JPS59149076A - Manufacture of semiconductor optical integrated circuit device - Google Patents

Manufacture of semiconductor optical integrated circuit device

Info

Publication number
JPS59149076A
JPS59149076A JP2283683A JP2283683A JPS59149076A JP S59149076 A JPS59149076 A JP S59149076A JP 2283683 A JP2283683 A JP 2283683A JP 2283683 A JP2283683 A JP 2283683A JP S59149076 A JPS59149076 A JP S59149076A
Authority
JP
Japan
Prior art keywords
substrate
film
alignment mark
thin
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2283683A
Other languages
Japanese (ja)
Inventor
Hideaki Matsueda
秀明 松枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2283683A priority Critical patent/JPS59149076A/en
Publication of JPS59149076A publication Critical patent/JPS59149076A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent the disappearance of a mask alignment mark on the growth of a crystal on a semiconductor base body by forming the mask alignment mark on a semiconductor and forming a thin-film consisting of a virtric inorganic material on the mark. CONSTITUTION:An N<+> conductive layer 4 is crystal-grwon on a semi-insulating GaAs substrate 1, a substrate stepped-difference 5 or grooves 3 are formed through an etching method, and a vitric thin-film composed of SiO2, etc. is formed at the end section 2 of a sample. Multi-layer laminated films 6 consisting of GaAlAs/GaAs constituting a double hetero-type laser are crystal-grown from the upper section of the thin-film, but the films 6 are not grown on a section coated with the vitric film, and the state in which the stepped difference and grooves formed to the substrate 1 can be viewed is brought. a succeeding impurity diffusion process and a pattern alignment for an electrode and a wiring are facilitated and their accuracy is improved because the stepped difference, etc. formed to the substrate first as an alignment mark do not disappear and remain distinctly to the end by the coating of the vitric thin-film.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は化合物半導体の多層構造よりなる光集積回路の
製造における結晶成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a crystal growth method for manufacturing an optical integrated circuit having a multilayer structure of compound semiconductors.

〔従来技術〕[Prior art]

従来例えば溝を設けた半導体基板上にレーザダイオード
を製造する場合、p側の不純物拡散や電極の形成のため
に行うパターン合わせは、試料の一部分を蝕刻する事に
よって、基板上の溝を露出させ、この露出した溝あるい
は、溝と同時に基板に付けである合わせマークを基準と
して行っているのが実情である。しかし、この基板を露
出させるという方法は困難なプロセスで、ややもすると
蝕刻が行き過ぎたりする上に、基板とすぐ次の層との組
成が近い場合は基板表面で蝕刻を止める事は不可能であ
った。従ってごく限られた組成で構成される素子のみに
しか適用できなかった。又、その工程の制御性も不安定
なものであった。
Conventionally, for example, when manufacturing a laser diode on a semiconductor substrate with grooves, pattern alignment for p-side impurity diffusion and electrode formation is done by etching a portion of the sample to expose the grooves on the substrate. In reality, this is done using the exposed groove or the alignment mark, which is attached to the substrate at the same time as the groove, as a reference. However, this method of exposing the substrate is a difficult process, and if the etching occurs too much, it is impossible to stop the etching at the substrate surface if the composition of the substrate and the next layer is similar. there were. Therefore, it could only be applied to elements composed of very limited compositions. Moreover, the controllability of the process was also unstable.

〔発明の目的〕[Purpose of the invention]

本発明は化合物半導体のいかなる組成で構成される半導
体レーザ素子に対しても、あまねく適用できるところの
、多層構造の結晶成長の前後にまたがるパターン合わせ
の方法を提供するものである。
The present invention provides a method for pattern matching before and after crystal growth of a multilayer structure, which can be universally applied to semiconductor laser devices made of any composition of compound semiconductors.

〔発明の概要〕[Summary of the invention]

多層構造の結晶成長において、先に蝕刻等によって付け
たパターン合わせのための基準となるマークが消失しな
いように、所要部分に、その上には結晶成長が起らない
ような処理をする。その最も簡便で確実な方法として、
ガラス質膜、たとえば5i02膜等を薄くつける事であ
る。
In the crystal growth of a multilayer structure, in order to prevent marks previously made by etching or the like that serve as a reference for pattern alignment from disappearing, processing is performed to prevent crystal growth from occurring on the required portions. As the simplest and surest method,
This involves applying a thin glass film, such as a 5i02 film.

〔発明の実施例〕[Embodiments of the invention]

第1図は光集積回路の作製に用いる半絶縁性のGaAs
基板1の平面図である。第1図の直H3はこの基板に設
けた溝をモデルとして示している。
Figure 1 shows semi-insulating GaAs used in the fabrication of optical integrated circuits.
1 is a plan view of a substrate 1. FIG. Line H3 in FIG. 1 shows a groove provided in this substrate as a model.

この溝を用いて基板に設けた段差部分(第2図の5の部
分)にレーザの活性領域を設けるものである。この状態
は第2図に半導体光集積回路装置の断面として示した通
りである。実際の製造に当っては、ひとつの基板に多数
の溝を形成しておき、多数の素子を同時に製造し、必要
に応じて分離をはかるものである。なお、第1図中の2
の領域は本発明に係わるガラス質薄膜を形成する領域で
後に段差(約2μm)(第2図5)をつけ、この上に、
高不純物濃度のn型導電層4を液相エピタキシャル法(
LPE )によって成長させる。さらにての上に通例通
シのG a Al、k 8 /G a A 8で構成さ
れるダブルへテロ型レーザを構成する半導体積層6を成
長させる。次に所要部分のn型導電層及び半絶縁性基板
を蝕刻によって露出させ、この上に電気回路11を形成
させる事によって、光電気集積回路が製作される。なお
、第2図において領域10はレーザ部と電気回路部との
接続部分、8はレーザ部と接続をはかる金属電極部、9
はたとえばの例示でイオン打込み層を示している。具体
的な回路は勿論目的に応じて設計される。ところが、最
初基板に付けた段差の位lt(第1図の3或いは第2図
5)は以降のプロセスにおいて、パターンの位置決めの
基準として重要であり、後のLPEプロセスによって、
消失してしまってはいけない。
This groove is used to provide a laser active region in a step portion (portion 5 in FIG. 2) provided in the substrate. This state is shown in FIG. 2 as a cross section of the semiconductor optical integrated circuit device. In actual manufacturing, a large number of grooves are formed on one substrate, a large number of elements are manufactured at the same time, and separation is performed as necessary. Note that 2 in Figure 1
This region is the region where the glassy thin film according to the present invention is to be formed, and a step (approximately 2 μm) (Fig. 2, 5) is added later, and on top of this,
The n-type conductive layer 4 with high impurity concentration is formed by liquid phase epitaxial method (
LPE). Furthermore, a semiconductor laminated layer 6 constituting a double hetero type laser composed of Ga Al and k 8 /Ga A 8 is grown on top of the semiconductor layer. Next, a required portion of the n-type conductive layer and the semi-insulating substrate are exposed by etching, and an electric circuit 11 is formed thereon, thereby fabricating an opto-electrical integrated circuit. In FIG. 2, area 10 is a connection area between the laser section and the electric circuit section, 8 is a metal electrode section for connection with the laser section, and 9 is a connection area between the laser section and the electric circuit section.
shows an ion-implanted layer by way of example. The specific circuit is of course designed depending on the purpose. However, the position of the step initially attached to the substrate (3 in Fig. 1 or 5 in Fig. 2) is important as a reference for pattern positioning in subsequent processes, and in the later LPE process,
It must not disappear.

そこで、基板に段差を付けた直後に、基板の例えば端部
約2mmの巾の部分(第1図の2)に、ガラス質薄膜た
とえばf3 iQ2あるいは、SiNx。
Immediately after forming the step on the substrate, a glassy thin film such as f3 iQ2 or SiNx is applied to the approximately 2 mm wide portion (2 in FIG. 1) of the substrate, for example.

A/=2011等を約500人の厚さにたとえばCVD
失せず最後まで鮮明に残るので、不純物拡散工程や電極
、配線のためのパターンの合わせが容易で精度が非常に
良い。
For example, CVD A/=2011 etc. to a thickness of about 500 people.
Since it does not disappear and remains clearly until the end, it is easy to match patterns for impurity diffusion processes, electrodes, and wiring, and the accuracy is very high.

溝部の形成工程は次の通シである。The groove forming process is as follows.

先ず半絶縁性GaAs基板にn1導′醒層を結晶成長し
、これにホトレジストをマスクとして、蝕刻法によって
基板段差あるいは溝を付ける。試料の端部に8402あ
るいは、SiNx、 Atz03 、PSG(リンガラ
ス)等ガラス質の薄い膜を形成する。
First, an N1 conductive layer is crystal-grown on a semi-insulating GaAs substrate, and steps or grooves are formed on the substrate by etching using a photoresist as a mask. A thin glass film such as 8402, SiNx, Atz03, PSG (phosphorus glass), etc. is formed on the edge of the sample.

次に、この上から、レーザとなるダブルへテロ層を結晶
成長させるが、ガラス質膜でおおった部分には成長せず
、基板に付けた段差や溝が見える状態となる。
Next, a double hetero layer that will become a laser is crystal-grown from above, but it does not grow on the portion covered with the glassy film, leaving the steps and grooves formed in the substrate visible.

以下の工程は装置の目的によって、種々の工程略述して
おく。レーザ部と電気回路部との接続部分の構造をホト
レジストをマスクとして蝕刻法によって形成する。この
段階において、電気回路部となる部分においては基板が
露出する。この部分′・にイオン打込み法によって電気
回路の能動領域を・形成する。次に、レーザ部にZnを
At20 B及び、5i02をマスクとして用いて選択
拡散し、p側の電気経路を形成する。しかる後に金属電
極及び金属配線を、蒸着とリフトオフ法によって形成し
、第2図のような構造を得る。
Various steps will be briefly explained below depending on the purpose of the device. The structure of the connecting portion between the laser section and the electric circuit section is formed by etching using a photoresist as a mask. At this stage, the substrate is exposed in the portion that will become the electric circuit section. An active region of an electric circuit is formed in this portion by ion implantation. Next, Zn is selectively diffused into the laser part using At20B and 5i02 as a mask to form a p-side electrical path. Thereafter, metal electrodes and metal wiring are formed by vapor deposition and lift-off to obtain a structure as shown in FIG.

なお、合わせマークに使用する部分を被覆する物質とし
ては、5iQz膜の他に、PSG(リンガラス)膜、5
i02とPSGとの混合もしくは複合膜、あるいは、窒
化シリコンの類やAt203で出来た膜でも良い。厚さ
は0.01μm (100A )以上1μm以下が適当
である。薄過ぎると膜が均−に基板を被覆しないので、
結晶が付き、非常に見苦しくなり、目的を達しない。ま
た厚過ぎると基板に余計な応力を生じ、レーザ等の性能
を劣化させるばかりでなく、結晶を成長させた部分と、
被覆によって結晶成長を141止した部分との境界に段
がついたシ、もシ上がりが出来たりして、以降の精密加
工プロセスで致命的な欠陥となる。
In addition to the 5iQz film, the materials used to cover the parts used for alignment marks include PSG (phosphorus glass) film and 5iQz film.
A mixed or composite film of i02 and PSG, or a film made of silicon nitride or At203 may be used. The appropriate thickness is 0.01 μm (100 A) or more and 1 μm or less. If it is too thin, the film will not cover the substrate evenly.
Crystals form on it, making it very unsightly and defeating the purpose. Also, if it is too thick, unnecessary stress will be generated on the substrate, which will not only deteriorate the performance of the laser etc., but also cause the parts where the crystals have grown to
A step may be formed at the boundary with the part where crystal growth has been stopped by the coating, and a rise may occur, which will become a fatal defect in the subsequent precision machining process.

5iQz膜の場合0.024m〜0.07 pm (2
00人〜700人)厚さを用いるのが最適である。
0.024 m to 0.07 pm (2
00 to 700 people) thickness is optimal.

〔発明の効果〕〔Effect of the invention〕

当該方法によって多層構造の半導体素子を精度良く製造
3゛−る事が出来る。光電気集積回路の、レーザ部分に
おいては、p側の不純物を拡散させる位置(第2図の7
)金、基板の段差部等に精度良く合わせる事が出来、レ
ーザの閾値を低くする事が出来た。また電気回路部と、
レーザ部分の電気的な接続(第2図8)も精度良く行う
事が出来る。
By this method, a semiconductor device having a multilayer structure can be manufactured with high precision. In the laser part of the opto-electrical integrated circuit, the position where the p-side impurity is diffused (7 in Figure 2) is
) It was possible to precisely match the step part of the gold substrate, etc., and the threshold of the laser could be lowered. In addition, the electric circuit section,
The electrical connection of the laser part (Fig. 2, 8) can also be made with high precision.

さらに、電気回路全体(第2図9)を所定の位置に精度
良く作り付けるためにも、本発明による合わせマークが
基準になるので重要である。
Furthermore, the alignment mark according to the present invention is important because it serves as a reference for accurately assembling the entire electric circuit (FIG. 2, 9) in a predetermined position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した半導体基板ウェハーの平面図
、第2図は光電気集積回路の断面図である。 1・・・半導体基板、2・・・ガラス質物質で被覆した
部分、3・・・基板につけた溝、4・・・高不純物濃度
のn型導電層、訃・・基板につけたレーザのための段差
、6・・・ダブルへテロ構造を構成するGaA7As/
G a A sの多層積層膜、7・・・不純物拡散領域
、8・・・金属電極、9・・・イオン打込み層、10・
・・レーザ部と電気回路部との接続部分、11・・・電
気回路部。 特許出願人 工業技術院長 石 坂 誠 −
FIG. 1 is a plan view of a semiconductor substrate wafer embodying the present invention, and FIG. 2 is a sectional view of an optoelectronic integrated circuit. 1... Semiconductor substrate, 2... Portion covered with glassy substance, 3... Groove made in the substrate, 4... N-type conductive layer with high impurity concentration, and... For laser attached to the substrate step, 6... GaA7As/ that constitutes a double heterostructure
Ga As multilayer laminated film, 7... Impurity diffusion region, 8... Metal electrode, 9... Ion implantation layer, 10.
... Connection portion between the laser section and the electric circuit section, 11... Electric circuit section. Patent applicant Makoto Ishizaka, Director of the Institute of Industrial Science and Technology −

Claims (1)

【特許請求の範囲】 1、所定の半導体基体上に化合物半導体層を積層し、少
なくとも半導体レーザ部および電子回路部が集積化され
た半導体光集積回路装置の製造に当って、前記半導体基
体上にマスク合せマークを形成し、更にこのマスク合せ
マーク上にガラス質無機材料の薄膜を形成せしめ当該半
導体基体上への結晶成長時にマスク合せマークが消失し
ないようにしたことを特徴とする半導体光集積回路装置
の製造方法。 2 前記マスク合せマークが前記半導体基板に設けられ
た溝なることを特徴とする特許請求の範囲第1項記載の
半導体光集積回路装置の製造方法。
[Claims] 1. In manufacturing a semiconductor optical integrated circuit device in which a compound semiconductor layer is laminated on a predetermined semiconductor substrate and at least a semiconductor laser section and an electronic circuit section are integrated, a compound semiconductor layer is stacked on the semiconductor substrate. A semiconductor optical integrated circuit characterized by forming a mask alignment mark and further forming a thin film of a glassy inorganic material on the mask alignment mark to prevent the mask alignment mark from disappearing during crystal growth on the semiconductor substrate. Method of manufacturing the device. 2. The method of manufacturing a semiconductor optical integrated circuit device according to claim 1, wherein the mask alignment mark is a groove provided in the semiconductor substrate.
JP2283683A 1983-02-16 1983-02-16 Manufacture of semiconductor optical integrated circuit device Pending JPS59149076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2283683A JPS59149076A (en) 1983-02-16 1983-02-16 Manufacture of semiconductor optical integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2283683A JPS59149076A (en) 1983-02-16 1983-02-16 Manufacture of semiconductor optical integrated circuit device

Publications (1)

Publication Number Publication Date
JPS59149076A true JPS59149076A (en) 1984-08-25

Family

ID=12093788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2283683A Pending JPS59149076A (en) 1983-02-16 1983-02-16 Manufacture of semiconductor optical integrated circuit device

Country Status (1)

Country Link
JP (1) JPS59149076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283224A (en) * 1993-03-26 1994-10-07 Mitsubishi Electric Corp Terminal block with attachment
US7705317B2 (en) 2004-08-20 2010-04-27 Hamamatsu Photonics K.K. Radiation imaging device and radiation imaging method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347764A (en) * 1976-10-13 1978-04-28 Hitachi Ltd Production of semiconductor device
JPS56125851A (en) * 1980-03-06 1981-10-02 Fujitsu Ltd Monitoring method of characteristic of semiconductor layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347764A (en) * 1976-10-13 1978-04-28 Hitachi Ltd Production of semiconductor device
JPS56125851A (en) * 1980-03-06 1981-10-02 Fujitsu Ltd Monitoring method of characteristic of semiconductor layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283224A (en) * 1993-03-26 1994-10-07 Mitsubishi Electric Corp Terminal block with attachment
US7705317B2 (en) 2004-08-20 2010-04-27 Hamamatsu Photonics K.K. Radiation imaging device and radiation imaging method

Similar Documents

Publication Publication Date Title
JPS6250987B2 (en)
EP0132614B1 (en) A method for manufacturing an integrated circuit device
US4468857A (en) Method of manufacturing an integrated circuit device
US3878008A (en) Method of forming high reliability mesa diode
WO1985004134A1 (en) Process for forming and locating buried layers
US4220960A (en) Light emitting diode structure
JPS59149076A (en) Manufacture of semiconductor optical integrated circuit device
JPH03129818A (en) Manufacture of semiconductor device
JPS58200584A (en) Semiconductor light emitting device
KR900008408B1 (en) Electrode formulating method for iii-v family compound semiconductor device
JPS59202676A (en) Planar type light-emitting element
JPH0613549A (en) Semiconductor device
JPH0271514A (en) Manufacture of semiconductor device
JPS59231885A (en) Optical semiconductor device
JPS6127630A (en) Manufacture of semiconductor device
JPS5947480B2 (en) Manufacturing method of semiconductor device
KR0138858B1 (en) The manufacture method for low threshold current surface emitting laser
JPS60145609A (en) Manufacture of compound semiconductor device
JPS61216375A (en) Manufacture of semiconductor light emitting device
JPS63231304A (en) Thin film lens
JPH02153568A (en) Manufacture of photoelectric integrated circuit
Cohen et al. Semiconductor Processing Applied to Integrated Circuit Fabrication
JPH02148764A (en) Analog master-slice ic
JPS6045083A (en) Planar type semiconductor laser integrated circuit device
JPS62131592A (en) Manufacture of semiconductor device