JPS61239538A - Liquid metal ion source for filed emission type ion beam generator - Google Patents

Liquid metal ion source for filed emission type ion beam generator

Info

Publication number
JPS61239538A
JPS61239538A JP8006385A JP8006385A JPS61239538A JP S61239538 A JPS61239538 A JP S61239538A JP 8006385 A JP8006385 A JP 8006385A JP 8006385 A JP8006385 A JP 8006385A JP S61239538 A JPS61239538 A JP S61239538A
Authority
JP
Japan
Prior art keywords
ion source
liquid metal
ion
type
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8006385A
Other languages
Japanese (ja)
Other versions
JPH0449213B2 (en
Inventor
Eizo Miyauchi
宮内 栄三
Hiroshi Arimoto
宏 有本
Toshio Hashimoto
橋本 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8006385A priority Critical patent/JPS61239538A/en
Publication of JPS61239538A publication Critical patent/JPS61239538A/en
Publication of JPH0449213B2 publication Critical patent/JPH0449213B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtain a liquid metal ion source enable of selective generation of impurity ions for forming P-type and N-type electrodes from single ion generating section without replacing the ion source by specifying the composition of atomic % in four element alloy of Au-Si-Be-Ge. CONSTITUTION:It is four element alloy of Au-Si-Be-Ge having atomic % composition of (71+ or -8):(10+ or -1.5):(10+ or -3):(9+ or -3). Said alloy has low melting point and optimal as a liquid metal ion source for field emission type ion beam generator. Since typical N-type impurities or Si, Ge and typical P-type impurities or Be are contained in said alloy, various semiconductor device can be produced without replacing the ion source in the way of process.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、イオン加工装置、イオン注入装置などに用
いる電界放出型イオンビーム発生装置の液体金属イオン
源に関するもので、特にマスクレスイオン注入により半
導体デバイスの電極を形成するに適したものである。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to a liquid metal ion source for a field emission type ion beam generator used in ion processing equipment, ion implantation equipment, etc. It is suitable for forming electrodes of semiconductor devices.

(従来の技術) ガリウム砒素等の半導体基板結晶にレーザ、発光ダイオ
ード、光検知器などの光デバイス、バイポーラトランジ
スタ、電界効果型トランジ   [スタなどの電子デバ
イスを形成する場合、従来   jマスクの位置合せ等
煩雑な作業が行われていた   1゜が、これに対し最
近サブミクロンのオーダで収   [、、、。
(Conventional technology) When forming electronic devices such as lasers, light emitting diodes, photodetectors, and other optical devices, bipolar transistors, field effect transistors, etc. on semiconductor substrate crystals such as gallium arsenide, conventional j-mask alignment is used. 1°, which used to be complicated work, but recently it has been reduced to submicron order [,,,,.

束されたイオンビームを用いるマスクレスイオ   [
Maskless ionization using a focused ion beam [
.

ン注入法が提案されてお腫これによれば7’t    
 Jよ。6カ1、□。。ツォ。。f/(42や□ 、ニ
レドウエア上の変更を無くシ、すべてソフトウェアでプ
ロセスを制御することが可能と考えられる。
According to this, a tumor injection method has been proposed.
J. 6 Ka1, □. . Tso. . f/(42 and □) It is thought that it is possible to control the process entirely by software without making any changes to Niredware.

する場合半導体に不純物イオン注入を行いアニ′北はこ
の段階でのマスクレスプルセスは不可能で   j′□
′−ル後電極形電極形成となるが、従来においてあり、
現実にはマスクを使用して金属電極膜を   :形成し
ている。
In this case, impurity ions are implanted into the semiconductor, and maskless process is impossible at this stage.
' - electrode type electrode is formed after the roll, but in the past,
In reality, a metal electrode film is formed using a mask.

例えば、GeAs等の■−v族化合物十一体の場合には
半導体に8i等の不純物イオンを注入して外型注入層を
形成し、該n型注入層の上にマス   1′りを使用し
て九−〇膜等の金属電極膜を形成す   ゛るか、或い
はBe等の不純物イオンを注入してp型注入層を形成し
、該p型注入層の上にマスクを使用して1ms −Zn
膜等の金属電極膜を形成している。
For example, in the case of a ■-v group compound such as GeAs, impurity ions such as 8i are implanted into the semiconductor to form an outer mold implantation layer, and a mass 1' is used on the n-type implantation layer. Then, a metal electrode film such as a 9-0 film is formed, or a p-type implantation layer is formed by implanting impurity ions such as Be. -Zn
A metal electrode film such as a film is formed.

即ち、従来法では!!電極膜けはマスクを使用して形成
しており、したがって各種デバイス形成のすべてのプロ
セスをマスクなしで行うことができス、折角のマスクレ
スプ四セスのメリットが十分に発揮されていない。
In other words, with the conventional method! ! The electrode film is formed using a mask, and therefore all processes for forming various devices can be performed without a mask, and the merits of the maskless process are not fully utilized.

本願発明者等は、上記実情に罐み別出願で、胸等のp型
不純物注入領域、81等のn型不純物注入領域を形成し
たGel*等のm−v族化合物半導体基板の表面にb等
の金属膜を蒸着し、更に上記Bea人領域上のム膜にB
#イオン、ムイオン或いはS4注入領域上のh膜に84
イオン、ムイオンを打ち込み、このb膜にモディフィケ
ーションを起こさせ、その後上記ム膜の全面をエツチン
グし、モディフィケーションを起こさない部分の1腺を
除去してモディフィケーションを起こした部分のム膜を
電極として利用する半導体デバイスの製造法を提案した
In view of the above-mentioned circumstances, the inventors of the present application filed a separate application and proposed that a b evaporate a metal film such as
#84 on the h film on the ion, mu ion or S4 implanted region.
Ions are implanted to cause modification in this B membrane, and then the entire surface of the B membrane is etched, one gland in the area where no modification occurs is removed, and the membrane in the area where modification is made is etched. We proposed a method for manufacturing semiconductor devices that uses films as electrodes.

この方法によれば、マスクを用いることなく電極を形成
することができるので、半導体デバイス製造の全プロセ
スをマスクレスで行うことができる。
According to this method, electrodes can be formed without using a mask, so the entire process of semiconductor device manufacturing can be performed without a mask.

なお、この場合stイオンの代わりにG−イオンを用い
ると、より電気特性のよいn型電極層が得られることが
わかっている。
It is known that in this case, if G- ions are used instead of st ions, an n-type electrode layer with better electrical characteristics can be obtained.

−(発明が解決しようとする問題点) 冗かし、上述の方法を使用する場合においてす工程の途
中で各種のイオン源を交換するよう・″渥場合はイオン
発生部とイオン加速収束系、イオン偏向電極系の間に厳
しい精度で軸合せを行う必要がある。更に、サブミクロ
ン以上の精度にて既にイオン注入したパターンの上に重
ねて第2のイオン注入を行う場合、イオン源の交換でイ
オン発生部の位置が少しでもずれると、位置の調整に大
変手間を取ることになり、上述の方法における利点が十
分に生かされていない。
- (Problem to be solved by the invention) By the way, when using the above method, it is necessary to replace various ion sources in the middle of the process. It is necessary to perform axis alignment with strict precision between the ion deflection electrode systems.Furthermore, when performing a second ion implantation on top of an already implanted pattern with submicron precision or higher, it is necessary to replace the ion source. If the position of the ion generating section shifts even slightly, it will take a lot of effort to adjust the position, and the advantages of the above-mentioned method are not fully utilized.

これに対して一つのイオン発生部よりイオン源を交換す
ることなく、p型、n型及び電極形j − 成のための不純物イオンを選択的に発生できれば殆どの
集積回路デバイス作成工程中でノ・−ドウエアの変更、
調整を行うことなく、ソフトウェアの制御のみで同一基
板に高集積化された信′11    頼度。高い光−電
イデ2・イア、)製造が容易にな□   リ、別途出願
した上述の方法における利点も十分に生かされる。
On the other hand, if impurity ions for forming p-type, n-type, and electrode types could be selectively generated from one ion generating section without replacing the ion source, it would be possible to generate ions during most integrated circuit device fabrication processes.・−Change of software,
Highly integrated on the same board with only software control without any adjustments.High reliability. The advantages of the above-mentioned method, which has been filed separately, are also fully utilized.

体金属イオン源を提案することを目的とする。The purpose of this study is to propose a body metal ion source.

(問題点を解決するための手段) 以上の問題点を解決するため、この発明では)ag −
Si −Be −Gsの4元合金であって、m : 8
i :Be : G−の比率が(71±a):(to±
1.5):(10±5): (9±6)原子チの組成で
ある電子放出型イオンビーム発生装置用液体金属イオン
源を提案するものである。
(Means for Solving the Problems) In order to solve the above problems, in this invention) ag −
A quaternary alloy of Si-Be-Gs, m: 8
The ratio of i:Be:G- is (71±a):(to±
1.5): (10±5): (9±6) We propose a liquid metal ion source for an electron-emitting ion beam generator having a composition of (9±6) atoms.

即ち、第1図に示すAsh −Si 、恕−Bg 、 
ML−GeJ − それぞれの合金状態図より明らかなように、紅−8(は
凡そ70 : 50原子係で400℃以下の融点を示し
、池−B#はB#の比率が20〜40原子チで600℃
程度の融点を示し、裁−Gsは凡そ73:27原子チの
比率で融点が400℃以下の合金である。
That is, Ash-Si, Ash-Bg, and Ash-Si shown in FIG.
ML-GeJ - As is clear from the respective alloy phase diagrams, Beni-8 (approximately 70:50 atomic ratio) exhibits a melting point of 400°C or less, and Ike-B# has a B# ratio of 20 to 40 atomic ratios. at 600℃
Gs is an alloy with a ratio of approximately 73:27 atoms and a melting point of 400°C or less.

したがって、上記各々の2元合金を混合した組成である
この発明の4元合金は少なくとも600℃以下の融点を
有している。
Therefore, the quaternary alloy of the present invention, which is a mixture of the above binary alloys, has a melting point of at least 600°C or lower.

なお、以上の組成を外れると、合金の融点が高くなり、
電界放出型イオンビーム発生装置用液体金属イオン源と
して適さなくなる。
In addition, if the composition deviates from the above, the melting point of the alloy will increase,
It is no longer suitable as a liquid metal ion source for field emission type ion beam generators.

(発明の効果) この発明に係る4元合金は低融点であり、電界放出型イ
オンビーム発生装置用液体金属イオン源として最適であ
る。
(Effects of the Invention) The quaternary alloy according to the present invention has a low melting point and is optimal as a liquid metal ion source for a field emission type ion beam generator.

また、この発明に係る4元合金中には代−表的な外型不
純物であるSi、G−と代表的なp型不純物であるB#
を含むため、工程の途中でイオン源を交換することなく
各種の半導体デバイスを製造できる。
In addition, the quaternary alloy according to the present invention contains Si and G-, which are typical external impurities, and B#, which is a typical p-type impurity.
, it is possible to manufacture various semiconductor devices without replacing the ion source during the process.

更に、この発明に係る4元合金中には8(、Ge 。Furthermore, the quaternary alloy according to the present invention contains 8 (, Ge).

−7一 工程をマスクを使用することなく行うことができるとい
う利点を十分に生かすことができる。
-7 The advantage of being able to perform one step without using a mask can be fully utilized.

(実施例) 以下、この発明を図示の実施例に基いて説明する。(Example) The present invention will be explained below based on illustrated embodiments.

第2図はこの発明の4元合金を液体金属イオン源として
用いて基板結晶にイオンを注入する一実施例を示し、/
は電界放出型イオン発生部であって、エミッタ電極コの
先端付近のリザーバに4元合金3を液体金属イオン源と
じて装填する。エミッタ電極−を所定の温度加熱して合
金3が溶融したら、エミッタ成極コとその前方に配置さ
れたイオン引き出し電極lに数KVの電!   圧を印
加すると、電界蒸発、電界電離などにより、イオン発生
部/より4つの元素を混合したイオンビームjが放出さ
れることになり、前校収束系61通って質量分離器9へ
導かれる。質10にて収束され、偏向電極/1により基
板結晶15前述と同様に所定のパターンの描画1行う。
FIG. 2 shows an example of implanting ions into a substrate crystal using the quaternary alloy of the present invention as a liquid metal ion source.
is a field emission type ion generator, and a quaternary alloy 3 is loaded as a liquid metal ion source into a reservoir near the tip of an emitter electrode. When the emitter electrode is heated to a predetermined temperature and the alloy 3 is melted, a voltage of several KV is applied to the emitter polarizer and the ion extraction electrode located in front of it. When a pressure is applied, an ion beam j containing a mixture of four elements is emitted from the ion generating section by field evaporation, field ionization, etc., and is guided to the mass separator 9 through the pre-calibration focusing system 61. The light is focused by the crystal 10, and a predetermined pattern is drawn 1 on the substrate crystal 15 by the deflection electrode 1 in the same manner as described above.

なお、上記のようにイオン注入してp型不純物注入領域
、外型不純物注入領域を形成した基板結晶/コの表面に
hxPA%蒸着した後、p型不純物注入領域上のAu膜
と牛導基板との境界附近にイオン発生部lより8gイオ
ンビームな注入し、イオンビームミキシングを生じせし
める。続いてAuイオンビームY Au膜に注入して該
Au膜をモディフィケーションし、また外型不純物注入
領域上のAu膜にGeイオンく−ムを注入し、続いてA
uイオンl注入してffAt!膜!モデイフイケーシー
 デ − ロンを起こさせる。
In addition, after evaporating hxPA% on the surface of the substrate crystal/coat in which the p-type impurity implantation region and the outer mold impurity implantation region were formed by ion implantation as described above, the Au film on the p-type impurity implantation region and the conductive substrate were deposited. An 8g ion beam is implanted from the ion generating part l near the boundary with the ion beam to cause ion beam mixing. Next, Au ion beam Y is implanted into the Au film to modify the Au film, and Ge ion beam is implanted into the Au film on the outer mold impurity implanted region, and then A
Inject u ions l and ffAt! film! Modify Casey Wake up Ron.

更に、上記り膜の全面をエツチングし、モディフィケー
ションを起こさない部分のム膜を除去し、次に400〜
500℃にてア四イ化することによりモディフィケーシ
ョンを起こした部分のb膜にオーミック電極を形成した
Furthermore, the entire surface of the film described above is etched to remove the part of the film that does not cause modification, and then etched at 400~
An ohmic electrode was formed on the part of the B film that had been modified by a4I conversion at 500°C.

このような方法によれば、半導体デバイス製造の全プロ
セスをマスクレスで、しかもイオン源を交換することな
く行うことができる。
According to such a method, the entire process of semiconductor device manufacturing can be performed maskless and without replacing the ion source.

また、このような方法によればオーミック電極を形成す
ることができる。
Moreover, according to such a method, an ohmic electrode can be formed.

上述の如く、この発明による4元合金を電界放出型イオ
ンビーム発生装置の液体金属イオン源として用いること
により、一つのイオン源で鴇型、p型、電極形成用不純
物イオンを発生することができ、従ってイオン注入工程
中にイオン源を取り替えることなく、任意の不純物イオ
ンを同一基板結晶上に連続注入することができ且つ形成
されたデバイスのオーミック電極の形成もできるので、
最近提案されているサブミクロンのオーダで収束された
イオンビームによるマスクレスイオン注入に利用し、高
集積化された電子デバイス、元デバイスが容易に形成さ
れ    ′ることになる。
As mentioned above, by using the quaternary alloy according to the present invention as a liquid metal ion source in a field emission type ion beam generator, it is possible to generate ion-type, p-type, and impurity ions for electrode formation with one ion source. Therefore, arbitrary impurity ions can be continuously implanted onto the same substrate crystal without replacing the ion source during the ion implantation process, and ohmic electrodes of the formed devices can also be formed.
Utilizing the recently proposed maskless ion implantation using a focused ion beam on the order of submicrons, highly integrated electronic devices and original devices can be easily formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAM−84、Am−B# 、 AM−Geそれ
ぞれの合金の状態図で、第1図(α)はh−84の状態
図、第1図(b)はムー胸の状態図、第1図(61はム
ーG#の状態図、第2図はこの発明に係る液体金属イ 
   :15.′ オン源を用いて基板結晶にイオンを注入する方法の概略
を示す図である。
Figure 1 shows the phase diagrams of AM-84, Am-B#, and AM-Ge alloys, Figure 1 (α) is the phase diagram of h-84, and Figure 1 (b) is the phase diagram of Mu-chest. , FIG. 1 (61 is a state diagram of MuG#, and FIG. 2 is a liquid metal engine according to the present invention.
:15. 1 is a diagram schematically showing a method for implanting ions into a substrate crystal using an on-source.

Claims (1)

【特許請求の範囲】[Claims] Au−Si−Be−Geの4元合金であつて、Au:S
i:Be:Geの比率が(71±8):(10±1.5
):(10±3):(9±3)原子%の組成であること
を特徴とする電界放出型イオンビーム発生装置用液体金
属イオン源。
Au-Si-Be-Ge quaternary alloy, Au:S
The ratio of i:Be:Ge is (71±8):(10±1.5
):(10±3):(9±3) atomic % of a liquid metal ion source for a field emission type ion beam generator.
JP8006385A 1985-04-17 1985-04-17 Liquid metal ion source for filed emission type ion beam generator Granted JPS61239538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8006385A JPS61239538A (en) 1985-04-17 1985-04-17 Liquid metal ion source for filed emission type ion beam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8006385A JPS61239538A (en) 1985-04-17 1985-04-17 Liquid metal ion source for filed emission type ion beam generator

Publications (2)

Publication Number Publication Date
JPS61239538A true JPS61239538A (en) 1986-10-24
JPH0449213B2 JPH0449213B2 (en) 1992-08-10

Family

ID=13707771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8006385A Granted JPS61239538A (en) 1985-04-17 1985-04-17 Liquid metal ion source for filed emission type ion beam generator

Country Status (1)

Country Link
JP (1) JPS61239538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437024A (en) * 1990-05-31 1992-02-07 Shimadzu Corp Manufacturing equipment of semiconductor element
JPH088187A (en) * 1995-05-16 1996-01-12 Shimadzu Corp Semiconductor element fabricating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437024A (en) * 1990-05-31 1992-02-07 Shimadzu Corp Manufacturing equipment of semiconductor element
JPH088187A (en) * 1995-05-16 1996-01-12 Shimadzu Corp Semiconductor element fabricating apparatus

Also Published As

Publication number Publication date
JPH0449213B2 (en) 1992-08-10

Similar Documents

Publication Publication Date Title
JPH0145694B2 (en)
US5581146A (en) Micropoint cathode electron source with a focusing electrode
DE2019655C2 (en) Method for diffusing an activator which changes the conductivity type into a surface region of a semiconductor body
WO1993004503A1 (en) Process for the production of electroluminescent silicon features
US2842466A (en) Method of making p-nu junction semiconductor unit
DE2718449A1 (en) METHOD OF MANUFACTURING A SEMI-CONDUCTOR ARRANGEMENT AND ARRANGEMENT PRODUCED BY THIS METHOD
JPS61239538A (en) Liquid metal ion source for filed emission type ion beam generator
US4716127A (en) Method of implanting spatially controlled P-N junctions by focused ion beams containing at least two species
JPS58200584A (en) Semiconductor light emitting device
JPH0360140B2 (en)
JPS60150535A (en) Liquid metal ion source for field emission-type ion beam generator
JPS60200433A (en) Field emission type liquid metal ion source
US5233196A (en) Electron beam apparatus and method for driving the same
KR20010024238A (en) Method for producing a composite part and composite part
JPH0358130B2 (en)
JPH02194683A (en) Semiconductor laser
JPS59149076A (en) Manufacture of semiconductor optical integrated circuit device
JPH0527273B2 (en)
SU1129667A1 (en) Process for manufacturing multipoint electron-emitting source
JPS59228718A (en) Semiconductor device
JPH0325008B2 (en)
JPS62241248A (en) Focusing device for ion beam
JPS59189545A (en) Manufacture of liquid metal ion source for field emission type ion beam generator
JPS58164241A (en) Manufacture of semiconductor device
JPS6355974A (en) Manufacture of electrostatic induction thyristor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term