JPS61239497A - Method for writing of semiconductor nonvolatile memory - Google Patents
Method for writing of semiconductor nonvolatile memoryInfo
- Publication number
- JPS61239497A JPS61239497A JP60080842A JP8084285A JPS61239497A JP S61239497 A JPS61239497 A JP S61239497A JP 60080842 A JP60080842 A JP 60080842A JP 8084285 A JP8084285 A JP 8084285A JP S61239497 A JPS61239497 A JP S61239497A
- Authority
- JP
- Japan
- Prior art keywords
- floating gate
- gate electrode
- impressed
- voltage
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Read Only Memory (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は半導体不揮発性メモリの書込み方法に関し、
特に書込み電圧パルスを複数印加することによりメモリ
の特性劣化を少なくした半導体不揮発性メモリの書込み
方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a writing method for a semiconductor non-volatile memory,
In particular, the present invention relates to a method of writing to a semiconductor nonvolatile memory in which deterioration of memory characteristics is reduced by applying a plurality of write voltage pulses.
この発明は、ソース領域とドレイン領域との間に印刀口
した電界により発生するチャネル電流のホットエレクト
ロンを浮遊ゲート電極へ注入する半導体不揮発性メモリ
の書込み方法において、浮遊ゲート電極の電位を制御す
る制御ゲート電極への印加電圧パルスをパルスの高さ金
低い厘に複数パルス印刀口することにより、書換え特性
の劣化を少なくしたものである。This invention relates to a semiconductor nonvolatile memory write method in which hot electrons of a channel current generated by an electric field impressed between a source region and a drain region are injected into a floating gate electrode, and the present invention provides a control method for controlling the potential of a floating gate electrode. By applying a plurality of voltage pulses to the gate electrode with a low pulse height, the deterioration of rewriting characteristics is reduced.
一般的に、浮遊ゲー)W半動体不揮発性メモリにチャン
ネルホットエレクトロンを注入するには、浮遊ゲート電
柱に高電圧を印加して行う。この書込み動作は高速であ
ることが望ましいため、浮遊ゲート電柱の電圧のパルス
は常に同じレベルの電圧パルスであった。Generally, channel hot electrons are injected into a floating gate nonvolatile memory by applying a high voltage to a floating gate pole. Since this write operation is desirably fast, the voltage pulses on the floating gate pole are always at the same level.
浮遊ゲート型半導体メモリにおいて、書込み時にチャネ
ルホットエレクトロンの一部がゲート絶R膜に捕獲さn
る。その結果、書換えを繰り返し行うと書込み状態が一
定に行うことが不可能になってしまう。In a floating gate semiconductor memory, some channel hot electrons are captured by the gate isolation film during writing.
Ru. As a result, if rewriting is performed repeatedly, it becomes impossible to maintain a constant written state.
本発明は、上記の問題点を解決するために考案さnたも
のであり、その手段は、浮遊ゲート電極の電位を急に高
電圧印加しないために電圧レベルの低いパルスがら高い
パルスへと順次印刀口するものである。The present invention was devised to solve the above-mentioned problems, and its means are to sequentially change the voltage level from low to high voltage pulses in order to avoid suddenly applying a high voltage to the potential of the floating gate electrode. It is something to be stamped.
書込み時に、浮遊ゲート電極が書込み前後に、おいて変
動が少ないために注入領域を広くしてチャネルホットエ
レクトロンのゲート絶縁膜への捕獲を少なくすることに
より書換え特性を向上させることができる。During writing, since there is little variation in the floating gate electrode before and after writing, the rewriting characteristics can be improved by widening the injection region and reducing trapping of channel hot electrons in the gate insulating film.
浮遊ゲート型半導体不揮発性メモリの断面図を第1図に
示す。P型基板1の表面にN中型のソース領域2とドレ
イン領域8t−形成し、ソース領域2とドレイン領域8
との間の半導体基板上には、選択ゲート酸化B4t−介
して選択ゲート電極5と、浮遊ゲート酸化膜6t−介し
て浮遊ゲート電極7が直列に形成さnている。浮遊ゲー
ト電極7の上には、制御ゲート酸化膜°8′t−介して
制御ゲート電極9が形成さnている。浮遊ゲート電極7
は、制御ゲート電極9の電圧によって浮遊ゲート電極7
の電位が制御さnる。メモリは、選択ゲート電極下のチ
ャネル領域を反転した状態で、浮遊ゲート電極7の下の
チャネルが反転する場合と、反転しない場合とで2つの
状態を記憶する装置である。FIG. 1 shows a cross-sectional view of a floating gate type semiconductor nonvolatile memory. A medium-sized N source region 2 and a drain region 8t are formed on the surface of a P-type substrate 1.
A selection gate electrode 5 and a floating gate electrode 7 are formed in series on the semiconductor substrate between the selection gate oxide film 6t and the selection gate oxide film 6t, respectively. A control gate electrode 9 is formed on the floating gate electrode 7 via a control gate oxide film. floating gate electrode 7
is the floating gate electrode 7 depending on the voltage of the control gate electrode 9.
The potential of is controlled. The memory is a device that stores two states, one in which the channel region under the selection gate electrode is inverted, one in which the channel under the floating gate electrode 7 is inverted, and one in which it is not inverted.
浮遊ゲート電極7に電子が多数入っている場合は、反転
しない状態になる。逆に、浮遊ゲート電極7に電子があ
まり入っていない場合は、反転する状態になる。電子を
浮遊ゲート電極7に注入する方法について説明する。If there are a large number of electrons in the floating gate electrode 7, there will be no inversion. Conversely, when there are not many electrons in the floating gate electrode 7, the state is reversed. A method for injecting electrons into the floating gate electrode 7 will be explained.
基板及びソース領域2の電位を基準にして、ドレイン領
域8に電源電圧である6マを印加した状態で、選択ゲー
ト電極5の下のチャネルが弱反転、浮遊ゲート電極下の
チャネルが強反転するような電圧を印加する。例えば、
基板の不純物濃度がI X 101san”で選択ゲー
ト酸化膜厚が200人、浮遊ゲート酸化膜厚が120ム
の場合、選択ゲート電極5には、閾値電圧である約27
を印加し、制御ゲート電極9には、浮遊ゲート電極7が
充分プラスに帯電し、浮遊ゲート電極下のチャネルが反
転するような高い電圧的107を印加する。選択ゲート
酸化膜4の下のチャネル電位はソース領域の電位に等し
くなり、浮遊ゲート酸化膜6の下のチャネル電位はドレ
イン領域8の電位と等しくなる。即ち、選択ゲート酸化
膜と浮遊ゲート酸化膜が交わるチャネル領域の電位は、
ソース領域の電位からドレイン領域の電位へと急に変化
する。との領域でエネルギーの高いチャネルエレクトロ
ンが発生し、その一部が浮遊ゲート電標7へ注入さnる
。When a power supply voltage of 6 mm is applied to the drain region 8 with reference to the potential of the substrate and the source region 2, the channel under the selection gate electrode 5 is weakly inverted, and the channel under the floating gate electrode is strongly inverted. Apply a voltage like this. for example,
When the impurity concentration of the substrate is I x 10", the select gate oxide film thickness is 200 μm, and the floating gate oxide film thickness is 120 μm, the select gate electrode 5 has a threshold voltage of about 27 μm.
A high voltage 107 is applied to the control gate electrode 9 so that the floating gate electrode 7 is sufficiently positively charged and the channel under the floating gate electrode is inverted. The channel potential under selection gate oxide film 4 becomes equal to the potential of the source region, and the channel potential under floating gate oxide film 6 becomes equal to the potential of drain region 8. That is, the potential of the channel region where the selection gate oxide film and the floating gate oxide film intersect is
There is a sudden change from the potential of the source region to the potential of the drain region. High-energy channel electrons are generated in the region and a part of them is injected into the floating gate electrode 7.
上記したような半導体不揮発性メモリの書込み方法によ
nば、浮遊ゲート電極7に電子を注入するときに、浮遊
ゲート酸化1g!6に高電界が印加さnるために、ホッ
トエレクトロンの注入領域が浮遊ゲート酸化膜6の狭い
領域に集中する。本発明は、書込み電圧パルスの立ち上
りを遅くすることにより、浮遊ゲート酸化膜6への町原
電界を弱くした状態で書込む方法である。According to the writing method for a semiconductor nonvolatile memory as described above, when electrons are injected into the floating gate electrode 7, the floating gate oxidizes 1 g! Since a high electric field is applied to the floating gate oxide film 6, the hot electron injection region is concentrated in a narrow region of the floating gate oxide film 6. The present invention is a method of writing in a state in which the Machihara electric field applied to the floating gate oxide film 6 is weakened by slowing down the rise of the write voltage pulse.
第2因にその具体例を示す。2g2図は、書込み時の制
御ゲート電圧パルスの波形図である。まず、時間tw1
ではvcGlt−印加し、次の時間tw!ではV6 e
1の電圧を印加する。例えば、twl=2sage
、 vcol =8 v、 t wz =工me #
6. va o、 = 107にすると、最初に87印
加することにより浮遊ゲート電極7に電子が注入さnる
ため、次に10 v印方口しても浮遊ゲート電極の電位
はあまり高くならないために、浮遊ゲート酸化膜6に高
電界が印加さ詐ず、従ってダメージを防ぐことができる
。第2図のようなパルス波形は、半導体不揮発性メモリ
集積回路の内部に、回路的にパルス波形形成回路を設け
ることにより可能になる。第1図の場合は、制御ゲート
電圧パルスが高さの異なる二つのパルスからできている
が、複数パルス設けることによりダメージを少なくする
ことができる。A specific example is shown in the second factor. 2g2 is a waveform diagram of the control gate voltage pulse during writing. First, time tw1
Then vcGlt- is applied and the next time tw! Then V6 e
Apply a voltage of 1. For example, twl=2sage
, vcol = 8 v, twz = engineering #
6. When va o, = 107, electrons are injected into the floating gate electrode 7 by first applying 87 V, so even if 10 V is applied next, the potential of the floating gate electrode does not become very high. A high electric field is not applied to the floating gate oxide film 6, and therefore damage can be prevented. The pulse waveform as shown in FIG. 2 is made possible by providing a pulse waveform forming circuit inside the semiconductor nonvolatile memory integrated circuit. In the case of FIG. 1, the control gate voltage pulse is made up of two pulses with different heights, but damage can be reduced by providing a plurality of pulses.
第8図は、本発明の効果を示した図である。横軸が書込
み時のドレイン領域の電圧、縦軸が書込み後のメモリの
閾値電圧である。書込み時のドレイン電圧が低いと、高
エネルギーの電子が発生できないために書込みC浮遊ゲ
ート電極への電子注入)ができないため閾値電圧は低い
。従来の1つのパルスの制御ゲート電圧で書換えを行う
と、図のように書換み特性が劣化する。即ち、高いドレ
イン電圧を印加しないと書込みが行うことができない。FIG. 8 is a diagram showing the effects of the present invention. The horizontal axis represents the voltage of the drain region during writing, and the vertical axis represents the threshold voltage of the memory after writing. If the drain voltage during writing is low, high-energy electrons cannot be generated and electron injection into the writing C floating gate electrode cannot be performed, so the threshold voltage is low. When rewriting is performed using the conventional one-pulse control gate voltage, the rewriting characteristics deteriorate as shown in the figure. That is, writing cannot be performed unless a high drain voltage is applied.
しかし、本発明の複数パルスの制御ゲート電圧による書
換えによnば、劣化は非常に少なくなる。この理由は、
複数のパルスを印加することにより、薄い絶縁膜を高電
界を印加させるととなく注入しているためである。However, by rewriting using a plurality of pulses of control gate voltage according to the present invention, the deterioration is extremely reduced. The reason for this is
This is because by applying a plurality of pulses, a high electric field is applied to the thin insulating film and the implantation is injected into the thin insulating film.
第2図に示したような書込み方法は、第1図にし先生導
体不揮発性メモリだけでなく、第4図に示したような半
導体不揮発性メモリにも適用できる。P型基板11の光
面にy+Hのソース領域12とM + fiOドレイン
領域13が形成さn、チャネル領域上には浮遊ゲート酸
化膜16を介して浮遊ゲート電極17と、さらに、浮遊
ゲート電極上には制御ゲート酸化膜を介して制御ゲート
電極19が形成さnている。このようなメモリにおいて
も、ドレイン領域に57印加し、制御ゲート電極に約1
27印加してチャネル電流の一部の電子を浮遊ゲート電
極へ注入する。このようなメモリにおいても、制御ゲー
ト電極への年別パルス″f:ii図のようなパルス波形
にすることにより、浮遊ゲート酸化、慣のダメージを減
らし書換え特性を改良することができる。The writing method shown in FIG. 2 can be applied not only to the conductive nonvolatile memory shown in FIG. 1 but also to the semiconductor nonvolatile memory shown in FIG. A y+H source region 12 and an M+fiO drain region 13 are formed on the optical surface of the P-type substrate 11, a floating gate electrode 17 is formed on the channel region via a floating gate oxide film 16, and a floating gate electrode 17 is formed on the floating gate electrode. A control gate electrode 19 is formed through a control gate oxide film. Even in such a memory, 57 is applied to the drain region and approximately 1 is applied to the control gate electrode.
27 is applied to inject some electrons of the channel current into the floating gate electrode. Even in such a memory, by applying a pulse waveform of the annual pulse "f:ii" to the control gate electrode as shown in the figure, it is possible to reduce floating gate oxidation and damage due to wear and improve the rewriting characteristics.
以上説明したような本発明の書込み方法は、チャネル電
流の一部の電子を高電界が印加さnた薄い絶ait−介
して浮遊ゲート電極へ注入する半導体不揮発性メモリの
場合に適用できる。The writing method of the present invention as described above can be applied to a semiconductor non-volatile memory in which a part of the electrons of the channel current are injected into the floating gate electrode through a thin insulator to which a high electric field is applied.
本発明は、薄い肥鍬腹に高電界を印加してチャネル電流
の一部の電子を浮遊ゲート電極へ注入する半導体不揮発
性メモリの書込みにおいて、書込み時に薄い絶縁膜印加
さnる電界上複数パルス印加により低くすることにより
、薄い絶縁膜に発生するダメージを防ぐことにより書換
え回数の増加を可能にしたものである。The present invention applies multiple pulses on the electric field applied to a thin insulating film during writing in a semiconductor non-volatile memory in which a high electric field is applied to a thin insulating layer to inject some electrons of a channel current into a floating gate electrode. By lowering the voltage applied, damage to the thin insulating film can be prevented and the number of rewrites can be increased.
第1図は、本発明の半導体不揮発性メモリの書込み方法
を適用するメモリの断面図であり、第2図は、本発明の
半導体不揮発性メモリの書込み方法である書込み制御電
圧パルス波形図でおる。第8図は、半導体不揮発性メモ
リの書込み特性を示した図であり、第4図は、本発明を
適用できる他の半導体不揮発性メモリの断面図である。
1 、11 、 、 P型半導体基板
2、L2.、N+型ソース領域
8.13.、N+整ドレイン領域
7.17゜、浮遊ゲート電極
9 、19 、。制御ゲート電極
以上
出願人 セイコー電子工業株式会社
半導イ本千nI宛社メtソの剛1岨図
第1図
険j卸ゲートtmni皮彫1り
第212)
牛傅イ本fr−揮化性メモリの書S込み才着生図第3図
牟傅(本千才華亮性メモリのvIr面図第4図FIG. 1 is a cross-sectional view of a memory to which the semiconductor non-volatile memory write method of the present invention is applied, and FIG. 2 is a write control voltage pulse waveform diagram that is the semiconductor non-volatile memory write method of the present invention. . FIG. 8 is a diagram showing write characteristics of a semiconductor nonvolatile memory, and FIG. 4 is a sectional view of another semiconductor nonvolatile memory to which the present invention can be applied. 1, 11, , P-type semiconductor substrate 2, L2. , N+ type source region 8.13. , N+ regular drain region 7.17°, floating gate electrodes 9 , 19 ,. Control gate electrode and above Applicant: Seiko Electronics Co., Ltd. Semiconductor Ihon SennI Tosha Metso Tsuyoshi 1 Figure 1 Genj Wholesale Gate TMNI Leather Carving 1ri No. 212) Ushifu Ihon FR- Volatization Figure 3 of the sex memory book S and the birth chart of the sex memory Figure 4
Claims (1)
られた第1導電型と異なる第2導電型のソース領域、ド
レイン領域と、前記ソース・ドレイン領域間の半導体基
板表面部分に浮遊ゲート絶縁膜を介して設けられた浮遊
ゲート電極と、前記浮遊ゲート電極と制御ゲート絶縁膜
を介して設けられた制御ゲート電極とから成り、前記ド
レイン領域に前記ソース領域に対してドレイン書込み電
圧を印加し、前記制御ゲート電極に前記浮遊ゲート絶縁
膜下の前記半導体基板表面を強反転させる制御ゲート書
込み電圧を印加することにより、前記ソース領域から流
れ出るチャネル電流の一部を前記浮遊ゲート電極へ注入
する半導体不揮発性メモリにおいて、前記制御ゲート書
込み電圧パルスが、第1の制御電圧パルスと、前記第1
の制御パルスより電圧レベルが高い第2の制御電圧パル
スとから成ることを特徴とする半導体不揮発性メモリの
書込み方法。A source region and a drain region of a second conductivity type different from the first conductivity type provided at intervals on the surface portion of the semiconductor substrate of the first conductivity type, and floating gate insulation in the surface portion of the semiconductor substrate between the source and drain regions. It consists of a floating gate electrode provided through a film, and a control gate electrode provided through the floating gate electrode and a control gate insulating film, and a drain write voltage is applied to the drain region with respect to the source region. , a semiconductor in which a part of the channel current flowing from the source region is injected into the floating gate electrode by applying a control gate write voltage that strongly inverts the surface of the semiconductor substrate under the floating gate insulating film to the control gate electrode. In the non-volatile memory, the control gate write voltage pulse is a first control voltage pulse and a second control gate write voltage pulse.
and a second control voltage pulse having a voltage level higher than that of the control pulse.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60080842A JPS61239497A (en) | 1985-04-16 | 1985-04-16 | Method for writing of semiconductor nonvolatile memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60080842A JPS61239497A (en) | 1985-04-16 | 1985-04-16 | Method for writing of semiconductor nonvolatile memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61239497A true JPS61239497A (en) | 1986-10-24 |
Family
ID=13729610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60080842A Pending JPS61239497A (en) | 1985-04-16 | 1985-04-16 | Method for writing of semiconductor nonvolatile memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61239497A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02193398A (en) * | 1989-01-20 | 1990-07-31 | Toshiba Corp | Method and apparatus for applying program voltage to nonvolatile semiconductor memory |
JPH08124391A (en) * | 1994-10-20 | 1996-05-17 | Nec Corp | Writing method for semiconductor memory device |
US6243321B1 (en) | 1991-02-08 | 2001-06-05 | Btg Int Inc | Electrically alterable non-volatile memory with n-bits per cell |
-
1985
- 1985-04-16 JP JP60080842A patent/JPS61239497A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02193398A (en) * | 1989-01-20 | 1990-07-31 | Toshiba Corp | Method and apparatus for applying program voltage to nonvolatile semiconductor memory |
US6243321B1 (en) | 1991-02-08 | 2001-06-05 | Btg Int Inc | Electrically alterable non-volatile memory with n-bits per cell |
US6324121B2 (en) | 1991-02-08 | 2001-11-27 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6327189B2 (en) | 1991-02-08 | 2001-12-04 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6339545B2 (en) | 1991-02-08 | 2002-01-15 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6344998B2 (en) | 1991-02-08 | 2002-02-05 | Btg International Inc. | Electrically alterable non-volatile memory with N-Bits per cell |
US6356486B1 (en) | 1991-02-08 | 2002-03-12 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
US6404675B2 (en) | 1991-02-08 | 2002-06-11 | Btg International Inc. | Electrically alterable non-volatile memory with n-bits per cell |
JPH08124391A (en) * | 1994-10-20 | 1996-05-17 | Nec Corp | Writing method for semiconductor memory device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3825945A (en) | Field effect semiconductor memory apparatus with a floating gate | |
JPS59111370A (en) | Nonvolatile semiconductor memory | |
JP3307928B2 (en) | Memory cell device and operation method thereof | |
KR100265061B1 (en) | Data writing method of single transistor type ferroelectric memory | |
JPH07120720B2 (en) | Nonvolatile semiconductor memory device | |
TW473989B (en) | 2-bit/cell type nonvolatile semiconductor memory | |
JPS62276878A (en) | Semiconductor memory | |
JPS5542307A (en) | Semiconductor memory unit | |
US5856946A (en) | Memory cell programming with controlled current injection | |
US5412608A (en) | Method of erasing data on non-volatile semi-conductor memory | |
US5883835A (en) | Control method for non-volatile memory | |
JPS58106874A (en) | Electrically programmable memory disposed on substrate | |
JP2006303040A (en) | Semiconductor memory device and its operation method | |
US3858060A (en) | Integrated driver circuit | |
JPS61239497A (en) | Method for writing of semiconductor nonvolatile memory | |
US4017883A (en) | Single-electrode charge-coupled random access memory cell with impurity implanted gate region | |
US5255237A (en) | Method of erasing a nonvolatile semiconductor storage | |
JPH02159071A (en) | Nonvolatile semiconductor | |
JPS61239498A (en) | Method for writing of semiconductor non-volatile memory | |
JPS6260266A (en) | Non-volatile semiconductor memory device | |
KR0138915B1 (en) | Semiconductor non-volatile memory | |
JPH0563027B2 (en) | ||
JPH0451072B2 (en) | ||
US11942134B2 (en) | Memory circuit and write method | |
TWI710113B (en) | Operation method of electronic writing erasable rewritable read-only memory |