエチレン(〔η) =8.20dl/g
)とパラフィンワックス(融点=69℃、分子量=4
60 )との50 : 50’ (重量比)ブレンド物
(M F R: 0.037g/ 10n+in )を
次の条件下で二軸延伸フィルム成形を行なった。前記ブ
レンド物を30mmφ、L/D=25のスクリュー押出
機で溶融後グイ幅30cmのコートハンガー型T−グイ
(設定温度:280℃)よりシートを押出しロールで冷
却して厚み200μの均一なシートを得た。次いで該シ
ートから90mm X 90mmの試料を切り出し二軸
延伸機(東洋精機製作新製)を用いて、延伸温度120
℃の条件下で種々の倍率で二軸延伸し均一な厚さの二軸
延伸フィルムを得た。該延伸フィルムの評価を以下の方
法で行なった。Example 1 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) and paraffin wax (melting point = 69°C, molecular weight = 4
A 50:50' (weight ratio) blend (MFR: 0.037 g/10 n+in) with 60) was subjected to biaxially stretched film forming under the following conditions. The blend was melted in a screw extruder with a diameter of 30 mm and L/D = 25, and then the sheet was extruded from a coat hanger type T-gui (set temperature: 280°C) with a width of 30 cm and cooled with an extrusion roll to form a uniform sheet with a thickness of 200 μ. I got it. Next, a 90 mm x 90 mm sample was cut out from the sheet and stretched at a stretching temperature of 120 mm using a biaxial stretching machine (newly manufactured by Toyo Seiki Seisakusho).
Biaxially stretched films with uniform thickness were obtained by biaxially stretching at various magnifications at ℃. The stretched film was evaluated by the following method.
延伸性
4:切断なし、均一延伸
3:延伸ムラ、殆どなし
2:延伸ムラ、ややあり
1:延伸ムラ大
引張試験
島津製作所製l5−500型引張試験機を用いて室温(
23℃)にて測定した。試料片形状はJis1号ダンベ
ルでクランプ間距離は80mm、引張速度20m+n/
minとした。Stretchability 4: No cutting, uniform stretching 3: Stretching unevenness, almost none 2: Stretching unevenness, slightly present 1: Stretching unevenness Large tensile test At room temperature (
23°C). The sample piece shape was a JIS No. 1 dumbbell, the distance between the clamps was 80 mm, and the tensile speed was 20 m+n/
It was set to min.
衝撃強度
フィルムインパクトテスター(東洋精機製作所M)で1
/2”φ球面の衝撃頭を用いて測定した。1 with impact strength film impact tester (Toyo Seiki Seisakusho M)
The measurement was performed using a spherical impact head of /2"φ.
実施例2
超高分子量ポリエチレン(〔η) −19,6dl/g
)とパラフィンワックス(融点=69℃、分子量−46
0)との40:60(重量比)ブレンド物(M F R
: 0.006g/10m1n )を用いる以外は実施
実施例3
超高分子量ポリプロピレン((η) =8.02dl/
g)とパラフィンワックス(融点=69℃、分子量=4
60 )との70:30(重量比)ブレンド物(M F
R: 0.19g /10m1n )を次の条件下で
フィルム成形を行なった。前記ブレンドを20mmφ、
L/D=20のスクリュー押出機(設定温度220℃)
で溶融混練後造粒を行なった。得られたペレットをもち
いて圧縮成形して90mm X 90mm X 300
μのシートを得た。次いで該シートを実施例1と同様な
方法で縦5倍、横5倍の二軸延伸を行なった。このとき
の操作温度は150℃であり同時二軸延伸により厚さの
均一なフィルムを得ることができた。Example 2 Ultra-high molecular weight polyethylene ([η) -19,6 dl/g
) and paraffin wax (melting point = 69°C, molecular weight -46
0) in a 40:60 (weight ratio) blend (M F R
Example 3 Ultra-high molecular weight polypropylene ((η) = 8.02 dl/
g) and paraffin wax (melting point = 69°C, molecular weight = 4
60) and a 70:30 (weight ratio) blend (M F
R: 0.19g/10m1n) was formed into a film under the following conditions. The blend has a diameter of 20 mm,
L/D=20 screw extruder (set temperature 220°C)
After melt-kneading, granulation was performed. Compression molding is performed using the obtained pellets to form 90mm x 90mm x 300mm.
A sheet of μ was obtained. The sheet was then biaxially stretched 5 times in length and 5 times in width in the same manner as in Example 1. The operating temperature at this time was 150°C, and simultaneous biaxial stretching made it possible to obtain a film with uniform thickness.
実施例4
超高分子量ポリエチレン(〔η) =8.20dl/g
)とパラフィンワックス(融点−69℃、分子量−46
0)との50 : 50 (重量比)ブレンド物を用い
て実施例1と同様の方法で210μのシートを得た。こ
のあと操作温度120℃で縦4倍横4倍の逐次二軸延伸
を行ない厚さの均一なフィルムを得た。該二軸延伸フィ
ルムの評価結果を第4表に示実施例5
実施例1の方法で超高分子量ポリエチレン(〔η) =
8.20d1/ g )とパラフィンワックス(融点=
69℃、分子量=460 )との50 : 50 (重
量比)ブレンド物を用いて500μの均一なシートを得
た。次いで該シートを延伸温度120℃にてそれぞれ縦
横4.5.6.7倍に同時二軸延伸し、該延伸フィルム
から試料を切り出し再たびそれぞれ同一温度にて2倍の
同時二軸延伸を行うことにより延伸倍率が高い均一な二
軸延伸フィルムを得た。Example 4 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) and paraffin wax (melting point -69℃, molecular weight -46
A 210μ sheet was obtained in the same manner as in Example 1 using a 50:50 (weight ratio) blend of 0) and 0). Thereafter, successive biaxial stretching was carried out at an operating temperature of 120° C. by 4 times in length and 4 times in width to obtain a film with a uniform thickness. The evaluation results of the biaxially stretched film are shown in Table 4. Example 5 Ultra-high molecular weight polyethylene ([η) =
8.20d1/g) and paraffin wax (melting point =
A uniform sheet of 500μ was obtained using a 50:50 (weight ratio) blend of 69°C, molecular weight = 460). Next, the sheet is simultaneously biaxially stretched 4.5 and 6.7 times in length and width at a stretching temperature of 120°C, and a sample is cut out from the stretched film and simultaneously biaxially stretched twice at the same temperature. As a result, a uniform biaxially stretched film with a high stretching ratio was obtained.
得られた二軸延伸フィルムの評価結果を第5表に比較例
1
超高分子量ポリエチレン([l) =8.20〃/g)
とパラフィンワックス(融点=69℃、分子量=460
)との50 : 50ブレンド物を実施例1と同一条件
下でシート成形を行なった。次いで該シートから試料を
切り出した後室温にて二軸延伸を試みた所、延伸ムラお
よび破断が起こり均一な延伸を行うことができなかった
。The evaluation results of the obtained biaxially stretched film are shown in Table 5. Comparative Example 1 Ultra-high molecular weight polyethylene ([l) = 8.20〃/g)
and paraffin wax (melting point = 69°C, molecular weight = 460
) was formed into a sheet under the same conditions as in Example 1. Next, after cutting a sample from the sheet, biaxial stretching was attempted at room temperature, but uneven stretching and breakage occurred, and uniform stretching could not be performed.
比較例2
超高分子量ポリエチレン(〔η) −8,20dl/g
)を圧縮成形して100μのシートを得た。Comparative example 2 Ultra high molecular weight polyethylene ([η) -8,20 dl/g
) was compression molded to obtain a 100μ sheet.
この時の操作条件は200℃である。次いで該シートを
用いて二軸延伸を試みた。延伸温度を60.80゜10
0、120℃としてそれぞれ延伸を試みたがいずれの場
合も引張応力が大きく延伸ムラと破断により比較例3
超高分子量ポリエチレン(〔η) =8.20dl/g
)パラフィンワックス(融点=69℃、分子量=460
)との10:90(重量比)ブレンド物(MF Rr
83g /10mfn )を用いて実施例1記載の方
法でシート成形を試みたが均一な厚さのシートを成形す
ることが出来なかった。The operating conditions at this time were 200°C. Next, biaxial stretching was attempted using the sheet. Stretching temperature 60.80°10
Stretching was attempted at 0 and 120°C, but in both cases, the tensile stress was large, resulting in uneven stretching and breakage. Comparative Example 3 Ultra-high molecular weight polyethylene ([η) = 8.20 dl/g
) Paraffin wax (melting point = 69°C, molecular weight = 460
) and a 10:90 (weight ratio) blend (MF Rr
Although an attempt was made to form a sheet using the method described in Example 1 using 83g/10mfn, it was not possible to form a sheet with a uniform thickness.
出願人 三井石油化学工業株式会社 代理人 山 口 和Applicant: Mitsui Petrochemical Industries, Ltd. Agent Kazu Yamaguchi
Claims (5)
なる超高分子量ポリオレフィン(A)で、且つ縦方向の
延伸倍率が3倍以上及び横方向の延伸倍率が3倍以上で
あることを特徴とする超高分子量ボリオレフインニ軸延
伸フィルム。(1) Ultra-high molecular weight polyolefin (A) having an intrinsic viscosity [η] of at least 5 dl/g or more, and characterized by having a stretching ratio in the longitudinal direction of 3 times or more and a stretching ratio in the lateral direction of 3 times or more. Ultra-high molecular weight polyolefin biaxially stretched film.
子量ポリオレフィン(A)の融点を越える沸点を有する
炭化水素系可塑剤(B)を含み、且つメルトフローレー
トが0.005ないし50g/10m1nである特許請
求の範囲(11項記載の二軸延伸フィルム。(2) The ultra-high molecular weight polyolefin (A) contains a hydrocarbon plasticizer (B) having a boiling point exceeding the melting point of the ultra-high molecular weight polyolefin (A), and has a melt flow rate of 0.005 to 50 g/10 m1n. Claim (biaxially stretched film according to claim 11).
量ポリエチレンである特許請求の範囲(1)ないしく2
)項記載の二軸延伸フィルム。(3) Claims (1) or 2, wherein the ultra-high molecular weight polyolefin (A) is ultra-high molecular weight polyethylene.
) The biaxially stretched film described in item 2.
g以上の超高分子量ポリオレフィン(A)と咳超高分子
量ポリオレフィン(A)の融点を越える沸点を有する炭
化水素系可塑剤(B)とからなるメルトフローレートが
0.005ないし50g/10m1nの混合物を押出し
、前記超高分子量ポリオレフィン(A’)の融点未満の
延伸温度で二軸延伸することを特徴とする超高分子量ボ
リオレフインニ軸延伸フィルムの製造方法(4) At least the intrinsic viscosity [η] is 5 dl/
A mixture having a melt flow rate of 0.005 to 50 g/10 m1n, consisting of an ultra-high molecular weight polyolefin (A) having a weight of 100 g or more and a hydrocarbon plasticizer (B) having a boiling point exceeding the melting point of the ultra-high molecular weight polyolefin (A). A method for producing an ultra-high molecular weight polyolefin biaxially oriented film, which comprises extruding and biaxially stretching at a stretching temperature below the melting point of the ultra-high molecular weight polyolefin (A').
エチレンである特許請求の範囲(4)項記載の製造方法(5) The manufacturing method according to claim (4), wherein the ultra-high molecular weight polyolefin is ultra-high molecular weight polyethylene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58102713A JPS59227420A (en) | 1983-06-10 | 1983-06-10 | Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58102713A JPS59227420A (en) | 1983-06-10 | 1983-06-10 | Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59227420A true JPS59227420A (en) | 1984-12-20 |
JPH0416330B2 JPH0416330B2 (en) | 1992-03-23 |
Family
ID=14334903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58102713A Granted JPS59227420A (en) | 1983-06-10 | 1983-06-10 | Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59227420A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6089333A (en) * | 1983-10-21 | 1985-05-20 | Tounen Sekiyu Kagaku Kk | Molded item of ultra-high-molecular weight polypropylene |
JPS60228122A (en) * | 1984-04-27 | 1985-11-13 | Toa Nenryo Kogyo Kk | Extremely thin polyethylene film and its manufacture |
JPS60255107A (en) * | 1984-05-31 | 1985-12-16 | Mitsubishi Chem Ind Ltd | Porous permeable polyethylene film |
JPS60255415A (en) * | 1984-05-31 | 1985-12-17 | Mitsubishi Chem Ind Ltd | Polyethylene resin film |
JPS6184225A (en) * | 1984-09-28 | 1986-04-28 | デーエスエム・ナムローゼ・フェンノートシャップ | High molecular-weight polyethylene thin-film and manufacture thereof |
JPS61195133A (en) * | 1985-02-25 | 1986-08-29 | Toa Nenryo Kogyo Kk | Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer |
JPS61241330A (en) * | 1985-04-18 | 1986-10-27 | Toyobo Co Ltd | Polyethylene molded article having improved adhesiveness |
JPS62122736A (en) * | 1985-08-12 | 1987-06-04 | Mitsui Petrochem Ind Ltd | Preparation of and apparatus for inflation film |
JPS62223245A (en) * | 1986-03-25 | 1987-10-01 | Mitsubishi Chem Ind Ltd | Production of porous permeable polyolefin film |
JPS63236622A (en) * | 1987-03-12 | 1988-10-03 | ビーエーエスエフ アクチェンゲゼルシャフト | Manufacture of ultra-high modulus fiber or film |
US4987025A (en) * | 1985-08-12 | 1991-01-22 | Mitsui Petrochemical Industries, Ltd. | Inflation film of ultrahigh molecular weight polyethylene |
US4996011A (en) * | 1988-07-09 | 1991-02-26 | Nippon Oil Co., Ltd. | Production of polyethylene materials having improved strength and modulus qualities |
US5033253A (en) * | 1987-07-02 | 1991-07-23 | W. R. Grace & Co.-Conn. | Process for skin packaging electostatically sensitive items |
US5234652A (en) * | 1990-12-20 | 1993-08-10 | Woodhams Raymond T | Process for the continuous production of high modulus articles from high molecular weight plastics |
JPH06262679A (en) * | 1993-06-28 | 1994-09-20 | Mitsui Petrochem Ind Ltd | Ultrahigh molecular weight polyolefin biaxially stretched film and production thereof |
JPH07165941A (en) * | 1994-09-16 | 1995-06-27 | Mitsubishi Chem Corp | Polyethylene resin film |
US5624627A (en) * | 1991-12-27 | 1997-04-29 | Mitsui Petrochemical Industries, Ltd. | Process for preparing surface-modified biaxially oriented film of high molecular weight polyethylene |
US5759678A (en) * | 1995-10-05 | 1998-06-02 | Mitsubishi Chemical Corporation | High-strength porous film and process for producing the same |
JP2002294004A (en) * | 2001-03-30 | 2002-10-09 | Sumitomo Chem Co Ltd | Polyolefin-based resin film and composition for producing the polyolefin-based resin film |
JP2002294005A (en) * | 2001-03-30 | 2002-10-09 | Sumitomo Chem Co Ltd | Polyolefin-based resin film and composition for producing the polyolefin-based resin film |
JP2011208162A (en) * | 2011-07-26 | 2011-10-20 | Sumitomo Chemical Co Ltd | Polyolefin resin film and composition for manufacturing polyolefin resin film |
JP2011219771A (en) * | 2011-07-26 | 2011-11-04 | Sumitomo Chemical Co Ltd | Polyolefin-based resin film and composition for producing the polyolefin-based resin film |
JP2012514674A (en) * | 2009-01-09 | 2012-06-28 | テイジン・アラミド・ビー.ブイ. | Polyethylene film and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3670088B2 (en) | 1995-11-01 | 2005-07-13 | 三井化学株式会社 | Inflation film manufacturing method, apparatus and molded body |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS526314A (en) * | 1975-07-07 | 1977-01-18 | Nisshin Steel Co Ltd | Method of loading steel making materials into charging chute for conve rters |
JPS5274682A (en) * | 1975-11-05 | 1977-06-22 | Nat Res Dev | Polymer |
JPS5318553A (en) * | 1976-08-04 | 1978-02-20 | Agency Of Ind Science & Technol | Oxidation of tetralin |
JPS57177035A (en) * | 1981-04-24 | 1982-10-30 | Asahi Chem Ind Co Ltd | Ultra-high-molecular-weight polyethylene composition |
JPS57177037A (en) * | 1981-04-24 | 1982-10-30 | Asahi Chem Ind Co Ltd | Ultra-high-molecular-weight polyethylene composition |
JPS585228A (en) * | 1981-04-30 | 1983-01-12 | アライド・コ−ポレ−シヨン | Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product |
-
1983
- 1983-06-10 JP JP58102713A patent/JPS59227420A/en active Granted
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS526314A (en) * | 1975-07-07 | 1977-01-18 | Nisshin Steel Co Ltd | Method of loading steel making materials into charging chute for conve rters |
JPS5274682A (en) * | 1975-11-05 | 1977-06-22 | Nat Res Dev | Polymer |
JPS5318553A (en) * | 1976-08-04 | 1978-02-20 | Agency Of Ind Science & Technol | Oxidation of tetralin |
JPS57177035A (en) * | 1981-04-24 | 1982-10-30 | Asahi Chem Ind Co Ltd | Ultra-high-molecular-weight polyethylene composition |
JPS57177037A (en) * | 1981-04-24 | 1982-10-30 | Asahi Chem Ind Co Ltd | Ultra-high-molecular-weight polyethylene composition |
JPS585228A (en) * | 1981-04-30 | 1983-01-12 | アライド・コ−ポレ−シヨン | Manufacture of crystalline thermoplastic article having high strength and high modulus and fiber as novel product |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0341055B2 (en) * | 1983-10-21 | 1991-06-20 | ||
JPS6089333A (en) * | 1983-10-21 | 1985-05-20 | Tounen Sekiyu Kagaku Kk | Molded item of ultra-high-molecular weight polypropylene |
JPS60228122A (en) * | 1984-04-27 | 1985-11-13 | Toa Nenryo Kogyo Kk | Extremely thin polyethylene film and its manufacture |
JPH0367492B2 (en) * | 1984-04-27 | 1991-10-23 | Tonen Kk | |
JPS60255107A (en) * | 1984-05-31 | 1985-12-16 | Mitsubishi Chem Ind Ltd | Porous permeable polyethylene film |
JPS60255415A (en) * | 1984-05-31 | 1985-12-17 | Mitsubishi Chem Ind Ltd | Polyethylene resin film |
JPS6184225A (en) * | 1984-09-28 | 1986-04-28 | デーエスエム・ナムローゼ・フェンノートシャップ | High molecular-weight polyethylene thin-film and manufacture thereof |
JPH0556251B2 (en) * | 1984-09-28 | 1993-08-19 | Dsm Nv | |
JPS61195133A (en) * | 1985-02-25 | 1986-08-29 | Toa Nenryo Kogyo Kk | Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer |
JPH0471416B2 (en) * | 1985-02-25 | 1992-11-13 | Tonen Corp | |
JPS61241330A (en) * | 1985-04-18 | 1986-10-27 | Toyobo Co Ltd | Polyethylene molded article having improved adhesiveness |
JPS62122736A (en) * | 1985-08-12 | 1987-06-04 | Mitsui Petrochem Ind Ltd | Preparation of and apparatus for inflation film |
US4987025A (en) * | 1985-08-12 | 1991-01-22 | Mitsui Petrochemical Industries, Ltd. | Inflation film of ultrahigh molecular weight polyethylene |
JPH0655433B2 (en) * | 1985-08-12 | 1994-07-27 | 三井石油化学工業株式会社 | Inflation film, its manufacturing method and equipment |
JPS62223245A (en) * | 1986-03-25 | 1987-10-01 | Mitsubishi Chem Ind Ltd | Production of porous permeable polyolefin film |
JPS63236622A (en) * | 1987-03-12 | 1988-10-03 | ビーエーエスエフ アクチェンゲゼルシャフト | Manufacture of ultra-high modulus fiber or film |
US5033253A (en) * | 1987-07-02 | 1991-07-23 | W. R. Grace & Co.-Conn. | Process for skin packaging electostatically sensitive items |
US4996011A (en) * | 1988-07-09 | 1991-02-26 | Nippon Oil Co., Ltd. | Production of polyethylene materials having improved strength and modulus qualities |
US5234652A (en) * | 1990-12-20 | 1993-08-10 | Woodhams Raymond T | Process for the continuous production of high modulus articles from high molecular weight plastics |
US5399308A (en) * | 1990-12-20 | 1995-03-21 | Woodhams; Raymond T. | Process for the continuous production of high modulus articles from high molecular weight plastics |
US5840235A (en) * | 1991-12-27 | 1998-11-24 | Mitsui Petrochemical Industries, Ltd. | Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface-modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same |
US5624627A (en) * | 1991-12-27 | 1997-04-29 | Mitsui Petrochemical Industries, Ltd. | Process for preparing surface-modified biaxially oriented film of high molecular weight polyethylene |
US5650451A (en) * | 1991-12-27 | 1997-07-22 | Mitsui Petrochemical Industries, Ltd. | Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same |
US5674919A (en) * | 1991-12-27 | 1997-10-07 | Mitsui Petrochemical Industries, Ltd. | Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface-modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same |
JPH06262679A (en) * | 1993-06-28 | 1994-09-20 | Mitsui Petrochem Ind Ltd | Ultrahigh molecular weight polyolefin biaxially stretched film and production thereof |
JPH07165941A (en) * | 1994-09-16 | 1995-06-27 | Mitsubishi Chem Corp | Polyethylene resin film |
US5759678A (en) * | 1995-10-05 | 1998-06-02 | Mitsubishi Chemical Corporation | High-strength porous film and process for producing the same |
JP2002294004A (en) * | 2001-03-30 | 2002-10-09 | Sumitomo Chem Co Ltd | Polyolefin-based resin film and composition for producing the polyolefin-based resin film |
JP2002294005A (en) * | 2001-03-30 | 2002-10-09 | Sumitomo Chem Co Ltd | Polyolefin-based resin film and composition for producing the polyolefin-based resin film |
JP2012514674A (en) * | 2009-01-09 | 2012-06-28 | テイジン・アラミド・ビー.ブイ. | Polyethylene film and method for producing the same |
JP2011208162A (en) * | 2011-07-26 | 2011-10-20 | Sumitomo Chemical Co Ltd | Polyolefin resin film and composition for manufacturing polyolefin resin film |
JP2011219771A (en) * | 2011-07-26 | 2011-11-04 | Sumitomo Chemical Co Ltd | Polyolefin-based resin film and composition for producing the polyolefin-based resin film |
Also Published As
Publication number | Publication date |
---|---|
JPH0416330B2 (en) | 1992-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59227420A (en) | Biaxially stretched film made of ultra-high molecular weight polyolefine and preparation thereof | |
JP2936493B2 (en) | Biaxially oriented film | |
EP0925324B1 (en) | High density polyethylene films with improved barrier | |
EP0168923B1 (en) | Process for producing stretched article of ultrahigh-molecular weight polyethylene | |
EP0391740B1 (en) | Dulled stretched moulding and process for producing the same | |
JPH0639920A (en) | Biaxially oriented heat-shrinkable film | |
EP1023364B1 (en) | Compositions of linear ultra low density polyethylene and propylene polymers and films therefrom | |
JPS59135242A (en) | Thermoplastic blend of elastomer and ethylene copolymer composed of polyolefin or isobutylene as main chain | |
US5714547A (en) | Polymer blend composition for forming transparent polyethylene film | |
US6153702A (en) | Polymers, and novel compositions and films therefrom | |
US5346732A (en) | Performance super high flow ethylene polymer compositions | |
EP0343943A2 (en) | A composition comprising polymers of but-1-ene and propylene | |
US5344714A (en) | LLDPE composite film free of melt fracture | |
JPH06262679A (en) | Ultrahigh molecular weight polyolefin biaxially stretched film and production thereof | |
US7176259B1 (en) | High density polyethylene films with improved barrier properties | |
US5904964A (en) | Process for manufacturing heat-shrinkable polyethylene film | |
US4172875A (en) | Production of thinwalled articles | |
JP2896267B2 (en) | High molecular weight polyethylene oriented film and production method thereof | |
CA2032272C (en) | Improved heat shrinkable polyolefin film | |
KR100203444B1 (en) | Ldpe film and there manufacturing method | |
KR102318208B1 (en) | Compatibilized polypropylene/polyethylene blend | |
JPH0892438A (en) | Resin composition for extrusion | |
CA1291311C (en) | Heat shrinkable laminate of low density copolymer of ethylene and c -to c-- olefin | |
JP2001198937A (en) | Method for manufacturing high-molecular weight polyolefin laminated film excellent in transparency | |
JPH071584A (en) | Heat-shrinkable film |