JPS61240126A - Apparatus for measuring luminous intensity - Google Patents

Apparatus for measuring luminous intensity

Info

Publication number
JPS61240126A
JPS61240126A JP8195385A JP8195385A JPS61240126A JP S61240126 A JPS61240126 A JP S61240126A JP 8195385 A JP8195385 A JP 8195385A JP 8195385 A JP8195385 A JP 8195385A JP S61240126 A JPS61240126 A JP S61240126A
Authority
JP
Japan
Prior art keywords
light
aperture
luminous intensity
detector
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8195385A
Other languages
Japanese (ja)
Inventor
Makoto Uehara
誠 上原
Hideo Mizutani
英夫 水谷
Toshiyuki Shimizu
清水 寿幸
Sakuji Watanabe
渡辺 朔次
Masaaki Aoyama
青山 正昭
Akihiko Moroi
諸井 明彦
Michiyuki Muramatsu
村松 享幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP8195385A priority Critical patent/JPS61240126A/en
Publication of JPS61240126A publication Critical patent/JPS61240126A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0418Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using attenuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To measure high luminous intensity in a small area with high accuracy, by providing a light quantity attenuating member reduced in deterioration to light incident to a luminous intensity measuring region and having an aperture for transmitting light and a photoelectric converting means receiving the transmitted light of said aperture. CONSTITUTION:An aperture plate 1 is arranged so as to allow the upper surface thereof to coincide with the luminous intensity measuring surface of an exposure apparatus and provided with a thin and small aperture 1a which corresponds to a luminous intensity measuring region. A metal thin plate 2 is arranged below the aperture plate 1 and a large number of minute apertures 2a is formed to the light transmitting region thereof corresponding to the aperture 1a at random. A wavelength discriminating member 3 such as a color glass filter or an interference filter is arranged below the metal plate 2 and a light receiving detector 4 is arranged below the member 3. Light 5 such as g-rays or i-rays for performing the exposure of a semiconductor is guided to the detector 4 through the apertures 1a, 2a and the member 3. The luminous intensity of the luminous intensity measuring surface is measured from the photoelectric output of the detector 4. By this method, the luminous intensity of a small aperture area irradiated with strong light can be measured with high reliability.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、小さな面積における。非常に高い照度を高精
度で測定する照度測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention is directed to small areas. The present invention relates to an illuminance measuring device that measures extremely high illuminance with high precision.

(発明の背景) 七 単位面積当りの光エネルギーで測定する照度計として、
比較的広い面積について測定するカメラ用には種々の方
法が考案されている。
(Background of the invention) As an illumination meter that measures light energy per unit area,
Various methods have been devised for cameras to measure relatively large areas.

しかし半導体製造のりソゲラフイエ程などで必要になる
。小さな面積を精度良く測定できる照度計は存在しない
However, it is needed in the semiconductor manufacturing process. There is no illumination meter that can accurately measure small areas.

光りソゲラフイエ程では高い解像度と高いコントラスト
を得るために使用波長にg&’!(435,8nw)や
i線(365rus)等の紫外光を露光波長として使う
、また感光材として用いられる有機系レジストは感度が
低いため、露光には非常に高いエネルギー↓必要とする
0例えばステッパー(半導体露光装置)などのりソグラ
フイ装置では開口数N A −0,2〜0.6のg線又
はi線にて色補正された投影レンズで5 tm ’〜2
0n+’の露光領域が得られており、そこでの照度は1
00mw/aa〜1000 mw/cd (ここでmw
はミリワット)ある。
G&' to the wavelength used to obtain high resolution and high contrast in the light of Sogerahuie! Ultraviolet light such as (435,8nw) or i-line (365rus) is used as the exposure wavelength, and organic resists used as photosensitive materials have low sensitivity, so exposure requires very high energy ↓ 0 For example, stepper (semiconductor exposure equipment), etc., a projection lens color-corrected at the g-line or i-line with a numerical aperture of NA -0.2 to 0.6 is 5 tm' to 2.
An exposure area of 0n+' is obtained, and the illuminance there is 1
00mw/aa~1000mw/cd (here mw
is milliwatt).

また露光領域内の照度ムラは最大でも±2.5%位にお
さえなければ、露光領域全面にわたり均質な結像が得ら
れないと云われている。
Furthermore, it is said that uniform imaging cannot be obtained over the entire exposed area unless the illuminance unevenness within the exposed area is suppressed to about ±2.5% at the maximum.

このような条件下で、従来の照度計では波長骨Jし 別のための色ガラスや干渉フイサタの劣化、及び受光デ
ィテクターの劣化により比較的長い時間しンジで信頼性
を欠いていた。また短い時間レンジでも強い光エネルギ
ーが色ガラスや干渉フイゲタに当ると透過率がドリフト
し信頼性のある測定値が得られないという欠点もあった
Under such conditions, conventional illuminometers lack reliability over a relatively long period of time due to deterioration of the colored glass for wavelength separation, interference filters, and deterioration of the light receiving detector. Another drawback is that even in a short time range, if strong light energy hits colored glass or an interference figure, the transmittance will drift, making it impossible to obtain reliable measured values.

これらは、波長が短く強いエネルギーの光が色ガラスや
干渉フイリタ、受光ディテクターに入射するためおこる
現象であり、入射エネルギーを減衰させれば測定信幀性
は非常に良(なる。
These phenomena occur because light with a short wavelength and high energy enters the colored glass, interference filter, or photodetector, and measurement reliability is improved if the incident energy is attenuated.

(発明の目的) 本発明は半導体製造りソゲラフイエ程等において強い光
が照射される小開口面積の照度を高い信頼性をもって測
定することができる照度測定装置を提供することを目的
にしている。
(Objective of the Invention) An object of the present invention is to provide an illuminance measuring device that can measure with high reliability the illuminance of a small aperture area that is irradiated with strong light in a semiconductor manufacturing process or the like.

(実施例) 第1図は半導体露光装置の露光面の照度を測定する照度
測定装置を示す1本発明の第1実施例である。同図にお
いて、1は上面が露光装置の照度測定面と一致せしめら
れる開口板である。開口板1は厚さが薄く、小さな開口
1aを有している。
(Embodiment) FIG. 1 is a first embodiment of the present invention showing an illuminance measuring device for measuring illuminance on an exposure surface of a semiconductor exposure apparatus. In the figure, reference numeral 1 denotes an aperture plate whose upper surface is made to coincide with the illuminance measuring surface of the exposure device. The aperture plate 1 is thin and has a small aperture 1a.

そしてこの間口1aが照度測定域に相当している。This frontage 1a corresponds to the illuminance measurement area.

ステンレス、燐青銅等を材質とする金属の薄板2は開口
板1の下に配置され、開口1aに対向するの波長骨カリ
部材3は金属板2の下に配置される。
A thin metal plate 2 made of stainless steel, phosphor bronze, or the like is placed under the aperture plate 1, and a wavelength bone potion member 3 facing the aperture 1a is placed under the metal plate 2.

受光ディテクター4は波長分別部材3の下に配置される
The light receiving detector 4 is arranged below the wavelength separation member 3.

そして半導体露光を行なう為のg線、i線等の光5は、
開口1a+2a、波長分別部材3を介してディテクター
4に導かれ、このディテクターの光電出力より照度測定
面の照度が測定される。
The light 5 such as g-line and i-line for semiconductor exposure is as follows:
The light is guided to a detector 4 via the aperture 1a+2a and the wavelength separation member 3, and the illuminance of the illuminance measurement surface is measured from the photoelectric output of this detector.

本実施例では金属板2の微小開口によって光5のエネル
ギーが減衰されるので0分別部材3やディテクター4が
高いエネルギーにさらされることがなく1部材3.4の
劣化及び照度測定値のドリフトを非常に小さくすること
ができる。
In this embodiment, the energy of the light 5 is attenuated by the minute aperture in the metal plate 2, so that the 0-separating member 3 and the detector 4 are not exposed to high energy, thereby preventing the deterioration of the 1-member 3.4 and the drift of the illuminance measurement value. Can be made very small.

本実施例においては、金属板2が光量減衰部材を、波長
分別部材3が光学部材を、ディテクター4が光電変換手
段を構成している。
In this embodiment, the metal plate 2 constitutes a light quantity attenuation member, the wavelength separation member 3 constitutes an optical member, and the detector 4 constitutes a photoelectric conversion means.

次に具体的な数値で本実施例の効果を確認する。Next, the effects of this example will be confirmed using specific numerical values.

開口1aの大きさをφ1.受光ディテクター4の受光域
をφ4.開ロ1aから受光ディテクター4までの距離を
り、波長分別部材3の厚さをt、屈折率をnとする。こ
こで開口板1.光量減衰部材2は非常に薄い厚さであり
非常に接近して置かれており、受光ディテクター4も波
長分別光学部材3に非常に接近して置かれているため、
開口1aより波長分別光学部材3までの空気間隔lはl
へL−t(1)式 と想定できる。光量減衰部材2はランダムに微小開口を
設けてムるため、干渉効果が少なく、ある減衰率dcで
幾何光学的に光束は進むと考えられる。また入射する光
束の開口数(N、A)より最大入射角θは。
The size of the opening 1a is φ1. The light receiving area of the light receiving detector 4 is φ4. The distance from the aperture 1a to the light receiving detector 4 is calculated, the thickness of the wavelength separation member 3 is t, and the refractive index is n. Here, aperture plate 1. The light amount attenuation member 2 has a very thin thickness and is placed very close to each other, and the light receiving detector 4 is also placed very close to the wavelength separation optical member 3.
The air distance l from the aperture 1a to the wavelength separation optical member 3 is l.
can be assumed to be L-t(1) equation. Since the light amount attenuation member 2 has minute apertures randomly provided, there is little interference effect, and it is considered that the light beam advances geometrically at a certain attenuation rate dc. Also, the maximum angle of incidence θ is determined from the numerical aperture (N, A) of the incident light beam.

θ=sin −’ (N、 A)   (2)式これら
より受光ディテクター4にすべての光束が入射する条件
を求める。
θ=sin −' (N, A) (2) From these equations, the conditions under which all the light beams are incident on the light receiving detector 4 are determined.

φ4〉’l ・(j! + t /n) ・tanθ+
φI(3)式%式% 式より空気長lの条件を求める。f〈3.03m。
φ4〉'l ・(j! + t /n) ・tanθ+
φI (3) Formula % Formula % Find the condition for the air length l from the formula. f〈3.03m.

光量減衰部材の減衰率dc−0,05とすると、従来の
開口に波長分別部材を密着させていた照度計と本実施例
装置とにおける波長分別部材及び受光ディテクターへの
負荷の比(照度比)は入射面での面積比より。
If the attenuation rate of the light amount attenuation member is dc-0.05, then the ratio of the load on the wavelength separation member and the light receiving detector between the conventional illumination meter in which the wavelength separation member is brought into close contact with the aperture and the device of this embodiment (illuminance ratio) is from the area ratio at the plane of incidence.

(1/φ+)”;(1/φ、 + l tan θ)”
・dc=1.5.6:0.013−1;0.009  
 (4)式すなわち0.9%程度に負荷は激減するので
、光エネルギーによる波長分別部材や受光ディテクター
の劣化がほとんどなく信頼性の高い照度測定が可能にな
る。この構成では、光量減衰部材の微小開口の密度を選
択してやることにより減衰率を自由に変えることができ
、負荷(光エネルギーによる影響)を少なくして、受光
ディテクターを最良感度領域で使用することを可能にし
た。
(1/φ+)”; (1/φ, + l tan θ)”
・dc=1.5.6:0.013-1;0.009
Since the load is drastically reduced to the equation (4), that is, about 0.9%, highly reliable illuminance measurement is possible with almost no deterioration of the wavelength separation member or the light receiving detector due to light energy. With this configuration, the attenuation rate can be freely changed by selecting the density of the minute apertures in the light attenuation member, reducing the load (effects of light energy) and allowing the light receiving detector to be used in its best sensitivity range. made possible.

次に第1実施例の変形例について述べる。第1実施例で
は光量減衰部材として開口(透孔)を有する金属板を用
いたが、ガラス基板の上にアルミ。
Next, a modification of the first embodiment will be described. In the first embodiment, a metal plate having an opening (through hole) was used as the light attenuation member, but an aluminum plate was used on a glass substrate.

クロム等の金属膜(光非透過膜)を蒸着するとともに開
口2aに相当する部分には金属膜を蒸着しないで開口を
形成し、これを光量減衰部材として用いてもよい。
It is also possible to deposit a metal film (light non-transmissive film) such as chromium, and form an opening without depositing a metal film in the portion corresponding to the opening 2a, and use this as a light quantity attenuation member.

次に第2実施例について述べる。第1実施例では開口板
1と光量減衰部材2とを別部材としたが。
Next, a second embodiment will be described. In the first embodiment, the aperture plate 1 and the light quantity attenuation member 2 are made as separate members.

金属で構成された板を照度測定面に一致するように設け
るとともに、この金属板上の照度測定域(第1図の開口
1aに相当する領域)に微小開口を−の部材(金属板)
で構成できる。その他の構成は第1実施例と同様である
0本実施例ではこの金属板が光量減衰部材を構成する。
A plate made of metal is provided so as to coincide with the illuminance measurement surface, and a minute aperture is formed in the illuminance measurement area (region corresponding to the opening 1a in Fig. 1) on this metal plate (metal plate).
It can be composed of The rest of the structure is the same as that of the first embodiment. In this embodiment, this metal plate constitutes a light quantity attenuation member.

次に第3実施例について述べる。第1実施例では光量減
衰部材2と波長分別部材3とを別部材で構成したが9分
別部材3の上面にアルミ、クロム等の金属膜を蒸着する
とともに、この金属膜に第1図の開口2aに相当する開
口(蒸着をしない部分)を形成し、金属膜と波長分別部
材とを一体のものとして構成してもよい。このようにす
ると第1実施例の光量減衰部材2と波長分別部材3とを
単一の部材で構成できる。その他の構成は第1実施例と
同様である0本実施例では分別部材に蒸着された金属膜
が光量減衰部材を2分別部材が光学部材を構成する。
Next, a third embodiment will be described. In the first embodiment, the light amount attenuation member 2 and the wavelength separation member 3 were constructed as separate members, but a metal film such as aluminum or chromium was vapor-deposited on the upper surface of the 9-separation member 3, and the openings shown in FIG. Alternatively, an opening corresponding to 2a (a portion not subjected to vapor deposition) may be formed, and the metal film and the wavelength separation member may be integrated. In this way, the light quantity attenuation member 2 and the wavelength separation member 3 of the first embodiment can be constructed from a single member. The rest of the structure is the same as that of the first embodiment. In this embodiment, the metal film deposited on the separation member constitutes the light quantity attenuation member, and the separation member constitutes the optical member.

材で設けたが、第3実施例の如く金属膜を波長分別部材
の上に蒸着するとともに、この金属膜の上面を照度測定
面に一致するよう配置してやり、さらに金属膜内の微小
開口(2aに相当する開口)が照度測定域内にのみ存在
するように形成してやれば、第1実施例の3つの部材1
.2.3を単体にて構成することができる。その他の構
成は第1実施例と同じである0本実施例では分別部材に
蒸着された金属膜が光量減衰部材を2分別部材が光学部
材を構成する。
However, as in the third embodiment, a metal film was deposited on the wavelength separation member, and the upper surface of this metal film was placed so as to coincide with the illuminance measurement surface. The three members 1 of the first embodiment can be formed so that the opening corresponding to
.. 2.3 can be configured as a single unit. The rest of the structure is the same as the first embodiment. In this embodiment, the metal film deposited on the separation member constitutes the light quantity attenuation member, and the separation member constitutes the optical member.

上述した実施例ではガラス基板等に金属膜を蒸着して光
量減衰部材を構成する場合の例として。
In the embodiments described above, a metal film is deposited on a glass substrate or the like to constitute a light amount attenuation member.

微小開口を有するように金属膜を形成する例を述べたが
、ドツト状に金属膜を蒸着したガラス基板フ また上述した実施例では光量減衰部材として金属板ある
いは金属膜を示したが、金属板あるいは金属膜の上に酸
化チタン等の誘電体(あるいはその多層膜)を蒸着して
光量減衰部材を構成してもよいし、ガラス基板の上に上
述した誘電体を蒸着して光量減衰部材を構成してもよい
Although we have described an example in which a metal film is formed to have a minute opening, a glass substrate on which a metal film is vapor-deposited in the form of dots is also used. Alternatively, the light attenuation member may be constructed by depositing a dielectric such as titanium oxide (or a multilayer film thereof) on a metal film, or the light attenuation member may be constructed by depositing the dielectric described above on a glass substrate. may be configured.

実施例では波長分別部材を入れであるが、照度測定面に
不要な波長の光エネルギーが至らなければ必ずしも必要
ない。しかし受光ディテクターへの負荷という面から、
波長分別部材を除いても本発明に含まれる。
Although a wavelength separation member is included in the embodiment, it is not necessarily necessary as long as light energy of unnecessary wavelengths does not reach the illuminance measurement surface. However, from the perspective of the load on the light receiving detector,
The invention is also included in the present invention even if the wavelength separation member is excluded.

また実施例の如く金属(板、膜)に多数の微小開口を設
けて光量減衰部材を構成した場合には紫外光ばかりでな
(、可視光や赤外光に対しても有効である。
Furthermore, when the light amount attenuation member is constructed by providing a large number of minute openings in a metal (plate, film) as in the embodiment, it is effective not only for ultraviolet light but also for visible light and infrared light.

以上述べた実施例、変形例はいずれも第1実施例と同様
の効果を得ることができるものである。
The embodiments and modifications described above can all achieve the same effects as the first embodiment.

本発明は光量減衰部材を設けることにより強い光が光学
部材や光電変換手段に及ぼす影響を少なくするものであ
るが、照度測定面や光量減衰部材から光学部材や光電変
換手段までの距離が大きい程、光学部材や光電変換手段
上の照度は小さくなるので、高い信頼性を得るという面
から上述した距離を大きくとることが好ましい。
The present invention reduces the influence of strong light on optical members and photoelectric conversion means by providing a light amount attenuation member, but the longer the distance from the illuminance measurement surface or light amount attenuation member to the optical member and photoelectric conversion means, Since the illuminance on the optical member and the photoelectric conversion means becomes small, it is preferable to set the above-mentioned distance large in order to obtain high reliability.

尚、容易な方法として、NDガラスフイサタや。In addition, as an easy method, use ND glass fisata.

Jし NDインコーネルフイ号夕を光量減衰部材として使用す
ることも考えられるが9強い紫外光による劣化が大きく
適当でない。またスリガラスや乳白色板などを入れ、大
部分の光エネルギーを散乱させることも考えられるが、
入射光束のN、Aの変化に対して、散乱光エネルギーと
受光エネルギーの比率が変わってしまい正確な測定は期
待できない。
Although it is possible to use JIS ND INCORNEL FIELD as a light attenuation member, it is unsuitable because it deteriorates significantly due to strong ultraviolet light. It is also possible to use ground glass or a milky white plate to scatter most of the light energy.
Accurate measurement cannot be expected because the ratio of scattered light energy to received light energy changes with changes in N and A of the incident light flux.

(発明の効果) 以上のように本発明によれば、半導体製造りソゲラフイ
エ程などの紫外光等の非常に高い照度を高精度に安定し
て測定できる照度測定装置を得ることができる。また本
構成の照度測定装置は、ステッパーなどの露光域全体に
わたり照度ムラを測定する目的にも、露光域に対し充分
小さな小開口を設定すれば露光域各部にわたり高精度な
照度測定が可能になる。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain an illuminance measuring device that can stably measure very high illuminance such as ultraviolet light such as that used in semiconductor manufacturing or the like with high accuracy. In addition, the illuminance measuring device with this configuration can also be used to measure illuminance unevenness over the entire exposure area of a stepper, etc., by setting a sufficiently small aperture for the exposure area, making it possible to measure illuminance with high precision over each part of the exposure area. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の照度計の断面図である。 (主要部分の符号の説明) 1−−−−−−−一開口板 2−−−−−−−一光量減衰部材 2 a −−−−−−−一微小開口 3−−−−−−−一光学部材 FIG. 1 is a sectional view of the illumination meter of the present invention. (Explanation of symbols of main parts) 1--------- One opening plate 2---------One light amount attenuation member 2 a --------One minute aperture 3--------One optical member

Claims (1)

【特許請求の範囲】[Claims] 照度測定域に入射してくる光に対して劣化が小さくかつ
前記光の透過を制限する材料にて構成されるとともに、
前記測定域に入射してくる光を透過する為の開口を有す
る光量減衰部材と、前記開口の透過光を光学部材を介し
てあるいは介すことなく受光する光電変換手段とを有す
ることを特徴とする照度測定装置。
It is made of a material that has little deterioration with respect to the light that enters the illuminance measurement area and limits the transmission of the light, and
It is characterized by having a light amount attenuation member having an aperture for transmitting light incident on the measurement area, and a photoelectric conversion means for receiving the light transmitted through the aperture with or without passing through an optical member. illuminance measurement device.
JP8195385A 1985-04-17 1985-04-17 Apparatus for measuring luminous intensity Pending JPS61240126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8195385A JPS61240126A (en) 1985-04-17 1985-04-17 Apparatus for measuring luminous intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8195385A JPS61240126A (en) 1985-04-17 1985-04-17 Apparatus for measuring luminous intensity

Publications (1)

Publication Number Publication Date
JPS61240126A true JPS61240126A (en) 1986-10-25

Family

ID=13760863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8195385A Pending JPS61240126A (en) 1985-04-17 1985-04-17 Apparatus for measuring luminous intensity

Country Status (1)

Country Link
JP (1) JPS61240126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948969A (en) * 1988-03-29 1990-08-14 Sharp Kabushiki Kaisha Photodetector having convex window for shielding electromagnetic wave and electrostatic induction noises

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948969A (en) * 1988-03-29 1990-08-14 Sharp Kabushiki Kaisha Photodetector having convex window for shielding electromagnetic wave and electrostatic induction noises

Similar Documents

Publication Publication Date Title
KR100472866B1 (en) Lighting unit for optical device
Clarke et al. Correction methods for integrating‐sphere measurement of hemispherical reflectance
KR20120057495A (en) Transmittance measurement apparatus, transmittance inspecting apparatus of photomask, transmittance inspecting method, photomask manufacturing method, pattern transfer method, and photomask product
JPH05326370A (en) Projection aligner
JP4174097B2 (en) Multifunctional detector and optical lithography apparatus
JPH0718699B2 (en) Surface displacement detector
JPH0617774B2 (en) Micro height difference measuring device
CN102540752B (en) Photoetching illumination system
CN105527794B (en) Overlay error measuring device and method
JPS61240126A (en) Apparatus for measuring luminous intensity
KR20120034139A (en) Optical system, illumination optical system, and projection optical system
KR101779620B1 (en) Transmittance measurement apparatus and transmittance measurement method
JPH0771924A (en) Method and device for measuring thin film characteristics
JP2019511704A (en) Apparatus and method for moire measurement of an optical object
CN208207508U (en) On-line measuring device for Optical Coatings for Photolithography
JPH05241077A (en) Light measuring instrument
JP2702496B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6052852A (en) Device for controlling exposure
KR950015551A (en) Manufacturing method and apparatus for manufacturing semiconductor integrated circuit device
JPH05332880A (en) Measuring apparatus for distribution of refractive index at cross section of optical waveguide
JP2000133562A (en) Reduction stepper
JPS6322058B2 (en)
JPH0430736B2 (en)
JPS6172219A (en) Exposure device
JPS59166842A (en) Measuring method of fine particle movement in burning flame