JPS61239127A - Heat flux sensor - Google Patents

Heat flux sensor

Info

Publication number
JPS61239127A
JPS61239127A JP7994585A JP7994585A JPS61239127A JP S61239127 A JPS61239127 A JP S61239127A JP 7994585 A JP7994585 A JP 7994585A JP 7994585 A JP7994585 A JP 7994585A JP S61239127 A JPS61239127 A JP S61239127A
Authority
JP
Japan
Prior art keywords
heat flux
receiving plate
plate
heat
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7994585A
Other languages
Japanese (ja)
Inventor
Yasuo Nakamura
安雄 中村
Yoshinori Yoshimura
吉村 善範
Toshio Yasunaga
安永 壽夫
Yuji Ido
井戸 勇二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
National Space Development Agency of Japan
Original Assignee
Toshiba Corp
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, National Space Development Agency of Japan filed Critical Toshiba Corp
Priority to JP7994585A priority Critical patent/JPS61239127A/en
Publication of JPS61239127A publication Critical patent/JPS61239127A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To manufacture easily the titled sensor, and also to measure exactly a heat flux by forming a heat flux receiving plate by a non-conductive substance. CONSTITUTION:A heat flux receiving plate 11 of an element 2a is formed by a non-conductive substance, for instance, a thin plate of alumina ceramics. Also, a thermopile 5 is formed on the surface positioned at a heat sink 1 side of the heat flux receiving plate 11, and the heat flux receiving plate 11 is fixed to the heat sink 1 by an adhesive agent layer (b). Moreover, the heat flux receiving plate 11 itself serves as a member for insulating the thermopile 5, as well, therefore, no error factor exists consequently, and by only managing a thickness of the heat flux receiving plate 11, a measurement can be executed exactly. Also, a process for forming an insulating layer with a high accuracy is not required, therefore, the titled sensor can be manufactured easily.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、外部から受ける熱流束を測定するときに用い
られる熱流束センサに係り、特に、製作の容易化と正確
な測定の実現化とを図れるようにした熱流束センサに関
する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a heat flux sensor used for measuring heat flux received from the outside, and particularly aims to facilitate manufacturing and realize accurate measurement. The present invention relates to a heat flux sensor that can be used to measure heat flux.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

各種の分野において、外部から受ける熱流束を正確に測
定しなければならないことが往々にしである。
In various fields, it is often necessary to accurately measure heat flux received from the outside.

このような熱流束の測定に供される熱流束センサとして
は、従来、第1図に示すように構成されたものが考えら
れている。すなわち、このセンサは大きく別けて、中央
部に凹部Aを有したヒートシンク1と、このヒートシン
ク1に上記口8BAの開口を蓋するように固定された要
素2とで構成されている。要素2は、薄い金属板で形成
された熱流束受は板3と、この熱流束受は板3のヒート
シンク1側に位置する面に形成された絶縁層4と、この
絶縁層4のヒートシンク1側に位置する而で前記凹部A
に対面する範囲内に上記面に密接し、かつ蛇行状態に配
置されたサーモパイル5と、このサーモパイル5を絶縁
層4の表面に固定するとともに要素2の両辺部をヒート
シンク1の、いわゆる土手部に固定する接着剤層6と、
熱流束受は板3のヒートシンク11111とは反対側に
位置する面で前記凹部Aの開口上に位置する部分に設け
られた放射率の高いコーテング層7とで構成されている
。そして、前記サーモパイル5は、一方の熱接点8がヒ
ートシンク1の近傍に位置し、他方の熱接点9がヒート
シンク1から離れた位置、つまり凹部Aのほぼ中心線上
に位置するように設けられている。
Conventionally, a heat flux sensor configured as shown in FIG. 1 has been considered as a heat flux sensor used for measuring such heat flux. That is, this sensor is broadly divided into a heat sink 1 having a recess A in the center, and an element 2 fixed to the heat sink 1 so as to cover the opening of the opening 8BA. Element 2 includes a heat flux receiver formed of a thin metal plate, a plate 3, an insulating layer 4 formed on the surface of the plate 3 located on the heat sink 1 side, and a heat sink 1 of the insulating layer 4. The recess A is located on the side.
A thermopile 5 is arranged in close contact with the above surface in a meandering manner within a range facing the above surface, and this thermopile 5 is fixed to the surface of the insulating layer 4, and both sides of the element 2 are attached to the so-called banks of the heat sink 1. an adhesive layer 6 for fixing;
The heat flux receiver is composed of a high-emissivity coating layer 7 provided on the surface of the plate 3 opposite to the heat sink 11111 and located above the opening of the recess A. The thermopile 5 is provided such that one thermal contact 8 is located near the heat sink 1 and the other thermal contact 9 is located away from the heat sink 1, that is, approximately on the center line of the recess A. .

しかして、この熱流束センサは、次のような原理で熱流
束を測定するようにしている。すなわち、熱流束受は板
3が吸収する熱流束をQ (W/Td、)とすると、熱
流束受は板3には、 T−Ta−Q ・(L” =xz)/2λu、 −= 
−−−−−−(1)なる温度分布が生じる。ただし、(
1)式において、Xは熱流束受tす板3の中央からヒー
トシンク1に固定されている一方側に向けてとった座標
、しは熱流束受は板3の半長[m、]、λは熱流束受は
板3の熱伝導率、μは熱流束受は板3の厚み[、m、 
]、王は座tiM×の位置での熱流束受は板3の温度、
Taはヒートシンク1の温度である。
This heat flux sensor measures heat flux based on the following principle. In other words, if the heat flux absorbed by the plate 3 of the heat flux receiver is Q (W/Td,), then the heat flux receiver of the plate 3 is T-Ta-Q ・(L" = xz)/2λu, -=
--------(1) A temperature distribution occurs. however,(
In equation 1), X is the coordinate taken from the center of the heat flux receiving plate 3 toward one side fixed to the heat sink 1, and the heat flux receiving is the half length of the plate 3 [m, ], λ The heat flux receiver is the thermal conductivity of the plate 3, μ is the heat flux receiver is the thickness of the plate 3 [, m,
], the heat flux receiver at the position of tiM× is the temperature of plate 3,
Ta is the temperature of the heat sink 1.

今、サーモパイル5のヒートシンク1側に位置する熱接
点8の座標を±1とし、その間の温度差を△T (K)
とすると、(1)式により、△T=Q・12/2λμ・
・・・・・・・・・・・・・・(2)となる。したがっ
て、△Tを測定すれば、Qを測定できることになる。す
なわち、 Q=2・λ・μ・△T/12・・・・・・・・・・・・
(3)として測定できる。ここで、サーモパイル5は、
極く小さな値であるΔ王を正確に測定するために設けら
れている。
Now, let us assume that the coordinates of the thermal junction 8 located on the heat sink 1 side of the thermopile 5 are ±1, and the temperature difference between them is △T (K)
Then, according to equation (1), △T=Q・12/2λμ・
・・・・・・・・・・・・・・・(2) Therefore, if ΔT is measured, Q can be measured. In other words, Q=2・λ・μ・△T/12・・・・・・・・・・・・
It can be measured as (3). Here, thermopile 5 is
It is provided to accurately measure ΔK, which is an extremely small value.

しかしながら、上記のように構成された従来の熱流束セ
ンサにあっては、次のような問題があった。すなわち、
熱流束受は板3を金属の薄い板で形成するようにしてい
る。金属板は、一般に、熱伝導率が大きいので、(2)
式から明らかなように、Δ丁を大きくするには厚みμを
小さくする必要がある。このため、熱流束受は板3の厚
みμは、通常、絶縁層4の厚みと同程度かあるいはそれ
以下の値に設定される。しかし、このように設定された
ものにあっては、熱流束受は板3の長さ方向の熱コンダ
クタンスが絶縁Ji4の厚みや絶縁層4と熱流束受は板
3との間の接合度の影響を受は易く、このため誤差の大
きい測定結果しか傳られない問題があった。また、絶縁
層4の熱伝導率が小さい場合には、この絶縁層4の厚み
のバラツキや熱流束受は板3との間の接合度の位置によ
るバラツキによって、厚み方向の熱抵抗にバラツキが生
じ、この結果、得られた温度差Δ丁も誤差の大きいもの
となり、結局、正確な測定を期待することは本質的に困
難なものであった。
However, the conventional heat flux sensor configured as described above has the following problems. That is,
The plate 3 of the heat flux receiver is made of a thin metal plate. Metal plates generally have high thermal conductivity, so (2)
As is clear from the equation, it is necessary to reduce the thickness μ in order to increase ΔD. For this reason, the thickness μ of the plate 3 of the heat flux receiver is usually set to a value equal to or less than the thickness of the insulating layer 4. However, in such a configuration, the thermal conductance of the heat flux receiver in the longitudinal direction of the plate 3 is determined by the thickness of the insulation layer 4 and the degree of bonding between the insulating layer 4 and the heat flux receiver plate 3. It is easy to be influenced by this, and as a result, there is a problem in that only measurement results with large errors can be reported. Furthermore, when the thermal conductivity of the insulating layer 4 is small, the thermal resistance in the thickness direction will vary due to variations in the thickness of the insulating layer 4 and variations in the degree of bonding between the heat flux receiver and the plate 3. As a result, the obtained temperature difference Δc also had a large error, and after all, it was essentially difficult to expect accurate measurement.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、誤差要因を排除できる構成で、
もって正確な熱流束の測定の実現に寄与できるとともに
製作の容易化を図れる熱流束センサを提供することにあ
る。
The present invention has been made in view of these circumstances, and its purpose is to provide a configuration that can eliminate error factors.
It is an object of the present invention to provide a heat flux sensor that can contribute to the realization of accurate heat flux measurement and that can be manufactured easily.

〔発明の概要〕[Summary of the invention]

本発明に係る熱流束センサは、ヒートシンクと、このヒ
ートシンクに一部分が固定された熱流束受は板と、この
熱流束受は板の前記ヒートシンクに近い位置に一方の熱
接点を接触させるとともに上記ヒートシンクから離れた
位置に他方の熱接点を接触させて上記熱流束受は板に固
定されたサーモパイルとを具備してなるものにおいて、
前記熱流束受は板を非導電性物質で形成してなることを
特徴としている。
A heat flux sensor according to the present invention includes a heat sink, a heat flux receiver partially fixed to the heat sink, a plate, one thermal contact of the heat flux receiver in contact with the plate at a position close to the heat sink, and a heat flux receiver that is partially fixed to the heat sink. The heat flux receiver includes a thermopile fixed to a plate with the other thermal contact in contact with the thermopile at a position remote from the thermopile,
The heat flux receiver is characterized in that the plate is made of a non-conductive material.

〔発明の効果〕〔Effect of the invention〕

上記のように、熱流束受は板を非導電性物質で形成する
ようにしている。つまり、熱流束受は板を非導電性物質
で形成することにより、従来のセンサにおいて、測定誤
差の要因となっていた熱流束受は板とサーモパイルとの
閂の絶縁層をなくすようにしている。このため、温度差
の発生や測定誤差の要因をなくすことができ、熱流束受
は板の厚みを管理するだけで、正確な測定を行なうこと
ができる。また、従来のセンサとは違って、金属製の熱
流束受は板の一方の面に絶縁層を、その接合分布と厚み
分布とを一様に管理しながら形成する工程を省略できる
ので、製作の容易化も図ることができる。
As mentioned above, the heat flux receiver has plates made of a non-conductive material. In other words, by forming the plate of the heat flux receiver with a non-conductive material, the heat flux receiver eliminates the insulating layer between the plate and the thermopile, which was a cause of measurement errors in conventional sensors. . Therefore, the causes of temperature differences and measurement errors can be eliminated, and the heat flux receiver can perform accurate measurements simply by controlling the thickness of the plate. Also, unlike conventional sensors, metal heat flux receivers can omit the process of forming an insulating layer on one side of the plate while controlling the bonding distribution and thickness distribution uniformly. It is also possible to facilitate the

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図は、本発明の一実施例に係る熱流束センサを示す
もので、第1図と同一部分は同一符号で示しである。し
たがって、重複する部分の説明は省略する。
FIG. 2 shows a heat flux sensor according to an embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same symbols. Therefore, the explanation of the overlapping parts will be omitted.

この実施例では、要素2aの熱流束受は板11が非導電
性の物質、たとえばアルミナ・セラミックスの薄板によ
って形成されている。そして、この熱流束受は板11の
ヒートシンク1側に位置する面にサーモパイル5が形成
されており、また熱流束受は板11は接着剤層6によっ
てヒートシンク1に固定されている。なお、図中12は
、傷付き防止および酸化防止のためにサーモパイル5上
にコーティングされた極薄の保護層を示している。
In this embodiment, the heat flux receiver of the element 2a is formed by a plate 11 of a non-conductive material, for example a thin plate of alumina ceramic. In this heat flux receiver, a thermopile 5 is formed on the surface of the plate 11 located on the heat sink 1 side, and the heat flux receiver plate 11 is fixed to the heat sink 1 by an adhesive layer 6. Note that 12 in the figure indicates an extremely thin protective layer coated on the thermopile 5 to prevent scratches and oxidation.

このような構成であると、熱流束受は板11自身がサー
モパイル5を絶縁する部材を兼用しているので、従来の
センサとは違って誤差要因が存在していないことになり
、熱流束受は板11の厚みを管]!l!するだけで正確
な測定を可能化できる。また、従来のセンサとは違って
、高精度に絶縁層を形成する工程を必要としないので、
製作の容易化も図ることができ、結局、前述した効果が
得られることになる。
With this configuration, the plate 11 of the heat flux receiver also serves as a member that insulates the thermopile 5, so unlike conventional sensors, there is no error factor, and the heat flux receiver is the thickness of plate 11]! l! Accurate measurements can be made simply by Also, unlike conventional sensors, it does not require a process to form an insulating layer with high precision.
Manufacturing can also be facilitated, and the above-mentioned effects can be obtained after all.

なお、本発明は、上述した実施例に限定されるものでは
ない。熱流束受は板を、たとえばサファイアのように非
導電性で、かつ熱伝導率のよい結晶体で形成することに
よって、時定数の増加を抑えるようにしてもよい。
Note that the present invention is not limited to the embodiments described above. The increase in the time constant may be suppressed by forming the plate of the heat flux receiver from a crystal that is non-conductive and has good thermal conductivity, such as sapphire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱流束センサを一部切欠して示す斜視図
、第2図は本発明の一実施例に係る熱流束センサを一部
切欠して示す斜視図である。 1・・・ヒートシンク、5・・・サーモパイル、11・
・・熱流束受は板。 出願人代理人 弁理士 鈴江武彦 第1図
FIG. 1 is a partially cutaway perspective view of a conventional heat flux sensor, and FIG. 2 is a partially cutaway perspective view of a heat flux sensor according to an embodiment of the present invention. 1... Heat sink, 5... Thermopile, 11.
...The heat flux receiver is a plate. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)ヒートシンクと、このヒートシンクに一部分が固
定された熱流束受け板と、この熱流束受け板の前記ヒー
トシンクに近い位置に一方の熱接点を接触させるととも
に上記ヒートシンクから離れた位置に他方の熱接点を接
触させて上記熱流束受け板に固定されたサーモパイルと
を具備してなる熱流束センサにおいて、前記熱流束受け
板が非導電性物質で形成されてなることを特徴とする熱
流束センサ。
(1) A heat sink, a heat flux receiving plate partially fixed to the heat sink, one thermal contact of the heat flux receiving plate is brought into contact with a position close to the heat sink, and the other thermal contact is placed in contact with a position away from the heat sink. A heat flux sensor comprising a thermopile fixed to the heat flux receiving plate with contacts in contact with each other, wherein the heat flux receiving plate is made of a non-conductive material.
(2)前記非導電性物質は、セラミックスであることを
特徴とする特許請求の範囲第1項記載の熱流束センサ。
(2) The heat flux sensor according to claim 1, wherein the non-conductive substance is ceramic.
(3)前記非導電性物質は、サファイアの結晶体である
ことを特徴とする特許請求の範囲第1項記載の熱流束セ
ンサ。
(3) The heat flux sensor according to claim 1, wherein the non-conductive substance is a sapphire crystal.
JP7994585A 1985-04-15 1985-04-15 Heat flux sensor Pending JPS61239127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7994585A JPS61239127A (en) 1985-04-15 1985-04-15 Heat flux sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7994585A JPS61239127A (en) 1985-04-15 1985-04-15 Heat flux sensor

Publications (1)

Publication Number Publication Date
JPS61239127A true JPS61239127A (en) 1986-10-24

Family

ID=13704442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7994585A Pending JPS61239127A (en) 1985-04-15 1985-04-15 Heat flux sensor

Country Status (1)

Country Link
JP (1) JPS61239127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144740U (en) * 1989-01-07 1990-12-07
JPH0314588A (en) * 1989-06-09 1991-01-23 Taisho Pharmaceut Co Ltd Physiologically active compound 3822a and b
WO2015088024A1 (en) * 2013-12-13 2015-06-18 オムロン株式会社 Internal temperature sensor
WO2016067952A1 (en) * 2014-10-27 2016-05-06 オムロン株式会社 Internal temperature measurement device
JP2018122346A (en) * 2017-02-03 2018-08-09 日本アビオニクス株式会社 Ultrasonic bonding apparatus and heat flow sensor fitting structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134786A (en) * 1976-05-06 1977-11-11 Fuji Electric Co Ltd Radiation detector
JPS56162020A (en) * 1980-05-19 1981-12-12 Chino Works Ltd Thermopile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134786A (en) * 1976-05-06 1977-11-11 Fuji Electric Co Ltd Radiation detector
JPS56162020A (en) * 1980-05-19 1981-12-12 Chino Works Ltd Thermopile

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516277Y2 (en) * 1989-01-07 1996-11-06 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Sensor
JPH02144740U (en) * 1989-01-07 1990-12-07
JPH0314588A (en) * 1989-06-09 1991-01-23 Taisho Pharmaceut Co Ltd Physiologically active compound 3822a and b
US10060803B2 (en) 2013-12-13 2018-08-28 Omron Corporation MEMS internal temperature sensor having thin film thermopile
WO2015088024A1 (en) * 2013-12-13 2015-06-18 オムロン株式会社 Internal temperature sensor
JP2015114291A (en) * 2013-12-13 2015-06-22 オムロン株式会社 Internal temperature sensor
DE112014005627B4 (en) 2013-12-13 2018-09-06 Omron Corporation Internal temperature sensor
CN105745518A (en) * 2013-12-13 2016-07-06 欧姆龙株式会社 Internal temperature sensor
JP2016085136A (en) * 2014-10-27 2016-05-19 オムロン株式会社 Internal temperature measurement device
CN106605132A (en) * 2014-10-27 2017-04-26 欧姆龙株式会社 Internal temperature measurement device
WO2016067952A1 (en) * 2014-10-27 2016-05-06 オムロン株式会社 Internal temperature measurement device
US10190921B2 (en) 2014-10-27 2019-01-29 Omron Corporation Internal temperature measurement device
JP2018122346A (en) * 2017-02-03 2018-08-09 日本アビオニクス株式会社 Ultrasonic bonding apparatus and heat flow sensor fitting structure

Similar Documents

Publication Publication Date Title
US4840495A (en) Method and apparatus for measuring the thermal resistance of an element such as large scale integrated circuit assemblies
JPS61239127A (en) Heat flux sensor
US3765238A (en) Heat flow meter
US3787764A (en) Solid dielectric capacitance gauge for measuring fluid pressure having temperature compensation and guard electrode
CN209418465U (en) Accurately measure the layer structural detail and semiconductor device fabrication equipment of temperature
JP7309744B2 (en) Temperature probe with thermal insulation
US3680374A (en) Heat flow meter
JP3328408B2 (en) Surface temperature measurement method
US3372587A (en) Heat flow detector head
JPS6010138A (en) Heat flux measuring apparatus
JPS61259580A (en) Thermopile
JP2516277Y2 (en) Sensor
JP2000193531A (en) Device and element for measuring temperature, manufacture thereof, and the same for detecting temperature of floor-heating device
JPS62139339A (en) Temperature-measuring wafer
JP2001272280A (en) Temperature-measuring plate
JPS62231148A (en) Thermal analysis instrument
JPH07234238A (en) Acceleration sensor
JPH0222661Y2 (en)
JPH0643906B2 (en) Flow sensor
JPH0233903A (en) Temperature measuring device
JPS6111638Y2 (en)
JPS62139338A (en) Temperature-measuring wafer
ITGE940008A1 (en) DEVICE FOR THE MEASUREMENT OF THE SPEED OF A FLOW OF FLUID.
JPS63265125A (en) Non-contact type semiconductor temperature sensor
JPH0632589Y2 (en) Sensor for measuring surface temperature