JPH02194033A - Production of polyolefin molding of improved adhesiveness - Google Patents

Production of polyolefin molding of improved adhesiveness

Info

Publication number
JPH02194033A
JPH02194033A JP1183189A JP1183189A JPH02194033A JP H02194033 A JPH02194033 A JP H02194033A JP 1183189 A JP1183189 A JP 1183189A JP 1183189 A JP1183189 A JP 1183189A JP H02194033 A JPH02194033 A JP H02194033A
Authority
JP
Japan
Prior art keywords
polyolefin
molding
intrinsic viscosity
discharge treatment
plasma discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1183189A
Other languages
Japanese (ja)
Inventor
Taku Tokita
時田 卓
Hajime Inagaki
稲垣 始
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP1183189A priority Critical patent/JPH02194033A/en
Publication of JPH02194033A publication Critical patent/JPH02194033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain the title molding improved in adhesiveness to a polar material by oxygenating the surface of a molding without forming any irregularities thereon by subjecting the polyolefin molding to plasma discharge treatment in a gaseous atmosphere of vaporizable organic and/or inorganic compounds. CONSTITUTION:A highly oriented polyolefin molding obtained by molding a high-MW polyolefin (e.g. PE) of an intrinsic viscosity >=3dl/g in decalin at 135 deg.C under conditions to cause a decrease in intrinsic viscosity <=14% is subjected to plasma discharge treatment in a gaseous atmosphere of vaporizable organic and/or inorganic compounds (e.g. acrylic acid, allylamine or NH3), desirably a carboxy and/or amino monomer to oxygenate the surface of the molding to a degree of at least four oxygen atoms per 100 carbon atoms.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、接着性を改良したポリオレフィン成形品の製
造方法に関するものであり、より詳細には、高度に配向
したポリオレフィン成形品の表面を、気化性の有機化合
物及び/または無機化合物のガス雰囲気下でプラズマ放
電処理することによって、成形品の表面に凹凸を生成さ
せることなく酸素を付加し、極性マトリックス材料との
接着性を高めたポリオレフィン成形品の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a polyolefin molded article with improved adhesion, and more specifically, to a method for manufacturing a polyolefin molded article with improved adhesion. Polyolefin molding that uses plasma discharge treatment in a gas atmosphere of volatile organic and/or inorganic compounds to add oxygen without creating irregularities on the surface of the molded product and improves its adhesion to polar matrix materials. Concerning the manufacturing method of the product.

(従来の技術及びその問題点) 繊維強化プラスチックは各種強度や剛性に優れるため自
動車用部品、電気器具部品・ハウジング、工業用材料、
小型船舶、スポーツ用品、医療材料、土木材料、建築材
料等、広範囲にわたって使用されている。しかしながら
それに使用されている樺維補強剤はその殆んどがガラス
繊維であるため、得られる複合材料は未強化のプラスチ
ックに比べて重くなるという欠点を有しており、軽量で
且つ良好な機械的強度を有する複合材料が望まれる分野
においては、未だ充分な対応がなされていないのが現状
である。
(Conventional technology and its problems) Fiber-reinforced plastics have excellent strength and rigidity, so they are used in automobile parts, electrical appliance parts and housings, industrial materials,
It is used in a wide range of applications, including small ships, sporting goods, medical materials, civil engineering materials, and building materials. However, since most of the birch fiber reinforcing agents used in it are glass fibers, the resulting composite material has the disadvantage of being heavier than unreinforced plastic. In the field where composite materials with physical strength are desired, sufficient measures have not yet been taken.

一方、ポリオレフィン、なかでも超高分子量ポリエチレ
ンを、極めて高倍率で延伸したフィラメント、テープ、
フィルムなどの延伸成形体は、高弾性、高強度で、かつ
軽量であるという特徴を有するために、軽量化が望まれ
る複合材料の補強材料として脚光を浴びている。
On the other hand, filaments, tapes and
Stretched molded bodies such as films have the characteristics of high elasticity, high strength, and light weight, and are therefore in the spotlight as reinforcing materials for composite materials that are desired to be lightweight.

しかしながら、ポリオレフィンは、かくの如くすぐれた
特徴を有するものであるが、他の極性材料との接着性に
劣るという致命的欠点があるために、複合材料の補強材
料としては、マトリックス材料が自ずと制限されるとい
う問題点が存在する。
However, although polyolefin has such excellent characteristics, it has a fatal drawback of poor adhesion with other polar materials, so it is naturally limited as a matrix material as a reinforcing material for composite materials. There is a problem that

そこで、ポリオレフィンの表面を各種の処理を行うこと
によって、接着性を改良するための方法が提案されてい
る。
Therefore, methods have been proposed for improving adhesive properties by subjecting the surface of polyolefin to various treatments.

例えば、特公昭53−794号公報、及び特開昭57−
177032号公報には、ポリオレフィン成形品をプラ
ズマ放電処理することによって、ポリオレフィン成形品
の表面に0.1〜4μ程度の多数の微細な凹凸を形成さ
せ、マトリックス材との接着性を改良する方法が開示さ
れているし、また特公昭58−53dl4号公報、及び
特開昭60−146078号公報には、ポリオレフィン
成形品をコロナ放電処理してマトリックス材との接着性
を改良する方法が開示されている。
For example, Japanese Patent Publication No. 53-794, and Japanese Patent Publication No. 57-
Publication No. 177032 discloses a method of forming a large number of fine irregularities of about 0.1 to 4μ on the surface of a polyolefin molded product by subjecting the polyolefin molded product to plasma discharge treatment to improve the adhesiveness with the matrix material. In addition, Japanese Patent Publication No. 58-53DL4 and Japanese Patent Application Laid-Open No. 60-146078 disclose a method of treating a polyolefin molded article with a corona discharge treatment to improve its adhesion with a matrix material. There is.

しかしながら、これらの方法は、いずれも、ポリオレフ
ィンの成形品の表面に、多数の微細な凹凸を形成させる
ことによって極性材料との接着性を改善するものであり
、未処理品に比べて大巾な引張強度等の低下が避けられ
ず、この傾向は、たとえば、総照射線量が0.05〜3
.0ワツト・分/m2と弱めのコロナ放電処理を施す場
合でさえ、成形品上に放電による非常に微細な曇り(h
aze)を生じさせるものであるために、未処理品の6
0〜70%程度の引張強度に低下してしまい、高い引張
強度が要求される複合材料等の成形品には使用できない
という問題点が存在する。
However, all of these methods improve the adhesion with polar materials by forming many fine irregularities on the surface of the polyolefin molded product, which improves the adhesion to polar materials by a large amount compared to untreated products. A decrease in tensile strength, etc. is unavoidable, and this tendency occurs, for example, when the total irradiation dose is 0.05 to 3
.. Even when applying a weak corona discharge treatment of 0 watts/min/m2, very fine haze (h
6 of the untreated product because it causes
There is a problem that the tensile strength decreases to about 0 to 70%, and it cannot be used for molded products such as composite materials that require high tensile strength.

(発明が解決しようとする問題点) かかる如く、ポリオレフィン成形品、とくに高度に配向
されたポリオレフィン成形品と極性材料との接着性の改
良には、成形品表面全面にプラズマ放電処理等により微
細な凹凸を生成させて、極性材料との接着比表面積の増
加あるいは投錨効果を発揮させることが必須条件である
ことが考えられており、超高分子量ポリエチレンフィラ
メント等の細いフィラメントの接着性を改良するには、
多少の強度低下はやむを得ないとされていた。
(Problems to be Solved by the Invention) As described above, in order to improve the adhesion between a polyolefin molded product, especially a highly oriented polyolefin molded product, and a polar material, fine particles are applied to the entire surface of the molded product by plasma discharge treatment or the like. It is thought that creating irregularities to increase the adhesion specific surface area with polar materials or to exhibit an anchoring effect is an essential condition, and it is believed that it is an essential condition to improve the adhesion of thin filaments such as ultra-high molecular weight polyethylene filaments. teeth,
It was believed that a slight decrease in strength was unavoidable.

しかしながらフィルム等さほど大きな強度を必要としな
い成形品では表面全面に凹凸を生成させても問題とはな
らないが、高弾性率、高引張強度が特徴である超高分子
量ポリオレフィンフィラメントにおいては、たとえ接着
性の改良といえども、強度等が低下することは、その特
徴を失うことであり、絶対に避けなければならないこと
である。
However, for molded products that do not require much strength, such as films, there is no problem even if unevenness is generated on the entire surface, but for ultra-high molecular weight polyolefin filaments, which are characterized by high elastic modulus and high tensile strength, even if adhesive Even if it is an improvement, a decrease in strength etc. means a loss of its characteristics, and this is something that must be avoided at all costs.

かかる状況に鑑み、本発明者らは、配向したポリオレフ
ィン成形品の表面全面に微細な凹凸を生成させることな
く該成形品の接着性を改良する方法を鋭意検討した結果
、ポリオレフィン成形品原料の分子量の低下を出来る限
り抑えて製造した成形品は、プラズマ放電処理等の表面
処理を行っても、その表面全面には微細な凹凸が生成せ
ず、しかも特定量以上の酸素をその表面に付加させると
、接着性が格段に改良され、且つ殆んど強度等の低下も
ないことを見出し、本発明を完成するに至った。
In view of this situation, the present inventors have conducted intensive studies on a method for improving the adhesion of oriented polyolefin molded products without generating minute irregularities on the entire surface thereof. As a result, the molecular weight of the raw material for polyolefin molded products has been Molded products that are manufactured with as little deterioration as possible do not generate minute irregularities on the entire surface even when subjected to surface treatments such as plasma discharge treatment, and moreover, they do not allow the addition of more than a certain amount of oxygen to the surface. They found that the adhesive properties were significantly improved and there was almost no decrease in strength, etc., leading to the completion of the present invention.

(問題点を解決するための手段) 本発明によれば、デカリン溶媒中135℃で測定した極
限粘度[η]、が3dJ2/ g以上の高分子量ポリオ
レフィンを、その極限粘度[η]pの低下率が14%以
下になる条件下で成形することによってえられた、高度
に配向したポリオレフィン成形品を、気化性の有機化合
物及びまたは無機化合物のガス雰囲気下で、プラズマ放
電処理することを特徴とする、接着性を改良したポリオ
レフィン成形品の製造方法が提供され、この方法によれ
ば、プラズマ放’am埋されたポリオレフィン成形品は
、その表面に炭素数100個当り、少なくとも4個の酸
素が付加したものとなり、従来のプラズマ放電処理やコ
ロナ放電処理のように、成形品の表面に微細な凹凸を生
成させることなく、ポリオレフィン成形品の接着性を改
良することができるものである。
(Means for Solving the Problems) According to the present invention, a high molecular weight polyolefin having an intrinsic viscosity [η] of 3 dJ2/g or more measured in a decalin solvent at 135°C is reduced in its intrinsic viscosity [η]p. A highly oriented polyolefin molded product obtained by molding under conditions where the ratio is 14% or less is subjected to plasma discharge treatment in a gas atmosphere of a volatile organic compound and/or inorganic compound. A method for manufacturing a polyolefin molded article with improved adhesion is provided, and according to this method, a polyolefin molded article buried in plasma has at least 4 oxygen atoms per 100 carbon atoms on its surface. This method can improve the adhesion of polyolefin molded products without creating fine irregularities on the surface of the molded product, unlike conventional plasma discharge treatment or corona discharge treatment.

(作 用) 本発明は、高度に配向した高分子量ポリオレフィンを、
その極限粘度[η]pの低下率を14%以下、好ましく
は10%以下、さらに好ましくは7%以下に抑えて成形
したポリオレフィン成形品を、気化性有機化合物及び/
または無機化合物のガス雰囲気下でプラズマ放電処理を
することによって、成形品の表面に、炭素数100個当
たり、少なくとも4個、好ましくは6個以上、さらに好
ましくは8個以上の酸素を付加させ、これによって、極
性材料との接着性を改良するものであり、このプラズマ
放電処理は、ポリオレフィン成形品の表面を平滑に保っ
たまま行うことができるため、成形品の引張強度を低下
させることなく接着性を改良することができるという本
発明者らの知見に基づいてなされたものである。
(Function) The present invention provides highly oriented high molecular weight polyolefin,
A polyolefin molded article molded with the rate of decrease in its intrinsic viscosity [η]p kept at 14% or less, preferably 10% or less, and more preferably 7% or less, is molded with a vaporizable organic compound and/or
Or, by plasma discharge treatment in an inorganic compound gas atmosphere, at least 4, preferably 6 or more, more preferably 8 or more oxygen atoms are added to the surface of the molded article per 100 carbon atoms, This improves the adhesion with polar materials, and since this plasma discharge treatment can be performed while keeping the surface of the polyolefin molded product smooth, it improves adhesion without reducing the tensile strength of the molded product. This was done based on the findings of the present inventors that the properties can be improved.

(好適態様の説明) 本発明に用いる高分子量ポリオレフィンは、デカリン溶
媒中135℃で測定した極限粘度[η]。
(Description of preferred embodiments) The high molecular weight polyolefin used in the present invention has an intrinsic viscosity [η] measured at 135°C in a decalin solvent.

が3dA / g以上、好適には5dJL/ g以上、
更に好適には7ないし3udit / g 、とくには
フないし15di/gのものである。かかる高分子量ポ
リオレフィンとしては、例えばエチレン、プロピレン、
1−ブテン、1−ペンテン、1−ヘキセン、1−オクテ
ン、1−デセン、4−メチル−1−ペンテンの単独重合
体又は共重合体が挙げられるが、これらの中でもエチレ
ンの単独重合体もしくはエチレンと少量の他のα−オレ
フィンとの共重合体で高結晶性のものが、高弾性率化及
び高引張強度化がより図れ補強材料としてとくに好適で
あるので好ましい。
is 3dA/g or more, preferably 5dJL/g or more,
More preferably, it is from 7 to 3 di/g, particularly from 1 to 15 di/g. Such high molecular weight polyolefins include, for example, ethylene, propylene,
Examples include homopolymers or copolymers of 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, and 4-methyl-1-pentene; among these, ethylene homopolymers or ethylene A highly crystalline copolymer of acetic acid and a small amount of other α-olefin is preferred because it can achieve higher modulus of elasticity and higher tensile strength and is particularly suitable as a reinforcing material.

本発明において、ポリオレフィン成形品の表面が滑らか
とは、放電処理されたポリオレフィン成形品の表面を以
下の方法で電子顕微鏡で観察し、表面に配向方向の亀裂
幅が0.1μm以上、好ましくは0.08μm以上の凹
凸が生成していないものをいう。そして、ポリオレフィ
ン成形品の表面が滑らかでない場合、ととえば、0.1
μm以上の微細な凹凸が全面に生成したものは引張強度
等の機械的強度が低下する。
In the present invention, the term "smooth surface of a polyolefin molded product" means that the surface of a polyolefin molded product subjected to electrical discharge treatment is observed with an electron microscope using the following method, and the crack width in the orientation direction on the surface is 0.1 μm or more, preferably 0. .08μm or more unevenness is not generated. If the surface of the polyolefin molded product is not smooth, for example, 0.1
If fine irregularities of μm or more are formed over the entire surface, mechanical strength such as tensile strength is reduced.

ポリオレフィン成形品の表面状態の観察方法は、前処理
と撮影の2段階に分かれる。すなわち前処理では、 (1)試料台に両面テープでカバーグラスを固定し、そ
の上にサンプルを両面テープで固定する。
The method for observing the surface condition of polyolefin molded products is divided into two steps: pretreatment and photography. That is, in the pretreatment, (1) A cover glass is fixed to the sample stage with double-sided tape, and a sample is fixed on top of it with double-sided tape.

(2)導電性塗料(銀ペースト、シルベストP−225
)を、試料台とサンプル及び、カバーグラスと試料台の
間に塗布する。
(2) Conductive paint (silver paste, Sylvest P-225
) is applied between the sample stage and the sample, and between the cover glass and the sample stage.

(3) 日本電子■製JEE 4Bを用い、金をサンプ
ル面に真空蒸着する。また、撮影は、日本電子■製JS
M 25  SHIで倍率3000倍で行う、この際、
加速電圧は12.5K Vで行う。
(3) Using JEE 4B manufactured by JEOL, vacuum evaporate gold onto the sample surface. In addition, the photo was taken using JEOL JS
Performed at 3000x magnification with M25 SHI, at this time,
The acceleration voltage is 12.5KV.

又、ポリオレフィン成形品表面の酸素付加量が4個未満
のものは極性材料との接着性が改良されない。
Furthermore, if the amount of oxygen added to the surface of the polyolefin molded product is less than 4, the adhesion to polar materials will not be improved.

ポリオレフィン成形品表面の酸素付加量の測定は、以下
の様にして行った。すなわち、X線光電子分光装置(島
津製作所製ESCA 750型)を用い、両面テープで
サンプルを固定した試料台を導入し、真空度を10 ”
” Torrにした後、光源としテA fLK a (
1488,6eV)を用イテCI!及びOIsノ測定を
行った。測定後、波形処理を行った後、それぞれのピー
ク面積を算出し、炭素に対する酸素の量を求めた。
The amount of oxygen added to the surface of the polyolefin molded product was measured as follows. That is, using an X-ray photoelectron spectrometer (Shimadzu Corporation ESCA 750 model), a sample stage with a sample fixed with double-sided tape was introduced, and the degree of vacuum was increased to 10".
” After setting it to Torr, use it as a light source.
1488,6eV) is used for IteCI! and OIs were measured. After measurement, waveform processing was performed, and the area of each peak was calculated to determine the amount of oxygen relative to carbon.

本発明は、前記したデカリン溶媒中135℃で測定した
極限粘度[η]、が3dfL/ g以上の高分子量ポリ
オレフィンをその極限粘度[η]pの低下率が14%以
下、好ましくは10%以下、更に好ましくは7%以下に
抑えて成型して得られる高度に配向したポリオレフィン
成形品を、気化性の有機化合物及び/または無機化合物
のガス雰囲気下で、プラズマ放電処理する方法である。
The present invention provides high molecular weight polyolefins having an intrinsic viscosity [η] of 3 dfL/g or more measured in the above-mentioned decalin solvent at 135°C, with a reduction rate of the intrinsic viscosity [η]p of 14% or less, preferably 10% or less. More preferably, a highly oriented polyolefin molded article obtained by molding with a content of 7% or less is subjected to plasma discharge treatment in a gas atmosphere of a volatile organic compound and/or inorganic compound.

ポリオレフィン成形品の極限粘度[η]pの低下率が1
4%を超えるものは放電処理すると表面に0.1μm以
上の微細な凹凸を全面に生じ、ひいていては機械的強度
が低下する。
The rate of decrease in the intrinsic viscosity [η]p of polyolefin molded products is 1
If the content exceeds 4%, fine irregularities of 0.1 μm or more will be formed on the entire surface when subjected to discharge treatment, which will further reduce the mechanical strength.

本発明においけるポリオレフィン成形品の極限粘度[η
]pの低下率(%)とは、下記式により規定される数値
である。
Intrinsic viscosity [η
] The reduction rate (%) of p is a numerical value defined by the following formula.

式中[η]mは原料ポリオレフィンの極限粘度(dfL
/g)を表し、[η]pは高度に配向したポリオレフィ
ン成形品の極限粘度(dIl/g)を表わす。
In the formula, [η]m is the intrinsic viscosity (dfL) of the raw material polyolefin
/g), and [η]p represents the intrinsic viscosity (dIl/g) of the highly oriented polyolefin molded article.

オレフィン成形品をプラズマ放電処理する方法としては
、例えば高周波放電、マイクロ波放電、グロー放電など
自体公知の放電装置を使用して行うことができる。
The plasma discharge treatment of the olefin molded article can be carried out using, for example, a known discharge device such as a high frequency discharge, a microwave discharge, or a glow discharge.

処理雰囲気下を作る化合物としては気化し得る全ての有
機化合物及び無機化合物を挙げることができる。中でも
、常温減圧下で気化し得る物が好ましい。更に好ましく
は、不飽和結合と極性基を有する有機化合物及びアンモ
ニアの如き無機化合物が好ましい。
Compounds that create the treatment atmosphere include all organic and inorganic compounds that can be vaporized. Among these, those that can be vaporized at room temperature and reduced pressure are preferred. More preferred are organic compounds having unsaturated bonds and polar groups, and inorganic compounds such as ammonia.

極性基として好ましいものとしては、カルボキシル基、
アミノ基、エポキシ基を挙げることができる。具体的に
は、カルボキシル基含有モノマーとしては、アクリル酸
、メタクリル酸、マレイン酸、フマール酸、テトラヒド
ロフタル酸、イタコン酸、シトラコン酸、クロトン酸、
イソクロトン酸、ナジック酸■(エンドシス−ビシクロ
[2,2゜1]ヘプト−1−エン−2,3−ジカルボン
酸)など不飽和モノおよびジカルボン酸、を挙げること
ができる。更には、その誘導体、例えば酸ハライド、ア
ミド、イミド、無水物、エステルなどが挙げられ、具体
的には、塩化マレニル、マレイミド、無水マレイン酸、
無水シトラコン酸、マレイン酸モノメチル、マレイン酸
ジメチル、グリシジルマレエートなども同様に好ましい
Preferred polar groups include carboxyl group,
Examples include an amino group and an epoxy group. Specifically, carboxyl group-containing monomers include acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid,
Unsaturated mono- and dicarboxylic acids such as isocrotonic acid and nadic acid (endocys-bicyclo[2,2°1]hept-1-ene-2,3-dicarboxylic acid) may be mentioned. Further examples include derivatives thereof, such as acid halides, amides, imides, anhydrides, esters, etc. Specifically, maleyl chloride, maleimide, maleic anhydride,
Similarly preferred are citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate, and the like.

又、アミノ基含有モノマーとしては、アリルアミンなど
が好ましい。
Moreover, as the amino group-containing monomer, allylamine etc. are preferable.

又、エポキシ基含有モノマーとしては、グリシジルメタ
クリレート、グリシジルアクリレート、アリルグリシジ
ルエーテル、ビニルグリシジルエーテル、グリシジルイ
タコネート、グリシジルマレエート等の脂肪族グリシジ
ルエステルもしくは脂肪族グリシジルエーテル、2−シ
クロヘキセン−1−グリシジルエーテル、シクロヘキセ
ン−4,5−ジカルボン酸ジグリシジルエステル、シク
ロヘキセン−4−カルボン酸グリシジルエステル、5−
ノルボルネン−2−メチル−2−カルボン酸グリシジル
エステル、エンドシス−ビシクロ−[2,2,1]−5
−へブテン−2,3−ジカルボン酸ジグリシジルエステ
ル等の脂環族グリシジルエステルもしくは脂環族グリシ
ジルエーテル等が挙げられる。
Examples of epoxy group-containing monomers include aliphatic glycidyl esters or aliphatic glycidyl ethers such as glycidyl methacrylate, glycidyl acrylate, allyl glycidyl ether, vinyl glycidyl ether, glycidyl itaconate, and glycidyl maleate, and 2-cyclohexene-1-glycidyl ether. , cyclohexene-4,5-dicarboxylic acid diglycidyl ester, cyclohexene-4-carboxylic acid glycidyl ester, 5-
Norbornene-2-methyl-2-carboxylic acid glycidyl ester, endocis-bicyclo-[2,2,1]-5
Examples thereof include alicyclic glycidyl esters and alicyclic glycidyl ethers such as -hebutene-2,3-dicarboxylic acid diglycidyl ester.

又、装置の電極形状としては、内部電極型、外部電極型
のどちらでも良く、更に外部電極型の場合、容量型電極
あるいは誘導型電極のどちらでも良い。
Further, the electrode shape of the device may be either an internal electrode type or an external electrode type, and in the case of an external electrode type, either a capacitive type electrode or an inductive type electrode may be used.

成形品の表面に炭素数100個あたり少なくとも酸素を
4個以上付加させるには、使用する化合物、装置などに
より処理時間、プラズマ照射量を適宜選択することによ
り達成されるが、それはあらかじめ実験的に知ることが
できる。
Adding at least 4 or more oxygen atoms per 100 carbon atoms to the surface of a molded product can be achieved by appropriately selecting the treatment time and plasma irradiation amount depending on the compound and equipment used, but this can be done experimentally in advance. You can know.

デカリン溶媒中135℃で測定した極限粘度[η]、が
3dl/g以上の高分子量ポリオレフィンを、その極限
粘度[η]pの低下率14%以下にして、高度に配向し
たポリオレフィン成形品を製造する方法とは、成形加工
時の高分子量ポリオレフィンへの加熱及び加熱時間によ
り熱デグラデーションを抑えて成形品を製造する方法で
あり、具体的には、例えば高分子量ポリオレフィンの粉
末あるいはベレットと耐熱安定剤及びパラフィンワック
ス等の脂肪族炭化水素或いはその誘導体、脂肪族炭化水
素溶剤、流動パラフィン等の稀釈剤とを高分子量ポリオ
レフィンの融点未満の温度で混合した後、高分子量ポリ
オレフィンの融点以上ないし融点+100℃の温度、高
分子量ポリエチレンであれば、170〜240℃の温度
で溶融混練し、ダイより未延伸糸を押出し、好ましくは
10〜30のドラフトをかけた後冷却固化し、融点近傍
の温度で通常10倍以上、好ましくは15〜30倍延伸
することにより製造し得る。又稀釈剤は延伸中あるいは
延伸後に成形品より抽出することもできる。
A highly oriented polyolefin molded product is produced by reducing the rate of decrease in the intrinsic viscosity [η]p of a high molecular weight polyolefin having an intrinsic viscosity [η] of 3 dl/g or more as measured at 135°C in a decalin solvent to 14% or less. This is a method of manufacturing molded products by suppressing thermal degradation by heating the high molecular weight polyolefin during molding and heating time. After mixing the agent and an aliphatic hydrocarbon such as paraffin wax or a derivative thereof, an aliphatic hydrocarbon solvent, and a diluent such as liquid paraffin at a temperature below the melting point of the high molecular weight polyolefin, the mixture is heated to a temperature higher than the melting point of the high molecular weight polyolefin or above the melting point +100. If it is high molecular weight polyethylene, it is melt-kneaded at a temperature of 170 to 240 degrees Celsius, extruded from a die to extrude the undrawn yarn, preferably subjected to a draft of 10 to 30 degrees, then cooled and solidified, and then heated to a temperature near the melting point. It can be produced by stretching usually 10 times or more, preferably 15 to 30 times. The diluent can also be extracted from the molded article during or after stretching.

高分子量ポリオレフィンを溶融押出成形する際に、稀釈
剤を用いない場合、特に極限粘度[η]mが5dIL/
 g以上の超高分子量ポリオレフィンの成形においては
自己発熱をして極限粘度[η]、が低下する場合がある
。又、超高分子量ポリオレフィンと稀釈剤とを混合する
場合に超高分子量ポリオレフィンの融点以上に加熱して
稀釈剤との混合液とする場合には、たとえ耐熱安定剤を
併用しても混合液の保管時に、分子量の低下を招く虞れ
があるので好ましくない。
When melt-extruding high molecular weight polyolefin without using a diluent, especially when the intrinsic viscosity [η]m is 5 dIL/
When molding an ultra-high molecular weight polyolefin having a weight of 1.5 g or more, self-heating may occur and the intrinsic viscosity [η] may decrease. In addition, when mixing an ultra-high molecular weight polyolefin and a diluent, if the mixture is heated above the melting point of the ultra-high molecular weight polyolefin to form a mixed liquid with the diluent, even if a heat-resistant stabilizer is used in combination, the mixed liquid will deteriorate. This is not preferable since it may cause a decrease in molecular weight during storage.

本発明の方法に用いる高度に配向したポリオレフィン成
形品は、例えばフィラメント、テープ、不織布等の形状
をしたものである。これら成形品の中でも、弾性率が2
00Pa以上、好ましくは5゜GPa以上、引張強度が
1.2GPa以上、好ましくは1.5GPa以上の超高
分子量ポリエチレンの延伸物が、軽量且つ高剛性、高引
張強度で耐候性にも優れるので、補強用材料として最も
好適である。
The highly oriented polyolefin molded articles used in the method of the invention are, for example, in the form of filaments, tapes, nonwovens, and the like. Among these molded products, the elastic modulus is 2.
A stretched product of ultra-high molecular weight polyethylene with a tensile strength of 00 Pa or more, preferably 5° GPa or more, and a tensile strength of 1.2 GPa or more, preferably 1.5 GPa or more is lightweight, has high rigidity, high tensile strength, and has excellent weather resistance. Most suitable as a reinforcing material.

本発明のプラズマ放電処理された高度に配向したポリオ
レフィン成形品を複合材料として用いる際には、延伸物
がフィラメント状であれば、ローブ、ネット、クロスシ
ート、不織布、紙に加工して後述の極性材料に含浸ある
いは積層して用いる方法、テープ状のものであればクロ
スシート、ロープ等に加工して、後述の極性材料に含浸
あるいは積層して用いる方法、あるいは、フィラメント
、テープを適宜カットして繊維状補強材として極性材料
に含浸させる方法などを採り得る。
When using the plasma discharge treated highly oriented polyolefin molded product of the present invention as a composite material, if the drawn product is in the form of a filament, it can be processed into lobes, nets, cloth sheets, non-woven fabrics, and papers to achieve polarity as described below. If it is in the form of a tape, it can be processed into a cloth sheet, rope, etc. and used by being impregnated with or laminated with a polar material (described later), or by cutting the filament or tape as appropriate. A method of impregnating a polar material as a fibrous reinforcing material can be adopted.

本発明のプラズマ放電処理された高度に配向したポリオ
レフィン成形品と接着あるいは成形材料を含浸させる極
性材料としては、ポルトランドセメント、アルミナセメ
ント等のセメント、A文203、Sin、、84C,T
iB2、ZrBzのようなセラミックス材料等の無機極
性材料、フェノール樹脂、エポキシ樹脂、不飽和ポリエ
ステル樹脂、ジアリルフタレート樹脂、ウレタン樹脂、
メラミン樹脂、ユリア樹脂等の熱硬化性樹脂、ナイロン
、ポリエステル、ポリカーボネート、ポリアセタール、
ポリ塩化ビニル、セルロース形樹脂、ポリスチレン、ア
クリロニトリル−スチレン共重合体のような熱可塑性樹
脂等の有機極性材料等が挙げられ、これらの極性材料と
しては、硬化温度あるいは成形温度がポリオレフィン成
形品の軟化点未満のものであれば、ポリオレフィン成形
品とを軟化点以下で加熱して接着が行える。一方、ポリ
オレフィン成形品の軟化点を超える極性材料は、有機溶
媒等に極性材料を溶解させた溶液にポリオレフィン成形
品を含浸させた後、有機溶媒を除去乾燥する方法を採り
得る。
Examples of polar materials to be bonded to the plasma discharge treated highly oriented polyolefin molded article of the present invention or impregnated with the molding material include cements such as Portland cement and alumina cement, A-203, Sin, 84C, T.
Inorganic polar materials such as ceramic materials such as iB2 and ZrBz, phenolic resins, epoxy resins, unsaturated polyester resins, diallyl phthalate resins, urethane resins,
Thermosetting resins such as melamine resin and urea resin, nylon, polyester, polycarbonate, polyacetal,
Examples include organic polar materials such as thermoplastic resins such as polyvinyl chloride, cellulose resins, polystyrene, and acrylonitrile-styrene copolymers. If it is below the softening point, the polyolefin molded product can be bonded by heating below the softening point. On the other hand, for polar materials exceeding the softening point of the polyolefin molded article, a method may be adopted in which the polyolefin molded article is impregnated with a solution in which the polar material is dissolved in an organic solvent or the like, and then the organic solvent is removed and dried.

(発明の効果) 本発明の高度に配向したポリオレフィン成形品は、従来
のコロナ放電処理等をした成形品に比べて極性材料との
接着性が格段に改良されており、しかもその成形品の弾
性率、引張強度等の機械的強度の保持率も通常85%以
上、高いものでは90%以上もあり、機械的強度の低下
も殆んどないので、かかる特徴を活かして、種々の極性
材料と複合して、ラケット、スキー、釣竿、ゴルフクラ
ブ、竹刀等のスポーツ用品、ヨツト、ボート、サーフィ
ンボート等のレジャー用品、ヘルメット等の防具、人工
関節、義歯台等の医療材料等を作成した場合、その曲げ
強度、曲げ弾性率等の機械的強度が著しく改善される。
(Effects of the Invention) The highly oriented polyolefin molded product of the present invention has significantly improved adhesion to polar materials compared to molded products subjected to conventional corona discharge treatment, etc., and the elasticity of the molded product is significantly improved. The retention rate of mechanical strength such as carbon fiber and tensile strength is usually 85% or higher, and in some cases it is 90% or higher, and there is almost no decrease in mechanical strength. If the product is combined into sports equipment such as rackets, skis, fishing rods, golf clubs, and bamboo swords, leisure equipment such as yachts, boats, and surfing boats, protective equipment such as helmets, and medical materials such as artificial joints and denture stands, etc. Mechanical strengths such as bending strength and bending elastic modulus are significantly improved.

又、従来方法、例えば特開昭60−146078号公報
に記載の方法では効果ある接着を得るには強度低下を招
かない様に1回の照射線量を弱くして、しかも複数回(
実施例では5〜1o回)繰り返し照射することが必要で
あり、操作が非常に煩雑であるのに対して、本発明の方
法は1回の照射で充分接着性の改良効果があり、しかも
照射線量が大きくても機械的強度の低下を招く虞れもな
いので、許容幅が大きく、操作が大幅に簡便化されると
いう特徴を有する。
In addition, in conventional methods, such as the method described in JP-A-60-146078, in order to obtain effective adhesion, one dose of irradiation is made weak so as not to cause a decrease in strength, and multiple irradiation doses (
In the examples, repeated irradiation was required (5 to 10 times), making the operation very complicated, whereas the method of the present invention has a sufficient effect of improving adhesion with just one irradiation. Even if the dose is large, there is no risk of a decrease in mechanical strength, so the tolerance range is wide and the operation is greatly simplified.

(実施例) 次に実施例を挙げて本発明を更に詳しく説明するが、本
発明はその要旨を越えない限り、これらの例に何ら制約
されるものではない。
(Examples) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded.

火J口I± 〈超高分子量ポリエチレンマルチフィラメントの製造〉 極限粘度[η]、: 8.20 dll/g、融点=1
34℃の超高分子量ポリエチレン粉末(PE−I)30
重量%とパラフィンワックス(融点=69℃、分子量:
460)(7)粉砕物(WAX−1) 70重量%から
なる混合物100重量部に対して、耐熱安定剤(3,5
−ジt−ブチルー4−ヒドロキシトルエン) 0.10
重量部を添加してヘンシェルミキサーで混合後、20m
mφ、L/D:20のスクリュー押出機を用いて、樹脂
温度190℃で溶融混練を行った0次いで該溶融物を、
オリフィス径が2mmのダイより押出し、空冷で固化さ
せた。この際、冷却固化した繊維の径が1.6 X 1
0−”m+aとなるように引き落としを行った。即ち、
ドラフト比を3dl.4とした。引き続き3台のゴデツ
トロールを用いてn−デカンを熱媒とした延伸槽(槽内
温度:130℃)及びトリエチレングリコールを熱媒と
した延伸I!(槽内温度:142℃)で延伸を行い、延
伸倍率22倍のマルチフィラメントを製造した。得られ
たマルチフィラメントの物性は、極限粘度[ηlp :
 7.7dj! / g 、極限粘度の低下率6.1%
、引張弾性率85GPa、引張強度2.30Pa%繊維
1000デニール/100本、表面の酸素原子の付加量
は2.2個/100炭素原子であった。
Fire J mouth I± <Production of ultra-high molecular weight polyethylene multifilament> Intrinsic viscosity [η]: 8.20 dll/g, melting point = 1
Ultra-high molecular weight polyethylene powder (PE-I) 30 at 34°C
Weight % and paraffin wax (melting point = 69°C, molecular weight:
460) (7) Pulverized product (WAX-1) For 100 parts by weight of a mixture consisting of 70% by weight, heat stabilizer (3,5
-di-t-butyl-4-hydroxytoluene) 0.10
After adding parts by weight and mixing with a Henschel mixer, 20 m
Using a screw extruder with mφ and L/D: 20, the melt was melt-kneaded at a resin temperature of 190°C.
It was extruded from a die with an orifice diameter of 2 mm and solidified by air cooling. At this time, the diameter of the cooled and solidified fiber is 1.6 x 1
The debit was made so that the amount was 0-"m+a. That is,
Set the draft ratio to 3dl. It was set as 4. Subsequently, three Godetstrols were used in a stretching tank using n-decane as a heating medium (temperature inside the tank: 130°C) and stretching using triethylene glycol as a heating medium. (Tank temperature: 142°C) to produce a multifilament with a stretching ratio of 22 times. The physical properties of the obtained multifilament include the intrinsic viscosity [ηlp:
7.7dj! / g, reduction rate of intrinsic viscosity 6.1%
, a tensile modulus of elasticity of 85 GPa, a tensile strength of 2.30 Pa%, 1000 denier/100 fibers, and an added amount of oxygen atoms on the surface of 2.2/100 carbon atoms.

〈マルチフィラメントのプラズマ放電処理〉■サムコイ
ンターナショナル研究所製の高周波プラズマ処理装置(
RFC−400)を用いて、前記の超高分子量ポリエチ
レンマルチフィラメントを、出力toow、真空度1.
OTorr、アクリル酸ガス雰囲気下で処理時間30秒
で処理した。処理後のフィラメントの引張強度は、  
2.20Pa (保持率95.7%)、引張弾性率80
GPa(保持率94.0%)であった、又、表面の酸素
原子付加量は16個/100炭素原子であった。
<Plasma discharge treatment of multifilament> ■ High-frequency plasma treatment equipment manufactured by Samco International Laboratories (
RFC-400), the ultra-high molecular weight polyethylene multifilament was heated to an output of too high and a degree of vacuum of 1.
The treatment was performed under OTorr and an acrylic acid gas atmosphere for a treatment time of 30 seconds. The tensile strength of the filament after treatment is
2.20Pa (retention rate 95.7%), tensile modulus 80
GPa (retention rate 94.0%), and the amount of oxygen atoms added on the surface was 16/100 carbon atoms.

(複合材の製造) 前記のプラズマ放電処理したマルチフィラメントを2種
のエポキシ樹脂(tpoMtK@ト:+oxMa。
(Manufacture of composite material) The above plasma discharge treated multifilament was mixed with two types of epoxy resins (tpoMtK@t:+oxMa).

及びR−140、三井石油化学工業鱒製)、ジシアノジ
アミド、3−(p−クロロフェニル−1゜1−ジメチル
ウレア及びジメチルホルムアミドをそれぞれ57.4/
19.6/ 3 / 3 / 17の重量比で混合した
樹脂に含浸し、100℃で10分間乾燥させ、プリプレ
グを調製し、これを積層した後100℃で1時間プレス
成形し、一方向積層板を作製した0次いで、該積層板の
曲げ強度及び曲げ弾性率(JIS K 6911)を測
定した。結果を表1に示す。
and R-140, manufactured by Mitsui Petrochemical Industry Co., Ltd.), dicyanodiamide, 3-(p-chlorophenyl-1゜1-dimethylurea and dimethylformamide) at 57.4% each.
19. Impregnated with a resin mixed at a weight ratio of 6/3/3/17 and dried at 100°C for 10 minutes to prepare a prepreg, which was laminated and then press-molded at 100°C for 1 hour to form a unidirectional lamination. After producing the plate, the flexural strength and flexural modulus (JIS K 6911) of the laminate were measured. The results are shown in Table 1.

夫J口1ユ 実施例1で製造した超高分子量ポリエチレンマルチフィ
ラメントを、アリルカリアミンガス雰囲気で実施例1と
同様にプラズマ放電処理した。処理後のフィラメントの
引張強度は2.IGPa (保持率91.3%)、引張
弾性率78GPa (保持率91.8%)であった、又
、表面の酸素原子付加量は8個/100炭素原子であり
、窒素原子付加量は5個/100炭素原子であった。こ
れを試料とし、実施例1と同じ条件下で積層板を作成し
た。結果を表1に示す。
The ultra-high molecular weight polyethylene multifilament produced in Example 1 was subjected to plasma discharge treatment in the same manner as in Example 1 in an allylkaryamine gas atmosphere. The tensile strength of the filament after treatment is 2. IGPa (retention rate 91.3%), tensile modulus was 78GPa (retention rate 91.8%), and the amount of oxygen atoms added to the surface was 8/100 carbon atoms, and the amount of nitrogen atoms added was 5. carbon atoms/100 carbon atoms. Using this as a sample, a laminate was produced under the same conditions as in Example 1. The results are shown in Table 1.

皮JL[工 〈超高分子量ポリエチレンマルチフィラメントの製造〉 極限粘度[ηIs : 17.Odx 7 g、融点:
  134.0℃の超高分子量ポリエチレン粉末(P 
E −II )5重量%、デカリン95重量%からなる
混合物100重量部に対して、耐熱安定剤(3,5−ジ
t−ブチルー4−ヒドロキシトルエン)0.1重量部と
を窒素シールしたセパラブルフラスコに投入し、180
℃の加熱下に1時間攪拌し均一な溶液とした。
Skin JL [Production of ultra-high molecular weight polyethylene multifilament] Intrinsic viscosity [ηIs: 17. Odx 7 g, melting point:
Ultra-high molecular weight polyethylene powder (P
E-II) 0.1 part by weight of a heat-resistant stabilizer (3,5-di-t-butyl-4-hydroxytoluene) was added to 100 parts by weight of a mixture consisting of 5% by weight and 95% by weight of decalin in a separator sealed with nitrogen. Pour into a bull flask and boil at 180 ml.
The mixture was stirred for 1 hour while heating at ℃ to obtain a homogeneous solution.

次いで該溶液を紡糸筒に投入し窒素雰囲気下180℃の
温度にて2時間静置し溶液の脱泡を行った。該溶液を直
径2mmのキャピラリーを100個持つダイプレートよ
りドラフトを2倍以上かけることなく30cm下に位置
する凝固槽(水浴)に押し出し、ゲル状フィラメントと
した。
Next, the solution was put into a spinning tube and allowed to stand at a temperature of 180° C. for 2 hours under a nitrogen atmosphere to degas the solution. The solution was extruded into a coagulation tank (water bath) located 30 cm below a die plate having 100 capillaries with a diameter of 2 mm without applying a draft twice or more, to form a gel filament.

この後、ゲル状フィラメントは連続して1m/分の速度
で直径15cmのボビン上に巻き取られた。ゲル状フィ
ラメントのボビンをn−ヘキサン檀に室温で浸漬し、ゲ
ルの液成分であるデカリンをn−ヘキサンに置換した。
After this, the gel filament was continuously wound onto a 15 cm diameter bobbin at a speed of 1 m/min. The bobbin of the gel filament was immersed in n-hexane at room temperature to replace decalin, the liquid component of the gel, with n-hexane.

このゲル繊維を壱ぎ戻し50℃〜60℃にてn−ヘキサ
ンを蒸発させた。乾燥繊維は1300±100デニール
であった。窒素シールした熱管内に乾燥繊維を50cm
/分で供給し4台のゴデツトロールを用いて三段延伸を
行った。熱管の有効長はそれぞれ50cmで、このとき
第1熱管内温度は110℃、第2熱管内温度は130℃
、第3熱管内温度は140℃であフた。延伸比は、第1
ゴデツトロールと第4ゴデツトロールの回転比で求め、
この時の延伸比は60倍であフた。第2、第3ゴデツト
ロールの回転速度は安定運転可能な範囲で適当に選択し
た。
This gel fiber was returned to its original state and n-hexane was evaporated at 50°C to 60°C. The dry fiber was 1300±100 denier. Place 50cm of dry fiber in a heat tube sealed with nitrogen.
Three-stage stretching was performed using four Godets rolls at a speed of 1/min. The effective length of each heat tube is 50 cm, and the temperature inside the first heat tube is 110°C and the temperature inside the second heat pipe is 130°C.
The temperature inside the third heating tube was 140°C. The stretching ratio is the first
Determined by the rotation ratio of the Godet roll and the 4th Godet roll,
The stretching ratio at this time was 60 times. The rotational speeds of the second and third godet rolls were appropriately selected within a range that allowed stable operation.

得られたマルチフィラメントの物性は極限粘度[ηlp
 :  14.0dfL/ g、極限粘度の低下率17
.6%、引張弾性率80GPa、引張強度2.5GPa
 、繊維2100デニ一ル/100本、表面の酸素原子
の付加量は2.5個/100炭素原子であった。
The physical properties of the obtained multifilament are the intrinsic viscosity [ηlp
: 14.0dfL/g, rate of decrease in limiting viscosity 17
.. 6%, tensile modulus 80GPa, tensile strength 2.5GPa
The fibers were 2100 denier/100 fibers, and the amount of oxygen atoms added to the surface was 2.5/100 carbon atoms.

く複合剤の製造〉 比較例1で製造した超高分子量ポリエチレンマルチフィ
ラメントを、実施例1と同様の条件でプラズマ放電処理
した。処理後のフィラメントの引張強度は、1.5GP
a (保持率60%)、引張弾性率は65GPa(保持
率81%)であった。
Production of composite agent> The ultra-high molecular weight polyethylene multifilament produced in Comparative Example 1 was subjected to plasma discharge treatment under the same conditions as in Example 1. The tensile strength of the filament after treatment is 1.5GP
a (retention rate 60%), and the tensile modulus was 65 GPa (retention rate 81%).

又、表面の酸素原子付加量は、!2個/100炭素原子
であった。これを試料とし、実施例1と同じ条件下で積
層板を作製した。結果を表1に示す。
Also, the amount of oxygen atoms added to the surface is! The number of carbon atoms was 2/100 carbon atoms. Using this as a sample, a laminate was produced under the same conditions as in Example 1. The results are shown in Table 1.

Claims (3)

【特許請求の範囲】[Claims] (1)デカリン溶媒中135℃で測定した極限粘度[η
]_mが3dl/g以上の高分子量ポリオレフィンを、
その極限粘度[η]_pの低下率が14%以下になる条
件下で成形することによってえられた、高度に配向した
ポリオレフィン成形品を、気化性の有機化合物及び/ま
たは無機化合物のガス雰囲気下で、プラズマ放電処理す
ることを特徴とする、接着性を改良したポリオレフィン
成形品の製造方法。
(1) Intrinsic viscosity [η
]_m is 3 dl/g or more of high molecular weight polyolefin,
A highly oriented polyolefin molded product obtained by molding the product under conditions where the rate of decrease in its intrinsic viscosity [η]_p is 14% or less is placed in a gas atmosphere containing a volatile organic compound and/or inorganic compound. A method for producing a polyolefin molded article with improved adhesiveness, characterized by subjecting it to plasma discharge treatment.
(2)プラズマ放電処理されたポリオレフィン成形品が
、その表面に、炭素数100個当り少なくとも酸素を4
個以上付加したものである請求項(1)記載の製造方法
(2) A polyolefin molded product subjected to plasma discharge treatment has at least 4 oxygen per 100 carbon atoms on its surface.
The manufacturing method according to claim (1), wherein at least one is added.
(3)気化性の有機化合物及び/または無機化合物が、
カルボキシル基及び/またはアミノ基含有モノマーであ
る請求項(1)記載の製造方法。
(3) The volatile organic compound and/or inorganic compound is
The method according to claim 1, wherein the monomer contains a carboxyl group and/or an amino group.
JP1183189A 1989-01-23 1989-01-23 Production of polyolefin molding of improved adhesiveness Pending JPH02194033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1183189A JPH02194033A (en) 1989-01-23 1989-01-23 Production of polyolefin molding of improved adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1183189A JPH02194033A (en) 1989-01-23 1989-01-23 Production of polyolefin molding of improved adhesiveness

Publications (1)

Publication Number Publication Date
JPH02194033A true JPH02194033A (en) 1990-07-31

Family

ID=11788701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1183189A Pending JPH02194033A (en) 1989-01-23 1989-01-23 Production of polyolefin molding of improved adhesiveness

Country Status (1)

Country Link
JP (1) JPH02194033A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241330A (en) * 1985-04-18 1986-10-27 Toyobo Co Ltd Polyethylene molded article having improved adhesiveness
JPS63213530A (en) * 1987-03-02 1988-09-06 Mitsui Petrochem Ind Ltd Polyolefin molded article having excellent adhesiveness and production thereof
JPH026657A (en) * 1987-10-02 1990-01-10 Dyneema Vof Highly oriented ultrahigh molecular weight polyolefin product, and its production and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241330A (en) * 1985-04-18 1986-10-27 Toyobo Co Ltd Polyethylene molded article having improved adhesiveness
JPS63213530A (en) * 1987-03-02 1988-09-06 Mitsui Petrochem Ind Ltd Polyolefin molded article having excellent adhesiveness and production thereof
JPH026657A (en) * 1987-10-02 1990-01-10 Dyneema Vof Highly oriented ultrahigh molecular weight polyolefin product, and its production and use

Similar Documents

Publication Publication Date Title
US5001008A (en) Reinforcing fibrous material
US4563392A (en) Coated extended chain polyolefin fiber
US4543286A (en) Composite containing coated extended chain polyolefin fibers
US5183701A (en) Articles of highly oriented polyolefins of ultrahigh molecular weight, process for their manufacture, and their use
KR910000813B1 (en) Polyolefins of ultrahigh molecular weight process for their manufacture and their use
US4616059A (en) Graft-modified ultrahigh-molecular-weight polyethylene and process for producing same
CA1284709C (en) Process for producing a crosslinked and oriented polyethylene film
JPS58169521A (en) Coated elongated chain polyolefin fiber
JP2012007280A (en) Carbon fiber bundle and method for producing the same, and molded article from the same
EP0490448A1 (en) Continuous products made of thermosettable monomers
EP0311989B1 (en) Surface treatment of polyethylene fibers
EP0313915A1 (en) Surface treatment of polyolefin objects
JPS63213530A (en) Polyolefin molded article having excellent adhesiveness and production thereof
JPH02194033A (en) Production of polyolefin molding of improved adhesiveness
JPS6259637A (en) Improvement of adhesiveness
JPH05132345A (en) Production of reinforcing fiber for cement product
KR960009000B1 (en) Acoustic material
JPH01156538A (en) Combination of polyolefin filament or yarn of low humidity and low bonding force, and filament or yarn of high humidity and high bonding strength
JPH01156531A (en) Combination of filaments having different damping responses to mechanical vibration in matrix and use thereof
JPH03279413A (en) Molecularly oriented molded body of high-molecular weight polyethylene
JPS61124675A (en) Production of hydrophilic polyolefin nonwoven fabric
US5200274A (en) Process for surface-modifying polypropylene or polyethylene
JPS6245634A (en) Improvement of adhesion
JPH01260060A (en) Ultrahigh-molecular-weight polyolefin fiber and production thereof
JPH0251539A (en) Laminate with low dielectric characteristics