JPS61239498A - Method for writing of semiconductor non-volatile memory - Google Patents

Method for writing of semiconductor non-volatile memory

Info

Publication number
JPS61239498A
JPS61239498A JP60080843A JP8084385A JPS61239498A JP S61239498 A JPS61239498 A JP S61239498A JP 60080843 A JP60080843 A JP 60080843A JP 8084385 A JP8084385 A JP 8084385A JP S61239498 A JPS61239498 A JP S61239498A
Authority
JP
Japan
Prior art keywords
floating gate
gate electrode
control gate
voltage
writing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60080843A
Other languages
Japanese (ja)
Inventor
Yoshio Hirai
平井 芳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP60080843A priority Critical patent/JPS61239498A/en
Publication of JPS61239498A publication Critical patent/JPS61239498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Abstract

PURPOSE:To lower a maximum electric field applied to a thin oxide film, prevent a damage produced in a thin insulating film and increase the number of rewriting by making longer a rise time of an electric potential of a floating gate electrode to more than 300musec. CONSTITUTION:By using a fully slow rise pulse, before a control gate voltage reaches to a maximum control gate voltage VCGmax, an electron is injected into a floating gate electrode. Accordingly, even when a voltage of the control gate voltage reaches to the maximum value VCGmax, an electric potential of the floating gate electrode is not enhanced, so that a high electric field is not impressed to a floating gate oxide film 6, and therefore, a damage can be prevented. When the rise time of the writing control gate voltage pulse is above 300musec, a minimum drain writing voltage can be prevented from increasing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体不揮発性メモリの書込み方法に関し、
特に書込み電圧パルスの立ち上り時間を300μsea
以上にすることによりメモリの特性劣化を少なくした半
導体不揮発性メモリの書込み方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a writing method for a semiconductor non-volatile memory,
In particular, the rise time of the write voltage pulse is 300 μsea.
The present invention relates to a writing method for a semiconductor nonvolatile memory that reduces deterioration of memory characteristics by doing the above.

〔発明の概要〕[Summary of the invention]

この発明は、ソース領域とドレイン領域との間に印加し
た電界により発生するチャネル電流のホットエレクトロ
ンを浮遊ゲート電極へ注入する半導体不揮発性メモリの
書込み方法において、浮遊ゲート電極′の電位を制御す
る制御ゲート電極への印刀口電圧パルスを300μ88
6以上にすることにより、書換え特性の劣化を少なくし
たものである。
This invention relates to a semiconductor nonvolatile memory writing method in which hot electrons of a channel current generated by an electric field applied between a source region and a drain region are injected into a floating gate electrode. The voltage pulse applied to the gate electrode was 300μ88.
By setting the number to 6 or more, the deterioration of rewriting characteristics is reduced.

〔従来の技術〕[Conventional technology]

一般的に、浮遊ゲート型半導体不揮発性メモリにチャン
ネルホットニレ°クトロンを注入するには、浮遊ゲート
電極に高電圧を印加して行う。この書込み動作は高速で
あることが望ましいため、浮遊ゲート電極の電圧の立ち
上り時間はlOOμ8#O以下である。
Generally, channel hot electrons are injected into a floating gate type semiconductor nonvolatile memory by applying a high voltage to the floating gate electrode. Since this write operation is desirably fast, the voltage rise time of the floating gate electrode is less than lOOμ8#O.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

浮遊ゲート型半導体メモリにおいて、書込み時にチャネ
ルホットエレクトロンの一部カゲート絶R膜に捕獲さn
る。その結果、書換えt−縁り返し行うと書込み状態が
一定に行うことが不可能になってしまう。
In a floating gate semiconductor memory, some of the channel hot electrons are captured by the gate-off R film during writing.
Ru. As a result, if rewriting is performed at t-edge, it becomes impossible to maintain a constant writing state.

〔問題f:屏決するための手段〕[Problem f: Means for making a decision]

本発明は、上記の問題点を解決するために考案さnたも
のであり、その手段は、浮遊ゲート電極の電位の豆ち上
り時間を300μsec以上に長くするものである。
The present invention has been devised to solve the above problems, and its means are to increase the rising time of the potential of the floating gate electrode to 300 μsec or more.

〔作用〕[Effect]

書込み時に、浮遊ゲート電極の立ち上り時間を300μ
m166以上にすることにより、注入領域を広くシてチ
ャネルホットエレクトロンのゲート絶縁膜への捕獲を少
なくすることにより書換え特性を向上させることができ
る。
During writing, rise time of floating gate electrode is 300μ
By making m166 or more, the injection region can be widened to reduce trapping of channel hot electrons into the gate insulating film, thereby improving rewriting characteristics.

〔実施例〕〔Example〕

浮遊ゲート型半導体不揮発性メモリの断面図上第1図に
示す。P型基板10表面にN中型のソース領域2とドレ
イン領域8t−形成し、ソース領域2とドレイン領域8
との間の半導体基板上には、選択ゲート酸化膜4′t−
介して選択ゲート電極5と、浮遊ゲート酸化g6を介し
て浮遊ゲート電極7が直列に形成さnている。浮遊ゲー
ト電極7の上には、制御ゲート酸化膜8を介して制御ゲ
ート電極9が形成さnている。浮遊ゲート電極7は、制
御ゲート電極9と強い容量結合をしている。即ち、制御
ゲート電極9の電圧によって浮遊ゲート電極7の電位が
制御さnる。メモリは、選択ゲート電極下のチャネル領
域を反転した状態で、浮遊ゲート電極7の下のチャネル
が反転する場合と、反転しない場合とで2つの状態を記
憶する装置である。浮遊ゲート極電7に電子が多数入っ
ている場合は、反転しない状態になる。逆に、浮遊ゲー
ト電極7に電子がTotり入っていない場合は、反転す
る状態になる。電子を浮遊ゲート電極7に注入する方法
について説明する。
A cross-sectional view of a floating gate type semiconductor nonvolatile memory is shown in FIG. N medium-sized source region 2 and drain region 8t- are formed on the surface of P-type substrate 10, and source region 2 and drain region 8t- are formed.
A selection gate oxide film 4't-
A selection gate electrode 5 and a floating gate electrode 7 are formed in series through the floating gate oxide g6. A control gate electrode 9 is formed on floating gate electrode 7 with a control gate oxide film 8 interposed therebetween. The floating gate electrode 7 has strong capacitive coupling with the control gate electrode 9. That is, the potential of floating gate electrode 7 is controlled by the voltage of control gate electrode 9. The memory is a device that stores two states, one in which the channel region under the selection gate electrode is inverted, one in which the channel under the floating gate electrode 7 is inverted, and one in which it is not inverted. If there are a large number of electrons in the floating gate electrode 7, there will be no inversion. Conversely, when no electrons enter the floating gate electrode 7, the state is reversed. A method for injecting electrons into the floating gate electrode 7 will be explained.

基板及びソース領域2の電位を基準にして、ドレイン領
域8に電源電圧である5v′を印加した状態で、選択ゲ
ート電極5の下のチャネルが弱反転、浮遊ゲート電極下
のチャネルが像反転するような電圧を印加する。例えば
、基板の不純物濃度が1 x 10” cm1テ選択ケ
−) 酸化ji厚カ200 A、浮遊ゲート酸化膜厚が
120人の場合、選択ゲート電極5には、閾値電圧であ
る約2vt−印加し、制御ゲート電極9には、浮遊ゲー
ト電極7が充分プラスに帯電し、浮遊ゲート電極下のチ
ャネルが反転するような高い電圧約107″Ik印那す
る。選択ゲート酸化!14の下のチャネル電位はソース
領域の電位に等しくなり、浮遊ゲート酸化膜6の下のチ
ャネル電位はドレイン領域3の電位と等しくなる。即ち
、選択ゲート酸化膜と浮遊ゲート酸化層が交わるチャネ
ル領域の電位は、ソース領域の電位からドレイン領域の
電位へと急に変化する。こ消aM値−〒 (シゼー め
寛シへキ1砂令 n7〒 フッカ k 青 リが発生し
、その一部が浮遊ゲート電極7へ注入さnる。
When a power supply voltage of 5V' is applied to the drain region 8 with reference to the potential of the substrate and the source region 2, the channel under the selection gate electrode 5 is weakly inverted, and the channel under the floating gate electrode is image-inverted. Apply a voltage like this. For example, if the impurity concentration of the substrate is 1 x 10" cm, the oxide thickness is 200 A, and the floating gate oxide thickness is 120 A, the threshold voltage of approximately 2 Vt is applied to the select gate electrode 5. However, the floating gate electrode 7 is sufficiently positively charged and a high voltage of about 107'' Ik is applied to the control gate electrode 9 so that the channel under the floating gate electrode is inverted. Selective gate oxidation! The channel potential below 14 becomes equal to the potential of the source region, and the channel potential below floating gate oxide film 6 becomes equal to the potential of drain region 3. That is, the potential of the channel region where the selection gate oxide film and the floating gate oxide layer intersect suddenly changes from the potential of the source region to the potential of the drain region. This occurs, and a portion of it is injected into the floating gate electrode 7.

上記したよりな半導体不揮発性メモリの書込み方法によ
nば、浮遊ゲート電極7に電子を注入するときに、浮遊
ゲート酸化膜6に高電界が印加さnるために、ホットエ
レクトロンの注入領域が浮遊ゲート酸化膜6の狭い領域
に集中する。本発明は、書込み電圧パルスの立ち上りを
遅くすることにより、浮遊ゲート酸化膜6への印刀口電
界を弱くした状態で書込む方法である。
According to the above-described advanced semiconductor nonvolatile memory writing method, when electrons are injected into the floating gate electrode 7, a high electric field is applied to the floating gate oxide film 6, so that the hot electron injection region is concentrated in a narrow region of floating gate oxide film 6. The present invention is a method of writing in a state where the electric field applied to the floating gate oxide film 6 is weakened by slowing down the rise of the write voltage pulse.

第2図にその具体例を示す。第2図は、畳込み時の制御
ゲート電圧パルスの波形である。充分遅い豆ち上りパル
スにすると、制御ゲート電圧が最大制御ゲート電圧V6
 mWに達する以前に電子が浮遊ゲート電極に注入さn
る。従って、制御ゲート電圧の電圧が最大[’7c a
mazに達した時点においても、浮遊ゲート電極の電位
はあまり高くならないために、浮遊ゲート酸化B6に高
電界が印刀口さnず、従ってダメージを防ぐことができ
る。第1図のようなパルス波形は、半導体不揮発性メ七
り集積回路の内部に、制御ゲート電圧パルス波形形成回
路を設けることにより可能になる。
A specific example is shown in FIG. FIG. 2 shows the waveform of the control gate voltage pulse during convolution. If the pulse is slow enough, the control gate voltage will reach the maximum control gate voltage V6.
Electrons are injected into the floating gate electrode before reaching mW.
Ru. Therefore, the voltage of the control gate voltage is maximum ['7c a
Since the potential of the floating gate electrode does not become very high even when the voltage reaches max.maz, a high electric field is not applied to the floating gate oxidation layer B6, and damage can therefore be prevented. The pulse waveform shown in FIG. 1 is made possible by providing a control gate voltage pulse waveform forming circuit inside the semiconductor nonvolatile integrated circuit.

第8図は、本発明の効果を示した図でおる。横軸が書込
み制御ゲート層圧パルスの豆ち上り時間、縦軸が、10
’回書換え後の最低ドレイン書込み電圧でおる。書換え
を繰り返し行うと、浮遊ゲート酸化膜6にダメージが発
生するために、高エネルギー電子上つくる書込みドレイ
ン電圧として大きな電圧が必要になる。書込み制御ゲー
ト電圧パルスの立ち上り時間が短いと、浮遊ゲート酸化
膜6に強電界が印加さnるために、最低ドレイン書込み
電圧は大きい。しかし、書込み制御ゲート電圧パルスの
立ち上り時間t−aooμ[1以上にすnば、最低ドレ
イン書込み電圧の増7JOt−防ぐことができる。
FIG. 8 is a diagram showing the effects of the present invention. The horizontal axis is the rising time of the write control gate layer pressure pulse, and the vertical axis is the 10
' The lowest drain write voltage after rewriting is reached. If rewriting is repeated, damage will occur to the floating gate oxide film 6, so a large voltage will be required as the write drain voltage generated on high-energy electrons. If the rise time of the write control gate voltage pulse is short, a strong electric field is applied to the floating gate oxide film 6, so that the minimum drain write voltage is large. However, if the rise time of the write control gate voltage pulse is set to t-aooμ[1 or more, the minimum drain write voltage can be prevented from increasing 7JOt-.

第2図に示したような書込み方法は、第1図にした半導
体不揮発性メモリだけでなく、第4図に示したような半
導体不揮発性メモリにも適用できる。P型基板11の表
面にH+51のソース領域12とN中型のドレイン領域
13が形成さn、チャネル領域上には浮遊ゲート酸化f
i 16 ft介して浮遊ゲート電極17と、さらに、
浮遊ゲート電極上には制御ゲート酸化膜を介して制御ゲ
ート電極19が形成さnている。このようなメモリにお
いても、ドレイン領域に5v印那し、制御ゲート電極に
約L2v印加してチャネル電流の一部の電子を浮遊ゲー
ト電極へ注入する。このようなメモリにおいても、制御
ゲート電極への印加パルスを第2図のようなパルス波形
にするととくより、浮遊ゲート酸化膜のダメージを減ら
し書換え特性を改良することができる。
The writing method shown in FIG. 2 can be applied not only to the semiconductor nonvolatile memory shown in FIG. 1 but also to the semiconductor nonvolatile memory shown in FIG. A H+51 source region 12 and an N medium-sized drain region 13 are formed on the surface of a P-type substrate 11, and a floating gate oxide f is formed on the channel region.
i 16 ft via the floating gate electrode 17;
A control gate electrode 19 is formed on the floating gate electrode via a control gate oxide film. In such a memory as well, 5V is applied to the drain region and approximately L2V is applied to the control gate electrode to inject part of the electrons of the channel current into the floating gate electrode. Even in such a memory, damage to the floating gate oxide film can be reduced and the rewriting characteristics can be improved by applying a pulse to the control gate electrode in a pulse waveform as shown in FIG.

以上説明したような本発明の書込み方法は、チャネル電
流の一部の電子を高電界が印加さnた薄い絶縁膜を介し
て浮遊ゲート電極へ注入する半導体不揮発性メモリの場
合に適用できる。
The writing method of the present invention as described above can be applied to a semiconductor nonvolatile memory in which some electrons of the channel current are injected into the floating gate electrode through a thin insulating film to which a high electric field is applied.

〔発明の効果〕〔Effect of the invention〕

本発明は、薄い絶縁界を印加してチャネル電流の一部の
電子を浮遊ゲート電極へ注入する半導体不揮発性メモリ
の書込みにおいて、書込み制御ゲート電産パルスの立ち
上り時間を300μs#O以上にすることにより、薄い
酸化膜に加わる最大電界を低くシ、薄い絶縁膜に発生す
るダメージを防ぐことにより書換え回数の増7FDを可
能にしたものである。
The present invention aims to increase the rise time of a write control gate electric pulse to 300 μs #O or more in writing to a semiconductor non-volatile memory in which a part of electrons in a channel current is injected into a floating gate electrode by applying a thin insulating field. This reduces the maximum electric field applied to the thin oxide film and prevents damage to the thin insulating film, making it possible to increase the number of rewrites to 7FD.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の半導体不揮発性メモリの書込み方法
を適用するメモリの断面図であり、第2図は、本発明の
半導体不揮発性メモリの書込み方法である書込み制御電
圧のパルス波形図である。 第3図は、半導体不揮発性メモリの書込み特性上水した
図であり、第4図は、本発明を適用できる他の半導体不
揮発性メモリの断面図である。 1.11.、?型半導体基板 2、L2..1iT+型ソース領域 8 、13 、 、 M+型ドレイン領域7.17.、
浮遊ゲート電極 9 、19’、 、制御ゲート電極     以上出願
人 セイコー電子工業株式会社 牛導体不i発性メモリの眸面旧 第1図
FIG. 1 is a cross-sectional view of a memory to which the semiconductor non-volatile memory write method of the present invention is applied, and FIG. 2 is a pulse waveform diagram of the write control voltage that is the semiconductor non-volatile memory write method of the present invention. be. FIG. 3 is a diagram showing write characteristics of a semiconductor nonvolatile memory, and FIG. 4 is a sectional view of another semiconductor nonvolatile memory to which the present invention can be applied. 1.11. ,? type semiconductor substrate 2, L2. .. 1iT+ type source regions 8, 13, , M+ type drain regions 7.17. ,
Floating gate electrode 9, 19', , control gate electrode Applicant Seiko Electronics Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板表面部分に間隔をおいて設けら
れた第1導電型と異なる第2導電型のソース領域、ドレ
イン領域と、前記ソース・ドレイン領域間の半導体基板
表面部分に浮遊ゲート絶縁膜を介して設けられた浮遊ゲ
ート電極と、前記浮遊ゲート電極と制御ゲート絶縁膜を
介して設けられた制御ゲート電極とから成り、前記ドレ
イン領域に前記ソース領域に対してドレイン書込み電圧
を印加し、前記制御ゲート電極に前記浮遊ゲート絶縁膜
下の前記半導体基板表面を強反転させる制御ゲート書込
み電圧を印加することにより、前記ソース領域から流れ
出るチャネル電流の一部を前記浮遊ゲート電極へ注入す
る半導体不揮発性メモリにおいて、前記制御ゲート書込
み電圧を300μsec以上の立ち上り時間のパルスと
したことを特徴とする半導体不揮発性メモリの書込み方
法。
A source region and a drain region of a second conductivity type different from the first conductivity type provided at intervals on the surface portion of the semiconductor substrate of the first conductivity type, and floating gate insulation in the surface portion of the semiconductor substrate between the source and drain regions. It consists of a floating gate electrode provided through a film, and a control gate electrode provided through the floating gate electrode and a control gate insulating film, and a drain write voltage is applied to the drain region with respect to the source region. , a semiconductor in which a part of the channel current flowing from the source region is injected into the floating gate electrode by applying a control gate write voltage that strongly inverts the surface of the semiconductor substrate under the floating gate insulating film to the control gate electrode. A method for writing in a semiconductor non-volatile memory, characterized in that the control gate write voltage is a pulse with a rise time of 300 μsec or more.
JP60080843A 1985-04-16 1985-04-16 Method for writing of semiconductor non-volatile memory Pending JPS61239498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080843A JPS61239498A (en) 1985-04-16 1985-04-16 Method for writing of semiconductor non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080843A JPS61239498A (en) 1985-04-16 1985-04-16 Method for writing of semiconductor non-volatile memory

Publications (1)

Publication Number Publication Date
JPS61239498A true JPS61239498A (en) 1986-10-24

Family

ID=13729635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080843A Pending JPS61239498A (en) 1985-04-16 1985-04-16 Method for writing of semiconductor non-volatile memory

Country Status (1)

Country Link
JP (1) JPS61239498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08124391A (en) * 1994-10-20 1996-05-17 Nec Corp Writing method for semiconductor memory device
US6243321B1 (en) 1991-02-08 2001-06-05 Btg Int Inc Electrically alterable non-volatile memory with n-bits per cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243321B1 (en) 1991-02-08 2001-06-05 Btg Int Inc Electrically alterable non-volatile memory with n-bits per cell
US6324121B2 (en) 1991-02-08 2001-11-27 Btg International Inc. Electrically alterable non-volatile memory with n-bits per cell
US6327189B2 (en) 1991-02-08 2001-12-04 Btg International Inc. Electrically alterable non-volatile memory with n-bits per cell
US6339545B2 (en) 1991-02-08 2002-01-15 Btg International Inc. Electrically alterable non-volatile memory with n-bits per cell
US6344998B2 (en) 1991-02-08 2002-02-05 Btg International Inc. Electrically alterable non-volatile memory with N-Bits per cell
US6356486B1 (en) 1991-02-08 2002-03-12 Btg International Inc. Electrically alterable non-volatile memory with n-bits per cell
US6404675B2 (en) 1991-02-08 2002-06-11 Btg International Inc. Electrically alterable non-volatile memory with n-bits per cell
JPH08124391A (en) * 1994-10-20 1996-05-17 Nec Corp Writing method for semiconductor memory device

Similar Documents

Publication Publication Date Title
JP3061924B2 (en) Method of erasing nonvolatile storage device
US3868187A (en) Avalanche injection type mos memory
US6009017A (en) Floating gate memory with substrate band-to-band tunneling induced hot electron injection
TW473989B (en) 2-bit/cell type nonvolatile semiconductor memory
US4432075A (en) Electrically programmable non-volatile memory
JPS649741B2 (en)
KR0168425B1 (en) Circuit and method for conditioning erased eeproms prior to program
JPH04105368A (en) Nonvolatile semiconductor storage device
KR102512901B1 (en) Non-volatile SRAM memory cell, and non-volatile semiconductor memory device
JPS61239498A (en) Method for writing of semiconductor non-volatile memory
US6049484A (en) Erase method to improve flash EEPROM endurance by combining high voltage source erase and negative gate erase
US6528845B1 (en) Non-volatile semiconductor memory cell utilizing trapped charge generated by channel-initiated secondary electron injection
US5019881A (en) Nonvolatile semiconductor memory component
JP2963882B2 (en) Flash memory cell programming method
JPS61239497A (en) Method for writing of semiconductor nonvolatile memory
KR0138915B1 (en) Semiconductor non-volatile memory
US20060140009A1 (en) Programming method for nanocrystal memory device
JPH02114674A (en) Semiconductor non-volatile memory
JPH0451072B2 (en)
JPS6029232B2 (en) Non-volatile semiconductor memory device
JP2745131B2 (en) Rewriting method of tunnel injection type nonvolatile memory
JPS60182776A (en) Nonvolatile semiconductor memory
RU1110315C (en) Memory device and method of controlling the same
JPS6249669A (en) Semiconductor memory device
JP2001189084A (en) Programming method of flash memory