JPH05241077A - Light measuring instrument - Google Patents
Light measuring instrumentInfo
- Publication number
- JPH05241077A JPH05241077A JP4145092A JP4145092A JPH05241077A JP H05241077 A JPH05241077 A JP H05241077A JP 4145092 A JP4145092 A JP 4145092A JP 4145092 A JP4145092 A JP 4145092A JP H05241077 A JPH05241077 A JP H05241077A
- Authority
- JP
- Japan
- Prior art keywords
- light
- flare
- black
- photometric
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光学顕微鏡の光量を検
出する測光装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photometric device for detecting the light quantity of an optical microscope.
【0002】[0002]
【従来の技術】この測光装置は、ピンホール後に置いた
分光グレーティングとラインセンサによる分光測光を行
なう装置や、そのデータを処理することによって試料表
面の薄膜の膜厚測定や薄膜物質の同定を行なう装置など
に用いられる。2. Description of the Related Art This photometric device is a device for performing spectrophotometric measurement using a spectral grating and a line sensor placed after a pinhole, and processing the data to measure the film thickness of a thin film on a sample surface and identify a thin film substance. Used in devices, etc.
【0003】測光装置の光学系は、図2に示すように、
光源112から射出された照明光は集光レンズ114に
より集光され、コンデンサレンズ120の視野絞り位置
に配置されたピンホール116を通って、シャッター1
18を介してコンデンサレンズ120に入射し、試料1
22に集光される。試料122を透過した光は、対物レ
ンズ124により集光され、中間像面に配置されたピン
ホール126を通って光量検出部128に入射し、光量
が検出される。このような測光装置において、コンデン
サレンズに測定用対物レンズと同一のものを用いて光学
収差を取り除いた小穴直良式が有名である。また、一般
に使用されているものでは、コンデンサレンズの視野絞
りにピンホールのないものが多い。The optical system of the photometric device, as shown in FIG.
The illumination light emitted from the light source 112 is condensed by the condenser lens 114, passes through the pinhole 116 arranged at the field stop position of the condenser lens 120, and then the shutter 1
It is incident on the condenser lens 120 via 18 and the sample 1
It is focused on 22. The light that has passed through the sample 122 is condensed by the objective lens 124, enters the light amount detection unit 128 through the pinhole 126 arranged on the intermediate image plane, and the light amount is detected. In such a photometric device, a small hole Naoryo type in which an optical aberration is removed by using the same condenser lens as the measuring objective lens is famous. In addition, most commonly used field diaphragms for condenser lenses do not have pinholes.
【0004】測光は、まず照明光学光路中に設けたシャ
ッターを閉じた状態で測光し、検出系(受光素子や増幅
回路)の暗電流と、試料で反射して室内の光が対物レン
ズを通って検出系へ入り込んで発生させる電流(外乱ノ
イズ)とをメモリーしておき、この値をシャッターを開
いた状態で測光して得られた値から差し引いて行なう。For photometry, first, the shutter provided in the illumination optical path is closed, and the dark current of the detection system (light receiving element or amplifier circuit) and the light reflected by the sample are passed through the objective lens. The current (disturbance noise) generated by entering the detection system is stored in memory, and this value is subtracted from the value obtained by photometry with the shutter open.
【0005】次に視野絞りにピンホールのないタイプの
測光性能について述べる。試料はコンデンサレンズによ
り対物レンズの視野全体にわたって照射されるので中間
像面の像には多くのフレアがのっている。このフレア
は、本発明者の測定によれば0.5〜3%であった。Next, the photometric performance of the type having no pinhole in the field stop will be described. Since the sample is illuminated by the condenser lens over the entire field of view of the objective lens, the image on the intermediate image plane has many flares. This flare was 0.5-3% as measured by the inventor.
【0006】測定法は、透過の場合は、対物実視野の1
/10の黒色部を設けたガラスを試料面に配置するとと
もに、黒色部の像の1/5のピンホールを中間像面に配
置して光量測定を行ない、F=(黒色板挿入時光量)/
(黒色板を抜いた時の光量)×100[%]の式から計
算により求まる。落射の場合は、黒色部を設けたガラス
の換りに光吸収箱を配置して光量測定を行ない、同様の
計算により求まる。In the case of transmission, the measuring method is 1
A glass with a / 10 black part is placed on the sample surface, and a pinhole ⅕ of the black part image is placed on the intermediate image surface to measure the light quantity. F = (light quantity when the black plate is inserted) /
It is calculated by the formula of (amount of light when black plate is removed) × 100 [%]. In the case of incident light, a light absorption box is placed instead of the glass provided with the black portion, the light amount is measured, and the same calculation is performed.
【0007】視野絞りとフレアの関係は発明者の測定で
視野絞りを絞り込む程フレアは小さくなる。これは黒色
部の大きさを変えず、絞りを絞り込む毎に視野が小さく
なるからで、つまり、フレア源となる照野面積が小さく
なるからである。Regarding the relationship between the field stop and flare, the flare becomes smaller as the field stop is narrowed down by the inventor's measurement. This is because the field of view becomes smaller each time the diaphragm is narrowed down without changing the size of the black portion, that is, the illumination field area which is a flare source becomes smaller.
【0008】従ってフレアの測定には照野を一定とする
としておかねばならない。又、正確なフレアを測定する
には黒色部の大きさは照野に対し、充分小さい必要があ
る。それは、測定時には当然ながら黒色部はなく、この
分フレアは小さくなっているからである。そこで日光光
学研究組合やANSIでは黒色径/照野径=1/5〜1
/20として、黒色部によるフレアの低下を無視できる
ようにしている。かつ、測光径と黒色径の比もレンズの
収差分が測光部に入らないために測光径/黒色径=1/
4〜1/5と上記機関は提案している。Therefore, it is necessary to keep the illumination field constant for the measurement of flare. Further, in order to measure the flare accurately, the size of the black portion needs to be sufficiently smaller than the illumination field. This is because, of course, there is no black portion at the time of measurement, and the flare is reduced accordingly. Therefore, at Nikko Optics Research Association and ANSI, black diameter / territory diameter = 1/5 to 1
/ 20 is set so that the decrease in flare due to the black portion can be ignored. Also, the ratio of the photometric diameter to the black diameter is such that the lens aberration does not enter the photometric section, so the photometric diameter / black diameter = 1 /
4 to 1/5, the above organization proposes.
【0009】次に小穴直良法におけるフレアについて述
べる。この方法は、原理的には必要な部分のみに照射
し、必要な部分のみを通った光のみを把えるため理想的
である。しかし実際には、正確なピンホール像とピンホ
ールの芯合せが困難なことと、試料を通り抜けた後、測
光側の光学系で発生したフレア光量と収差光量は測光の
対象であるため、図2においてピンホール126はピン
ホール116の像より大きくしなければならない。つま
り、このピンホール126は試料面の照射スポット径
(s)より大きい径の測光径(d)をもつ。そのため図
中a部、測光径dと照射径sとの輪帯部に何らかの光が
あるとこれをひろってしまい誤差を生じる。a部を照明
する光は室内の光はもちろん図3のように照明光がコン
デンサレンズや測光側対物レンズによって反射される光
や透過測光でガラス板上に試料が置かれたり、LCD基
板のカラーフィルタなどガラスにフィルタが印刷されて
いるものはガラスの2回反射図4などがある。又、落射
測光では測光対物が、照射コンデンサを兼ねるのでフレ
アが大きい。よって小穴直良では照射スポットと測光径
はなるべく同径に近い方が良いが前述した芯合せの問題
と、照射スポット径の光であるが測光対物の収差によっ
て測光ピンホールに入射しない光、測光対物レンズによ
って生じるフレア成分が測光できないことになる。Next, flare in the small hole straight-through method will be described. In principle, this method is ideal because it irradiates only the necessary portion and only the light that passes through the necessary portion can be captured. However, in reality, it is difficult to accurately align the pinhole image with the pinhole, and the amount of flare light and aberration light generated by the optical system on the photometric side after passing through the sample is the subject of photometry. 2, the pinhole 126 must be larger than the image of the pinhole 116. That is, the pinhole 126 has a photometric diameter (d) larger than the irradiation spot diameter (s) on the sample surface. Therefore, if there is any light in the zone a in the figure, or the ring zone between the photometric diameter d and the irradiation diameter s, this will be picked up and an error will occur. The light illuminating the part a is not only the light in the room but also the light reflected by the condenser lens or the objective lens on the photometric side as shown in FIG. 3 or transmitted photometrically when the sample is placed on the glass plate or the color of the LCD substrate. For a filter such as a filter on which a filter is printed, there is double reflection of the glass as shown in FIG. Further, in epi-photometry, the photometric objective also serves as the irradiation condenser, so flare is large. Therefore, it is better for the irradiation spot and the photometric diameter to be as close to the same diameter as possible for a small hole. The flare component generated by the lens cannot be measured.
【0010】その他に小穴直良では、投光測と測光側の
レンズの光軸合せやピント合せ精度を要し、測定に手間
がかかり、装置も複雑になるという欠点がある。[0010] In addition, Naora Otoga has the drawbacks that it requires the accuracy of light projection measurement and the alignment of the optical axis of the lens on the light measurement side and the accuracy of focusing, which requires time and effort for measurement and complicates the apparatus.
【0011】例えば、対物レンズの倍率を変える場合に
はレボルバーを回して対物レンズを変更するとともに、
これに応じてコンデンサレンズも同じ倍率のものに変え
なければならない。ところで、レボルバーのクリック精
度は5μm〜1μm程度で、コンデンサレンズの取付ネ
ジの精度も5μm〜1μm程度であるから、両者の芯合
わせが必要となる。又、50倍の対物レンズの焦点深度
を1μmとして、対物レンズとコンデンサ間のピント合
わせもμm単位となる。For example, when changing the magnification of the objective lens, the revolver is rotated to change the objective lens, and
Accordingly, the condenser lens must be changed to have the same magnification. By the way, since the click accuracy of the revolver is about 5 μm to 1 μm and the accuracy of the mounting screw of the condenser lens is also about 5 μm to 1 μm, it is necessary to align the centers of both. Further, when the focal depth of the 50 × objective lens is 1 μm, the focusing between the objective lens and the condenser is also in μm unit.
【0012】また、ガラス表面に塗布したカラーフィル
タなとの測定では、ガラスの厚みによる収差を補正した
WDの長いコンデンサレンズが透過の場合は必要であ
る。Further, in the measurement such as a color filter coated on the surface of glass, it is necessary when a condenser lens having a long WD in which aberration due to the thickness of glass is corrected is transparent.
【0013】[0013]
【発明が解決しようとする課題】以上述べてきたように
従来の測光装置では、ピンホールの無いタイプのもので
は測光値に多量のフレアが加わる。その改良である小穴
直良式においても、ピンホールの無いタイプのもの程で
はないにしろ、測光値にフレアがのる上、光学アライメ
ントの調整が煩雑である。As described above, in the conventional photometry device of the type having no pinhole, a large amount of flare is added to the photometry value. Even with the improved small hole straight type, the flare is added to the photometric value and the adjustment of the optical alignment is complicated, though not so much as the type without the pinhole.
【0014】本発明は、光学系で発生するフレアを除去
でき、しかも光学要素のアライメント調整が容易に行な
える測光装置の提供を目的とする。It is an object of the present invention to provide a photometric device which can remove flare generated in an optical system and can easily adjust alignment of optical elements.
【0015】[0015]
【課題を解決するための手段】本発明の測光装置は、顕
微鏡の中間像面位置に配置されたピンホールを通過した
光を測光する装置であって、照明光を試料に集光するコ
ンデンサレンズの視野絞り位置に、中間像面上において
前記ピンホールよりも大きく結像する黒色部を有する黒
色板を着脱可能に設け、黒色板を配置していない時の光
量から、黒色板を配置した時の光量を差し引くことによ
り、測定値からフレアを除去したことを特徴とする。A photometric device of the present invention is a device for photometrically measuring light passing through a pinhole arranged at an intermediate image plane position of a microscope, and is a condenser lens for converging illumination light on a sample. A removable black plate having a black portion that forms an image larger than the pinhole on the intermediate image plane is provided at the field stop position of, and when the black plate is arranged from the light amount when the black plate is not arranged, The flare is removed from the measured value by subtracting the light amount of.
【0016】[0016]
【作用】本発明の測光装置では、まず、黒色板をコンデ
ンサレンズの視野絞り位置に挿入して測光を行ない、暗
電流とフレア電流とからなるノイズ成分を測定しメモリ
ーしておく。次に、黒色板を取り除いた状態で測光を行
なう。この測定値から、メモリーしておいたノイズ成分
の値を差し引く。これによりフレアを取り除いた測光測
定が行なわれる。In the photometric device of the present invention, first, the black plate is inserted into the field stop position of the condenser lens to perform photometry, and the noise component consisting of the dark current and the flare current is measured and stored. Next, photometry is performed with the black plate removed. The value of the noise component stored in memory is subtracted from this measured value. As a result, photometric measurement is performed with flare removed.
【0017】[0017]
【実施例】本発明の測光装置の一実施例の光学系を図1
に示す。光源12にはハロゲンランプなどを使用し、安
定化電源により駆動される。光源12からの光は、集光
レンズ14を介してコンデンサーレンズ16に入射し、
試料18に集光される。試料18を通過した光は、対物
レンズ20に入射して集光される。中間像面に配置した
ピンホール22を通過した光は、光量検出部24に入射
し光量が測定される。集光レンズ14とコンデンサレン
ズ16との間で、コンデンサレンズ16の視野絞り位置
には、フレア測光用黒色板26と測光用黒色板28が選
択的に配置される。フレア測光用黒色板26はその中央
に径d2の黒色部26aを有している。その径d2は、ピ
ンホール22の径をd1とすると、次式で与えられる。FIG. 1 shows an optical system of an embodiment of the photometric device of the present invention.
Shown in. A halogen lamp or the like is used as the light source 12 and is driven by a stabilized power supply. The light from the light source 12 enters the condenser lens 16 via the condenser lens 14,
It is focused on the sample 18. The light that has passed through the sample 18 enters the objective lens 20 and is condensed. The light passing through the pinhole 22 arranged on the intermediate image plane is incident on the light quantity detection unit 24 and the light quantity is measured. A flare photometric black plate 26 and a photometric black plate 28 are selectively arranged between the condenser lens 14 and the condenser lens 16 at the field stop position of the condenser lens 16. The flare photometric black plate 26 has a black portion 26a having a diameter d2 at the center thereof. The diameter d2 is given by the following equation, where d1 is the diameter of the pinhole 22.
【0018】 d2 =d1×{コンデンサ倍率/測光対物倍率}×(21/2〜5) (1) ここで、コンデンサ倍率=(絞りの黒色板径)/(試料
上の像の径)である。さらにフレア測定用黒色板26
は、黒色部26aと同心でその径d3がd3=d2×(5
〜10)の円形開口を有する遮光部26bを有してい
る。これらの黒色部26aと遮光部26bはガラスにB
Cr膜を蒸着により形成して作られる。また、測光用黒
色板28は、フレア測光用黒色板26とほぼ同様である
が、径d3の円形開口を有する遮光部28aのみを有
し、中央の黒色部は有していない。なお、(1)式中の
21/2の値は、光学系の収差が除去でき、しかもフレア
測定に大きな影響を及ぼさないように、実験により求め
られた。D2 = d1 × {condenser magnification / photometric objective magnification} × (2 1/2 to 5) (1) where, condenser magnification = (diameter of black plate of diaphragm) / (diameter of image on sample) is there. Furthermore, the black plate for flare measurement 26
Is concentric with the black portion 26a and its diameter d3 is d3 = d2 × (5
10 to 10) has a light shielding portion 26b having a circular opening. The black portion 26a and the light-shielding portion 26b are made of glass B
It is made by forming a Cr film by vapor deposition. Further, the black plate for photometry 28 is almost the same as the black plate for photometry 26 for flare, except that it has only the light-shielding portion 28a having a circular opening with a diameter d3 and does not have a central black portion. The value of 2 1/2 in the equation (1) was obtained by an experiment so that the aberration of the optical system can be removed and the flare measurement is not significantly affected.
【0019】次に測光の手順について説明する。まず、
フレア測光用黒色板26を視野絞り位置に挿入し、暗電
流とフレア(対物レンズの周りの室内光を含むフレア)
電流で構成されるノイズ光量(電流)を測定してメモリ
ーしておく。次に、フレア測光用黒色板26を取り除
き、換わりに測光用黒色板28を挿入して測光する。そ
の測定値から先にメモリーしておいた値を差し引く。こ
のようにすると測光部以外の照野からピンホール22に
入り込む光は、黒色部26aの面積に対し照野径が充分
大きければ、黒色部26aがあってもなくても同様なの
でフレア光量はカットされる。Next, the procedure of photometry will be described. First,
The black plate 26 for flare photometry is inserted in the field stop position, and dark current and flare (flare including room light around the objective lens)
Measure and store the amount of noise light (current) composed of current. Next, the flare photometric black plate 26 is removed, and instead the photometric black plate 28 is inserted to perform photometry. The previously stored value is subtracted from the measured value. In this way, the light entering the pinhole 22 from the illumination field other than the photometry section is the same whether the black section 26a is present or not, as long as the illumination field diameter is sufficiently large with respect to the area of the black section 26a. To be done.
【0020】測光部からの光でありながら収差によりピ
ンホール22に入射しない光と、同じく、測光部からの
光で、測光光学系によっておこされるフレアの中ピンホ
ールに入射しない光は測光できないが、対物レンズは設
計上は光軸付近では収差がほとんどないから、測光部か
らの光と測光部以外からピンホール22に入る光とは相
殺されるため問題はない。また、フレアについても同様
に考えることができる。Although the light from the photometric unit that does not enter the pinhole 22 due to aberrations and the light from the photometric unit that does not enter the middle pinhole of the flare caused by the photometric optical system cannot be photometered. Since the objective lens has almost no aberration in the vicinity of the optical axis by design, there is no problem because the light from the photometric unit and the light entering the pinhole 22 from other than the photometric unit are canceled. Further, flare can be considered in the same manner.
【0021】このような光学系は、ピンホールを用いな
い方式に比べて精度が良い。また、小穴直良のように照
明スポットと測光ピンホールの正確な位置合せは、フレ
アを一度測定しておけば標本のパターンが変らない限り
必要ない。Such an optical system is more accurate than a system that does not use a pinhole. In addition, accurate alignment of the illumination spot and photometric pinhole, such as Naora Otome, is not required unless the pattern of the sample changes once flare is measured.
【0022】試料に対してコンデンサレンズが多少上下
に移動しても、照明光束の状態はほとんど変わらないか
ら、コンデンサレンズと対物レンズのピント合わせもフ
レア測定時以外はラフでも構わない。Even if the condenser lens moves up and down with respect to the sample, the state of the illuminating light beam does not substantially change. Therefore, the focusing of the condenser lens and the objective lens may be rough except during flare measurement.
【0023】[0023]
【発明の効果】本発明の測光装置では、光学系で発生す
るノイズ(フレア)を除去でき、しかも同一の操作で暗
電流も除去できる。また、小穴直良方式のような正確な
アライメントを必要とせず、操作が簡単である。In the photometric device of the present invention, noise (flare) generated in the optical system can be removed, and dark current can be removed by the same operation. Further, it does not require accurate alignment as in the small hole straight-through method, and is easy to operate.
【図1】本発明の測光装置の一実施例の光学系を示す。FIG. 1 shows an optical system of an embodiment of a photometric device of the present invention.
【図2】従来の測光装置の光学系を示す。FIG. 2 shows an optical system of a conventional photometric device.
【図3】従来の装置で生じる問題を説明する図である。FIG. 3 is a diagram illustrating a problem that occurs in a conventional device.
【図4】図3の状態における試料上での光量分布を示
す。FIG. 4 shows a light amount distribution on a sample in the state of FIG.
【符号の説明】 14…集光レンズ、16…コンデンサレンズ、20…対
物レンズ、26…フレア測光用黒色板。[Explanation of Codes] 14 ... Condensing lens, 16 ... Condenser lens, 20 ... Objective lens, 26 ... Black plate for flare photometry.
Claims (1)
ホールを通過した光を測光する測光装置において、 照明光を試料に集光するコンデンサレンズの視野絞り位
置に、中間像面上において前記ピンホールよりも大きく
結像する黒色部を有する黒色板を着脱可能に設け、黒色
板を配置していない時の光量から、黒色板を配置した時
の光量を差し引くことにより、測光値から光学系のフレ
ア成分を除去したことを特徴とする測光装置。1. A photometric device for photometrically measuring light passing through a pinhole arranged at an intermediate image plane position of a microscope, wherein a field stop position of a condenser lens for converging illumination light on a sample is located on the intermediate image plane. A black plate with a black portion that forms an image larger than the pinhole is detachably provided, and the light amount when the black plate is placed is subtracted from the light amount when the black plate is not placed A photometric device characterized in that the flare component of is removed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4145092A JPH05241077A (en) | 1992-02-27 | 1992-02-27 | Light measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4145092A JPH05241077A (en) | 1992-02-27 | 1992-02-27 | Light measuring instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05241077A true JPH05241077A (en) | 1993-09-21 |
Family
ID=12608720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4145092A Withdrawn JPH05241077A (en) | 1992-02-27 | 1992-02-27 | Light measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05241077A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002009163A1 (en) * | 2000-07-26 | 2002-01-31 | Nikon Corporation | Flare measuring method and flare measuring device, exposure method and exposure system, method of adjusting exposure system |
EP1411393A2 (en) * | 2002-10-18 | 2004-04-21 | ASML Netherlands B.V. | Determination of stray radiation in a lithographic projection apparatus |
KR20170029892A (en) * | 2015-09-08 | 2017-03-16 | 삼성전자주식회사 | Tube-type lens, OES(Optical Emission Spectroscopy) apparatus comprising the tube-type lens, plasma monitoring system comprising the OES apparatus, and method for fabricating semiconductor device using the system |
-
1992
- 1992-02-27 JP JP4145092A patent/JPH05241077A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002009163A1 (en) * | 2000-07-26 | 2002-01-31 | Nikon Corporation | Flare measuring method and flare measuring device, exposure method and exposure system, method of adjusting exposure system |
EP1411393A2 (en) * | 2002-10-18 | 2004-04-21 | ASML Netherlands B.V. | Determination of stray radiation in a lithographic projection apparatus |
EP1411393A3 (en) * | 2002-10-18 | 2005-09-28 | ASML Netherlands B.V. | Determination of stray radiation in a lithographic projection apparatus |
SG140450A1 (en) * | 2002-10-18 | 2008-03-28 | Asml Netherlands Bv | Method of determining stray radiation, lithographic projection apparatus |
KR20170029892A (en) * | 2015-09-08 | 2017-03-16 | 삼성전자주식회사 | Tube-type lens, OES(Optical Emission Spectroscopy) apparatus comprising the tube-type lens, plasma monitoring system comprising the OES apparatus, and method for fabricating semiconductor device using the system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3721827A (en) | Arrangement for automatically focussing an optical instrument | |
KR100381745B1 (en) | Off-axis Alignment System for Scanned Photolithography | |
KR100293126B1 (en) | Inspection device | |
JP2806747B2 (en) | Method for measuring reflected light in a microphotometer | |
KR102513718B1 (en) | Scaling metrics for quantifying instrumentation sensitivity to process variation | |
JPH073365B2 (en) | Microscopic device | |
US6693704B1 (en) | Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method | |
JP2006337374A (en) | Device and method for improving measurement precision when finding structural data | |
US5907396A (en) | Optical detection system for detecting defects and/or particles on a substrate | |
JPS61247944A (en) | Measuring instrument for reflection factor | |
US7265343B2 (en) | Apparatus and method for calibration of an optoelectronic sensor and for mensuration of features on a substrate | |
JPH05241077A (en) | Light measuring instrument | |
JPH0771924A (en) | Method and device for measuring thin film characteristics | |
JPH05119468A (en) | Mask inspecting device | |
JP2003270091A (en) | Method and apparatus for measuring wave front aberration in optical system | |
JP2002311332A (en) | Microscope for examination and objective lens for this purpose | |
JPH055083B2 (en) | ||
JP3325095B2 (en) | Inspection device | |
JPH0915153A (en) | Transmissivity measuring device | |
JP2001166202A (en) | Focus detection method and focus detector | |
JPH05340869A (en) | Thin film measuring instrument | |
JPH11264800A (en) | Inspecting device | |
JPH1054793A (en) | Spectral reflection light amount measuring device | |
JPH11230829A (en) | Microspectroscope and method for measuring spectral data using the same | |
JP3209284B2 (en) | Projection optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990518 |