JPS61240437A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61240437A
JPS61240437A JP8316485A JP8316485A JPS61240437A JP S61240437 A JPS61240437 A JP S61240437A JP 8316485 A JP8316485 A JP 8316485A JP 8316485 A JP8316485 A JP 8316485A JP S61240437 A JPS61240437 A JP S61240437A
Authority
JP
Japan
Prior art keywords
substrate
glow discharge
recording medium
magnetic recording
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8316485A
Other languages
Japanese (ja)
Inventor
Ryuji Sugita
龍二 杉田
Kiyokazu Touma
清和 東間
Kazuyoshi Honda
和義 本田
Taro Nanbu
太郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8316485A priority Critical patent/JPS61240437A/en
Publication of JPS61240437A publication Critical patent/JPS61240437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the titled magnetic recording medium having stabilized magnetic characteristics and form by treating a substrate with glow discharge immediately before the substrate begins to contact a preheating roller when a metallic thin film magnetic layer is formed by vapor deposition. CONSTITUTION:A substrate 1 of a high molecular material is treated with glow discharge by a glow discharge electrode 8 immediately before the substrate begins to contact a preheating roller 3. The glow discharge electrode 8 is arranged so that the glow discharge is exerted on the part of the substrate 1 which begins to contact the preheating roller 3. The surface conditions of the substrate 1 are made uniform by the passage of the substrate 1 through a gas under the influence of the glow discharge and the electrification of the substrate 1 is removed. Consequently, the sticking of the substrate 1 on a can 2 is made uniform, a magnetic recording medium without any creases and having uniform characteristics can be obtained. Ar or N2 is preferably used as the gas to be introduced into a vacuum vessel in consideration of its stability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高分子材料より成る基板上に直接あるいは下地
層を介して金属wIWA磁性層を形成した磁気記録媒体
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a magnetic recording medium in which a metal wIWA magnetic layer is formed on a substrate made of a polymeric material either directly or via an underlayer.

従来の技術 従来、磁気記録媒体としては非磁性基板上に磁性粉を塗
布した塗布形のものが使用されて来たが、より高い記録
密度を達成するために、非磁性基板上に金属W@膜を真
空蒸着法で形成したWiI!lI形が実用化されつつあ
る。
Conventional technology Conventionally, coated magnetic recording media have been used in which magnetic powder is coated on a non-magnetic substrate, but in order to achieve higher recording density, metal W@ WiI! film formed by vacuum evaporation method! The II type is being put into practical use.

高分子材料より成る基板上に真空蒸着法を用いて金属薄
膜磁性層を形成する方法としては、基板を円筒状キャン
の周面に沿わせて走行させつつ蒸着する方法が最も優れ
ている。第3図はこのような方法を用いた真空蒸着装置
の内部構造の概略を示す。高分子材料より成る基板1は
予備加熱ローラ3に沿って走行した後に昇温された円筒
状キャン2の周面に沿って矢印六方向に走行する。ここ
で円筒状キャン2を昇温する理由は磁性層の磁気特性の
向上にある。すなわち、面内記録用あるいは垂直磁気記
録用のいずれの金属薄膜形磁性層においても、一般に蒸
着時の基板温度が高い程、保磁力が増加し記録再生特性
が向上するためである。
As a method for forming a metal thin film magnetic layer on a substrate made of a polymeric material using a vacuum evaporation method, the best method is to perform evaporation while moving the substrate along the circumferential surface of a cylindrical can. FIG. 3 schematically shows the internal structure of a vacuum evaporation apparatus using such a method. A substrate 1 made of a polymer material runs along a preheating roller 3 and then runs along the circumferential surface of a heated cylindrical can 2 in the six directions of arrows. The reason for raising the temperature of the cylindrical can 2 is to improve the magnetic properties of the magnetic layer. That is, in any metal thin film magnetic layer for in-plane recording or perpendicular magnetic recording, the higher the substrate temperature during deposition, the higher the coercive force and the better the recording and reproducing characteristics.

例えば垂直磁気記録用のco−Qr合金膜を磁性層とし
て形成する際に、満足な記録再生特性を得るためには、
200℃〜300℃に円筒状キャン周面の温度を上げる
必要がある。また、予備加熱ローラ3は媒体のしわを防
止するために必要である。
For example, when forming a co-Qr alloy film for perpendicular magnetic recording as a magnetic layer, in order to obtain satisfactory recording and reproducing characteristics,
It is necessary to raise the temperature of the circumferential surface of the cylindrical can to 200°C to 300°C. Additionally, the preheating roller 3 is necessary to prevent wrinkles in the medium.

すなわち、予備加熱ローラ3が無いと、室温にある基板
1が昇温された円筒状キャ゛ン2に接し始める際に、急
激な温度変化のためにしわが生じてしまう。予備加熱ロ
ーラ3で予備加熱した後に、昇温された円筒状キャン2
に接し始めると基板1はしわが無い状態で円筒状キャン
2に沿って走行し、蒸発源7によって磁性層が形成され
る。4.5はそれぞれ基板1の供給ロール及び巻取りロ
ール、6はフリーローラである。
That is, without the preheating roller 3, when the substrate 1 at room temperature begins to come into contact with the heated cylindrical can 2, wrinkles would occur due to the sudden temperature change. The cylindrical can 2 is heated after being preheated by the preheating roller 3.
When the substrate 1 starts to come into contact with the cylindrical can 2, the substrate 1 runs along the cylindrical can 2 without wrinkles, and a magnetic layer is formed by the evaporation source 7. 4.5 is a supply roll and a take-up roll for the substrate 1, respectively, and 6 is a free roller.

発明が解決しようとする問題点 第3図のような真空蒸着装置にて高分子材料より成る基
板上に磁性層を形成すると、基板1の幅方向および長さ
方向に特性が変動して安定な膜を得ることが困難である
。このことを例をあげて説明すると、垂直磁気記録用媒
体としてよく知られているCo−Cr垂直磁気異方性膜
を、第3図の真空蒸着装置にて作製し、膜面に垂直方向
の保磁力の長さ方向の分布を測定すると、第4図のよう
に大幅な変化が見られた。幅方向でも第4図と同様に垂
直方向の保磁力が変化していた。この原因としては、基
板1のキャン2への密着が均一でなく、基板1にキャン
2と密着している部分とそうでない部分ができるために
生じる基板1の温度むらが考えられる。このように、磁
気特性が均一にならないこと以外に、蒸着部においてし
わが入り易く、磁気特性、形状ともに安定な媒体を作製
することは困難である。
Problems to be Solved by the Invention When a magnetic layer is formed on a substrate made of a polymeric material using a vacuum evaporation apparatus as shown in FIG. It is difficult to obtain membranes. To explain this with an example, a Co-Cr perpendicular magnetic anisotropic film, which is well known as a perpendicular magnetic recording medium, is fabricated using the vacuum evaporation apparatus shown in Fig. 3. When we measured the longitudinal distribution of coercive force, we found a significant change as shown in Figure 4. Also in the width direction, the coercive force in the vertical direction changed as shown in FIG. The reason for this is considered to be temperature irregularities in the substrate 1 caused by uneven contact between the substrate 1 and the can 2, with some portions of the substrate 1 being in close contact with the can 2 and other portions not being in close contact with the can 2. As described above, in addition to the fact that the magnetic properties are not uniform, wrinkles tend to occur in the deposited area, making it difficult to produce a medium with stable magnetic properties and shape.

本発明は磁気特性ならびに形状が安定な金属薄膜型磁気
記録媒体の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a metal thin film magnetic recording medium having stable magnetic properties and shape.

問題点を解決するための手段 本発明の磁気記録媒体の製造方法は、高分子材料基板を
予備加熱ローラに沿って走行させた後に昇温された円筒
状キャンの周面に沿って走行させて前記円筒状キャン位
置で前記基板上に直接あるいは下地層を介して金Iil
薄!11!l性層を真空蒸着法によって形成する際に、
基板が前記予備加熱ローラに接し始める直前に基板にグ
ロー放電処理を施すことを特徴とする。
Means for Solving the Problems The method for manufacturing a magnetic recording medium of the present invention includes running a polymeric material substrate along a preheating roller and then running it along the circumferential surface of a cylindrical can whose temperature has been raised. Gold Iil is deposited on the substrate at the cylindrical can position either directly or through an underlayer.
Thin! 11! When forming the l-type layer by vacuum evaporation method,
The method is characterized in that the substrate is subjected to a glow discharge treatment immediately before the substrate starts coming into contact with the preheating roller.

作用 この構成によれば、基板が予備加熱ローラに接し始める
直前(ここで言う直前とは接し始める部分を含んでいる
。)に基板をグロー放電処理するので、基板の表面状態
が均一になり、かつグロー放電による除電効果のために
基板の帯電が取り除かれて予備加熱O−ラおよびキャン
に一様に密着し、その結果、しわのない特性の均一な磁
気記録媒体が得られる。
Effect: According to this configuration, the substrate is subjected to glow discharge treatment immediately before it starts to come into contact with the preheating roller (the term "immediately before" here includes the part where it starts to come into contact with the preheating roller), so that the surface condition of the substrate becomes uniform. Further, due to the neutralization effect of the glow discharge, the charge on the substrate is removed and the substrate uniformly adheres to the preheated roller and can, resulting in a wrinkle-free magnetic recording medium with uniform characteristics.

実施例 以下、本発明の製造方法を具体的な一実施例に基づいて
説明する。
EXAMPLE Hereinafter, the manufacturing method of the present invention will be explained based on a specific example.

第1図は本発明の製造方法を実施する真空蒸着装置を示
し、第3図と同様の作用を成すものには同一符号が付け
られており、高分子材料基板1が予備加熱ローラ3に接
し始める直前にグロー放電用電極8によりグロー放電処
理が施される点だけが第3図とは異なる。グロー放電用
電極8に電力を供給し真空度を調整することにより電極
近傍にグロー放電が発生する。なお、グロー放電用電極
8は、グロー放電が基板1が予備加熱ローラ3に接し始
める部分にも及ぶように配置されている。
FIG. 1 shows a vacuum evaporation apparatus for carrying out the manufacturing method of the present invention. Components having the same functions as those in FIG. 3 are given the same reference numerals. The only difference from FIG. 3 is that the glow discharge treatment is performed by the glow discharge electrode 8 immediately before starting. By supplying power to the glow discharge electrode 8 and adjusting the degree of vacuum, glow discharge is generated near the electrode. Note that the glow discharge electrode 8 is arranged so that the glow discharge also extends to the portion where the substrate 1 begins to come into contact with the preheating roller 3 .

このグロー放電状態にある気体中を基板1が通過するこ
とにより、基板1の表面状態が均一になり、かつ基板1
の帯電が取り除かれる。その結果、キャン2への基板1
の貼り付きが一様になり、しわのない特性の均一な磁気
記録媒体が得られる。
By passing the substrate 1 through the gas in this glow discharge state, the surface condition of the substrate 1 becomes uniform, and the substrate 1
The electrical charge is removed. As a result, board 1 to can 2
The adhesion becomes uniform, and a magnetic recording medium with uniform properties and no wrinkles can be obtained.

グロー放電の形式としては、直流、交流、高周波、マグ
ネトロン形など、種々あるが、これらのいずれでも良い
。グロー放電を生じさせるために真空槽内に導入する気
体としては、A「あるいはN2が安定性の点から好まし
い。
There are various types of glow discharge, including direct current, alternating current, high frequency, and magnetron type, and any of these types may be used. As the gas introduced into the vacuum chamber to generate glow discharge, A or N2 is preferable from the viewpoint of stability.

なお、グロー放電用電極を第5図に示すように、基板1
の予備加熱ローラ3への入口近傍から離して設置すると
、上述の効果は大幅に低下してしまう。これは、グロー
放電処理を受けた基板1が予備加熱O−ラ3に接し始め
るまでに、真空槽内の気体やフリーローラ9に接するの
で、グロー放電処理の効果が弱められてしまい、予備加
熱ローラ3への密着性が不均一になり、これが原因で円
筒状キャン2への密着性も不均一になるためだと考えら
れる。
In addition, as shown in FIG. 5, the glow discharge electrode is attached to the substrate 1.
If it is installed away from the vicinity of the entrance to the preheating roller 3, the above-mentioned effect will be significantly reduced. This is because before the substrate 1 that has been subjected to the glow discharge treatment begins to come into contact with the preheating roller 3, it comes into contact with the gas in the vacuum chamber and the free roller 9, so the effect of the glow discharge treatment is weakened and the preheating It is thought that this is because the adhesion to the roller 3 becomes non-uniform, which causes the adhesion to the cylindrical can 2 to become non-uniform as well.

また、グロー放電処理は基板1の片側だけに施してもか
なりの効果が認められるが、第1図に示す如く基板1の
両側に施すことが望ましい。さらに第2図に示す如く、
真空槽11内を仕切り板10によってグロー放電処理部
Bと蒸着膜形成部Cとに仕切り、蒸着膜形成部Cの真空
度をグロー放電処理部Bよりも高い真空度に保つことに
より、磁性層の磁気特性が向上する。第2図において、
12は排気ポンプである。
Further, although a considerable effect can be seen even if the glow discharge treatment is applied only to one side of the substrate 1, it is preferable to apply the glow discharge treatment to both sides of the substrate 1 as shown in FIG. Furthermore, as shown in Figure 2,
The inside of the vacuum chamber 11 is partitioned into a glow discharge processing section B and a vapor deposited film forming section C using a partition plate 10, and the vacuum degree of the vapor deposited film forming section C is maintained at a higher degree of vacuum than that of the glow discharge processing section B. Improves magnetic properties. In Figure 2,
12 is an exhaust pump.

また、磁性層とキャン2の周面との闇に電圧を印加する
ことにより、基板1のキャン2への密着性が向上し、よ
り安定な媒体が得られる。
Further, by applying a voltage between the magnetic layer and the circumferential surface of the can 2, the adhesion of the substrate 1 to the can 2 is improved, and a more stable medium can be obtained.

なお、Go−Cr垂直磁気異方性膜を真空蒸着法で作製
する際には、前述のようにキャン2の局面温度を昇温す
る必要があるので、本発明はこの場合に特に有効である
Note that when producing a Go-Cr perpendicular magnetic anisotropic film by vacuum evaporation, it is necessary to raise the temperature of the can 2 as described above, so the present invention is particularly effective in this case. .

次に本発明のより具体的な実験例を説明する。Next, more specific experimental examples of the present invention will be explained.

[実験例] 第2図の真空蒸着装置にて、基板1として膜厚10μ霧
のポリイミドフィルムを使用し、この上に磁性層として
膜厚3000 AのCo−Cr垂直磁気異方性膜を形成
した。グロー放電用電源としては13、fSMHzの高
周波電源を用い、グロー放電用電極8をポリイミドフィ
ルムが予備加熱ローラ3に接し始める直前に設置した。
[Experiment example] Using the vacuum evaporation apparatus shown in Fig. 2, a polyimide film with a thickness of 10 μm was used as the substrate 1, and a Co-Cr perpendicular magnetic anisotropic film with a thickness of 3000 A was formed thereon as a magnetic layer. did. A high frequency power source of 13 fSMHz was used as the power source for glow discharge, and the electrode 8 for glow discharge was installed just before the polyimide film started to come into contact with the preheating roller 3.

グロー放電を発生させるために、グロー放電用電極の近
傍からA「を導入し、グロー放電部近傍の真空度を0.
017orrとした。この状態で蒸着膜形成部近傍の真
空度は1.2X 1G−’ T Orrであった。また
予備加熱ローラ3及びキャン2の周面の温度を、それぞ
れ150℃及び260℃とした。また、キャン2の周面
とCo−Cr垂直磁気異方性膜との間に120ボルトの
電圧を印加した。
In order to generate glow discharge, A' is introduced from near the glow discharge electrode, and the degree of vacuum near the glow discharge part is set to 0.
It was set to 017orr. In this state, the degree of vacuum near the vapor deposited film forming part was 1.2X 1G-' T Orr. Further, the temperatures of the peripheral surfaces of the preheating roller 3 and the can 2 were set to 150°C and 260°C, respectively. Further, a voltage of 120 volts was applied between the circumferential surface of the can 2 and the Co--Cr perpendicular magnetic anisotropic film.

このようにして形成された膜はしわが全くなく、長さ方
向及び幅方向に特性が均一であり、垂直磁気記録媒体と
して優れた特性を有していた。これに対し、グロー放電
処理を施さない場合には、長さ方向及び幅方向に均一な
特性の膜は得られなかった。なお、上記のように、ポリ
イミドフィルム上に直接co−Cr膜を形成せずに、間
にT1あるいはNi−Fe等の下地層を介してCo −
Or膜を形成する場合にも同様の効果が認められた・。
The film thus formed had no wrinkles, had uniform properties in the length direction and width direction, and had excellent properties as a perpendicular magnetic recording medium. On the other hand, when the glow discharge treatment was not performed, a film with uniform characteristics in the length and width directions could not be obtained. Note that, as mentioned above, instead of directly forming a co-Cr film on the polyimide film, a Co-
A similar effect was observed when forming an Or film.

発明の詳細 な説明のように本発明の磁気記録媒体の製造方法は、高
分子材料基板が予備加熱ローラに接し始める直前に、基
板にグロー放電処理を施し、円筒状キャン位置で高分子
材料基板上に直接にあるいは下地層を介して金li!薄
膜磁性層を真空蒸着するため、基板が予備加熱ローラに
接し始める直前(ここで言う直前とは予備加熱ローラに
接し始める部分を含んでいる。)に基板をグロー放電処
理すると、基板の表面状態が均一になり、かつグロー放
電による除電効果のために基板の帯電が取り除かれて予
備加熱ローラおよびキャンに一様に密着し、完成した磁
気記録媒体は高分子材料基板上にしわがなく、長さ方向
及び幅方向に特性が均一な磁性層であった。
As described in the detailed description of the invention, the method for manufacturing a magnetic recording medium of the present invention involves subjecting the polymer material substrate to a glow discharge treatment immediately before the polymer material substrate starts contacting the preheating roller, and discharging the polymer material substrate at a cylindrical can position. Gold li! directly on top or through the base layer! In order to vacuum-deposit a thin film magnetic layer, glow discharge treatment is applied to the substrate just before it starts contacting the preheating roller (here, "immediately" includes the part where it starts contacting the preheating roller), which changes the surface condition of the substrate. In addition, due to the neutralization effect of glow discharge, the charge on the substrate is removed and the substrate adheres uniformly to the preheating roller and can, and the completed magnetic recording medium has no wrinkles on the polymer material substrate and has a long length. The magnetic layer had uniform characteristics in the direction and width direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法を実施する真空蒸着装置の一
実施例の構成図、第2図は第1図の他の実施例の構成図
、第3図は従来の真空蒸着装置の構成図、第4図は従来
の方法で磁性層を蒸着した場合の保磁力のむらを示す説
明図、第5図は第1図におけるグロー放電用電極の配設
位置説明図である。 1・・・高分子材n基板、2・・・円筒状キャン、3・
・・予備加熱ローラ、4・・・供給ロール、5・・・巻
取りロール、7・・・蒸発源、8・・・グロー放電用電
極、10・・・仕切り板、11・・・真空槽、B・・・
グロー放電処理部、C・・・蒸着膜形成部 代理人   森  本  義  弘 第1図 第3図 第4図 長2(−〕 第5図
FIG. 1 is a configuration diagram of an embodiment of a vacuum evaporation apparatus for carrying out the manufacturing method of the present invention, FIG. 2 is a configuration diagram of another embodiment of FIG. 1, and FIG. 3 is a configuration diagram of a conventional vacuum evaporation apparatus. FIG. 4 is an explanatory diagram showing the unevenness of coercive force when a magnetic layer is deposited by a conventional method, and FIG. 5 is an explanatory diagram of the arrangement position of the glow discharge electrode in FIG. 1. 1... Polymer material n substrate, 2... Cylindrical can, 3...
... Preheating roller, 4 ... Supply roll, 5 ... Winding roll, 7 ... Evaporation source, 8 ... Glow discharge electrode, 10 ... Partition plate, 11 ... Vacuum chamber , B...
Glow discharge processing section, C...Deposited film forming section representative Yoshihiro Morimoto Figure 1 Figure 3 Figure 4 Length 2 (-) Figure 5

Claims (1)

【特許請求の範囲】 1、高分子材料基板を予備加熱ローラに沿って走行させ
た後に昇温された円筒状キャンの周面に沿って走行させ
て前記円筒状キャン位置で前記基板上に直接あるいは下
地層を介して金属薄膜磁性層を真空蒸着法によって形成
する際に、基板が前記予備加熱ローラに接し始める直前
に基板にグロー放電処理を施す磁気記録媒体の製造方法
。 2、グロー放電処理を、基板の両面に施すことを特徴と
する特許請求の範囲第1項記載の磁気記録媒体の製造方
法。 3、グロー放電処理と磁性層の蒸着とを真空槽内で両室
間に差圧を有する別々の室で実施することを特徴とする
特許請求の範囲第1項記載の磁気記録媒体の製造方法。 4、磁性層と円筒状キャンの周面の電位を異ならせるこ
とを特徴とする特許請求の範囲第1項記載の磁気記録媒
体の製造方法。 5、グロー放電用のガスとして、ArあるいはN_2を
用いることを特徴とする特許請求の範囲第1項記載の磁
気記録媒体の製造方法。 6、磁性層としてCo−Cr垂直磁気異方性膜を用いる
ことを特徴とする特許請求の範囲第1項記載の磁気記録
媒体の製造方法。
[Claims] 1. After the polymer material substrate is run along a preheating roller, the polymer material substrate is run along the circumferential surface of a heated cylindrical can and directly onto the substrate at the position of the cylindrical can. Alternatively, a method for manufacturing a magnetic recording medium in which a glow discharge treatment is applied to a substrate immediately before the substrate starts contacting the preheating roller when forming a thin metal magnetic layer via a base layer by vacuum evaporation. 2. The method for manufacturing a magnetic recording medium according to claim 1, wherein glow discharge treatment is performed on both sides of the substrate. 3. A method for manufacturing a magnetic recording medium according to claim 1, characterized in that the glow discharge treatment and the deposition of the magnetic layer are performed in separate chambers having a pressure difference between the two chambers in a vacuum chamber. . 4. The method of manufacturing a magnetic recording medium according to claim 1, characterized in that the potentials of the magnetic layer and the circumferential surface of the cylindrical can are made different. 5. The method for manufacturing a magnetic recording medium according to claim 1, characterized in that Ar or N_2 is used as the gas for glow discharge. 6. The method of manufacturing a magnetic recording medium according to claim 1, characterized in that a Co--Cr perpendicular magnetic anisotropic film is used as the magnetic layer.
JP8316485A 1985-04-18 1985-04-18 Production of magnetic recording medium Pending JPS61240437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8316485A JPS61240437A (en) 1985-04-18 1985-04-18 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8316485A JPS61240437A (en) 1985-04-18 1985-04-18 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61240437A true JPS61240437A (en) 1986-10-25

Family

ID=13794616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8316485A Pending JPS61240437A (en) 1985-04-18 1985-04-18 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61240437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294025A (en) * 1988-09-29 1990-04-04 Tonen Corp Production of magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294025A (en) * 1988-09-29 1990-04-04 Tonen Corp Production of magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS61240436A (en) Production of magnetic recording medium
JPS61240437A (en) Production of magnetic recording medium
JPS59124038A (en) Manufacture of magnetic recording medium
JPS62207867A (en) Production of thin metallic film
JPS63277750A (en) Formation of thin film
JPS6256567A (en) Production of metallic thin film
JPS63219570A (en) Production of metallic thin film
JPS62247071A (en) Device for producing thin metallic film
JPS63255362A (en) Device for producing thin metallic film
JPS58222439A (en) Magnetic recording medium and its manufacture
JPS61196430A (en) Production of magnetic recording medium
JPS62283420A (en) Production of magnetic recording medium
KR100189909B1 (en) Magnetic head and the manufacturing method
JPH01273221A (en) Production of thin metallic film
JPS62226426A (en) Production device for magnetic recording medium
JP2548231B2 (en) Method of manufacturing magnetic recording medium
JPS60119636A (en) Manufacturing equipment of magnetic recording medium
JPS60147933A (en) Magnetic recording medium manufacturing device
JPH0433124B2 (en)
JPS634631B2 (en)
JPH07103464B2 (en) Metal thin film manufacturing method
JPS6020319A (en) Production of thin metallic film type magnetic recording medium
JPS6032127A (en) Production of magnetic recording medium
JPH038117A (en) Manufacture of magnetic recording tape
JPS6132219A (en) Manufacture of vertical magnetic recording medium