JPS61239100A - Acid resistant ceramic paper - Google Patents

Acid resistant ceramic paper

Info

Publication number
JPS61239100A
JPS61239100A JP60079905A JP7990585A JPS61239100A JP S61239100 A JPS61239100 A JP S61239100A JP 60079905 A JP60079905 A JP 60079905A JP 7990585 A JP7990585 A JP 7990585A JP S61239100 A JPS61239100 A JP S61239100A
Authority
JP
Japan
Prior art keywords
fibers
acid
weight
fiber
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60079905A
Other languages
Japanese (ja)
Inventor
修 石田
早川 正臣
宮下 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP60079905A priority Critical patent/JPS61239100A/en
Publication of JPS61239100A publication Critical patent/JPS61239100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶を主体とし、一部ガラスよりなる結晶質の
繊維と有機およびまたは無機質の補強繊維とから主とし
て構成される#酸性に優れたセラミフクベーバーに関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to an #acidic acid fiber which is mainly composed of crystal fibers and partially glass and organic and/or inorganic reinforcing fibers. It is related to Cerami Fukubaber.

〔従来の技術〕[Conventional technology]

従来、耐酸ベーパーとしては化学組成が例えばs+ol
ss、o%、CaO14,0%、Mg03.0%、Na
*08.0%、8gOs6.0%、AIzOs4.0%
よりなるCガラス繊維と有機質の補強繊維を主体とし、
必要に応じて少量の有機結合剤とから構成されている。
Conventionally, acid-resistant vapors have a chemical composition of, for example, s+ol.
ss, o%, CaO14.0%, Mg03.0%, Na
*08.0%, 8gOs6.0%, AIzOs4.0%
Mainly made of C glass fiber and organic reinforcing fiber,
It is composed of a small amount of organic binder if necessary.

これら耐酸ベーパーは、弗化水素酸、熱漬燐酸を除く酸
溶液などの一過材あるいは、鉛蓄電池の極板1IiI離
保護材などとして使用さ九ている。
These acid-resistant vapors are used as temporary materials such as acid solutions other than hydrofluoric acid and hot phosphoric acid, or as release protection materials for electrode plates of lead-acid batteries.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ガラスペーパーの主原料となるCガラス繊維は一般に電
気炉で溶融体を作り、グヮシングを介して連続して引き
出し連続フィラメントとなし、所定の長さに切断してつ
くられ、その繊維径は5〜18μである。これらのガラ
スベー・バーはパフキング材、シール材、断熱材などの
工業材料ある匹はM−フィング材、壁材などの建築材料
としては十分性能を満足するものであったが、耐酸ベー
パーの主たる用途である濾過材、鉛蓄電池の極板隔離保
護材としては繊維径が太いためにベーパーの空隙率、空
隙の大きさに問題があり性能的に十分満足されるもので
はなかった。
C glass fiber, which is the main raw material for glass paper, is generally made by melting it in an electric furnace, drawing it out continuously through a gashing, making it into a continuous filament, and cutting it into a predetermined length. It is 18μ. Although these glass vapor bars have sufficient performance as industrial materials such as puffing materials, sealing materials, and insulation materials, and construction materials such as M-fining materials and wall materials, they are not suitable for the main use of acid-resistant vapor. As a filter material and a material for separating and protecting electrode plates of lead-acid batteries, the fiber diameter is large, so there are problems with the vapor porosity and the size of the voids, and the performance is not fully satisfactory.

最近、繊維径がO97〜2μという極細のCガラス繊維
が開発され、耐酸ベーパーの濾過材あるいは鉛蓄電池の
極板隔離保護材としての性能が著しく向上した。しかし
ながら、極細のCガラス繊維は一旦溶融して作ったガラ
スロフトに火炎を吹きつけて繊維化したり、あるいは溶
融ガラスを少量ずつ高速回転体から飛ばして繊維化して
作られるために消費エネルギーあるいは生産性に問題が
あり高価な材料となっている。
Recently, ultrafine C glass fibers with a fiber diameter of 097 to 2μ have been developed, and their performance as acid-resistant vapor filters or electrode plate isolation and protection materials for lead-acid batteries has been significantly improved. However, ultra-fine C-glass fibers are made by blowing flame onto a glass loft that has been melted to create fibers, or by blowing molten glass little by little from a high-speed rotating body to create fibers, which reduces energy consumption and productivity. This makes it an expensive material.

一方、繊維径が1.5〜2.5μという極細のガラス質
繊維で大量に生産されているものとしてアルミナ・シリ
カ系のセラミックファイバーがある。
On the other hand, alumina-silica ceramic fibers are ultrafine glass fibers with a fiber diameter of 1.5 to 2.5 μm that are produced in large quantities.

アルミナ・シリカ系のセラミックファイバーは高純度な
アルミナとシリカを[!炉で溶融し、その高温融体を大
量に蒸気あるいは空気の高速気流、高速回転ローターの
遠心力で吹き飛ばして繊維化して作られており、前述の
極細のCガラス繊維に比べて安価な材料である。しかし
ながら、アルミナ・シリカ系のセラミックファイバーは
化学組成がAh(h46〜48%、5ift 52〜5
8%あるいはA110156〜57%、5iO148〜
44%であるガラス質の繊維であるために、前述のCガ
ラス繊維に比べて#酸性が劣り、酸溶液の濾過材あるい
は鉛蓄電池の極板隔離保護材としての耐酸ベーパーの原
料としては不適であった。
Alumina-silica ceramic fiber is made of high-purity alumina and silica [! It is made by melting it in a furnace and blowing the high-temperature molten mass into fibers using a high-speed stream of steam or air or the centrifugal force of a high-speed rotating rotor.It is a cheaper material than the ultra-fine C glass fiber mentioned above. be. However, alumina-silica ceramic fiber has a chemical composition of Ah (h46-48%, 5ift 52-5
8% or A110156~57%, 5iO148~
Because it is a glassy fiber with a carbon fiber content of 44%, its acidity is inferior to that of the above-mentioned C glass fiber, making it unsuitable as a raw material for acid-resistant vapor used as a filtration material for acid solutions or as an isolation and protection material for electrode plates in lead-acid batteries. there were.

〔問題を解決するための手段及びその作用〕本発明はm
維径が1.5〜15μという極細のガラス質繊維である
アルミナ・シリカ系のセラミックファイバーを加熱処理
してムライト結晶とクリストパライト結晶と少量のシリ
カを主体とするガラスより成る繊維に変化せしめて耐酸
性を付与せしめたファイバーとなし、前記ファイバーと
Cガラス繊維、シリカ繊維、ポリエチレン繊維、アクリ
ル繊維、ポリプロピレン繊維、ビニリデン繊維などの耐
酸性補強ファイバーと必要に応じて少量の有機結合剤を
加えて構成される1+11#性セラミツクベーパーに関
するものである。
[Means for solving the problem and its effect] The present invention is m
Alumina-silica ceramic fibers, which are ultra-fine glassy fibers with a fiber diameter of 1.5 to 15 μm, are heat-treated to transform them into glass fibers that mainly contain mullite crystals, cristopalite crystals, and a small amount of silica. Acid-resistant reinforcing fibers such as C-glass fibers, silica fibers, polyethylene fibers, acrylic fibers, polypropylene fibers, and vinylidene fibers are added to the fibers and a small amount of organic binder as necessary. This relates to a 1+11# ceramic vapor made up of:

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

アルミナ・シリカ系のセラミックファイバーはアルミナ
とシリカより成るガラス質繊維であり、その化学組成は
例えばAhOt 47.8%、5ift51.9%、F
oxes 0.06%、Nut OO,24%、Cao
OoOl%、TiChO,02%である。また、繊維の
形態は例えば繊維径が1〜数μの範囲にあり平均径とし
て2.0μであり、繊維長が250u以下の繊維の集合
である。繊維の構造は模式的に示すと後に掲げる図1に
示すようになる。繊維を構成するアルミニウムイオン(
A i a + >はその1個が8個の酸素イオン(0
−)と電気的に釣抄合った状態で存在しており、シリカ
のように網目構造を形成していないために非常に不安定
な状態であって酸に接触すると容易に溶出する性質があ
る。
Alumina-silica ceramic fiber is a glass fiber made of alumina and silica, and its chemical composition is, for example, AhOt 47.8%, 5ift 51.9%, F
oxes 0.06%, Nut OO, 24%, Cao
OoOl%, TiChO, 02%. Further, the form of the fibers is, for example, a collection of fibers with a fiber diameter in the range of 1 to several microns, an average diameter of 2.0 microns, and a fiber length of 250 microns or less. The structure of the fiber is schematically shown in FIG. 1, which will be listed later. Aluminum ions (
A i a + >, one of which has 8 oxygen ions (0
-), and because it does not form a network structure like silica, it is in a very unstable state and easily dissolves when it comes in contact with acid. .

本発明では、アルミナ・シリカ系のセラミックファイバ
ーt−納処理してムライト結晶とクリストパライト結晶
とシリカを主体とするガラスより成るファイバーとする
ことにより繊維を構成するアルミニウムイオンの酸溶出
を防止せしめた。即ち、熱処理してなる繊維の構造を模
式的に示すと後に掲げる図2のようになり、構造的に不
安定なアルミニウムイオンが熱処理により安定なムライ
ト結晶(8A1雪Os・2SiOt)に移行することに
より酸溶出が飛躍的に抑えられている。
In the present invention, alumina-silica ceramic fibers are treated with t-coating to produce fibers made of glass mainly composed of mullite crystals, cristopalite crystals, and silica, thereby preventing acid elution of aluminum ions constituting the fibers. Ta. In other words, the structure of the heat-treated fiber is schematically shown in Figure 2, which will be listed later, and the structurally unstable aluminum ions transform into stable mullite crystals (8A1Os/2SiOt) through heat treatment. This dramatically reduces acid elution.

アルミナ・シリカ系のセラミックファイバーは加熱する
と900〜1100°C附近でムライト結晶が析出し、
1100〜1250℃附近で急激にその析出量が増加し
、12100〜1400℃附近でムライト結晶以外にク
リストバフイト結晶が析出する。
When alumina-silica ceramic fiber is heated, mullite crystals precipitate around 900-1100°C.
The amount of precipitation increases rapidly around 1100-1250°C, and cristobafite crystals are precipitated in addition to mullite crystals around 12100-1400°C.

本発明ではアルミナ・シリカ系のセラミックファイバー
を950〜1400″Cの温度範囲内で熱処理してムラ
イト結晶20〜70重量%と残部がクリストパライト結
晶と7リカを主体とするガラスより成るファイバーとす
ることを好適とする。前記熟処理の温度が950℃未満
ではファイバーの中にパライト結晶の析出量が少なく、
構造的に不安定なアルミニウムイオンが多量に存在する
ために硫酸などの酸に対しする溶出が起り、一方140
0’Ot−越え、るとファイバーの中に析出したムフィ
ト結晶アルイはクリストパライト結晶の粗大化が起り繊
維の形態を維持できなくなる。
In the present invention, an alumina-silica ceramic fiber is heat-treated within a temperature range of 950 to 1400"C to produce a fiber consisting of 20 to 70% by weight of mullite crystals and the balance being cristopalite crystals and glass mainly composed of 7 liqu. If the temperature of the ripening treatment is less than 950°C, the amount of pallite crystals precipitated in the fiber is small;
Due to the presence of a large amount of structurally unstable aluminum ions, elution with acids such as sulfuric acid occurs;
If the temperature exceeds 0'Ot-, the cristoparite crystals of the mufit crystal alium precipitated in the fibers will become coarser, making it impossible to maintain the fiber form.

前述のごとくして作られたムライト結晶20〜70重量
%と残部がクリストバフイト結晶とシリカを主体とする
ガラスよ炒成るファイバーは機械的な強度が小さく、ま
たパルパー、ビータ−、プロベフ式攪拌Sなどを使用し
て水に均一に分散せしめてスラリーにし、丸網抄造機、
長網抄造機などで抄造してベーパーを作る際に繊維が折
れて短かくなることもあり、前記ファイバー単味のベー
パーは必要とされる機械的な強度が十分でないという問
題がある。
The fiber produced as described above, which is composed of glass with 20 to 70% by weight of mullite crystals and the balance consisting mainly of cristobafite crystals and silica, has low mechanical strength and cannot be used with pulpers, beaters, or Probev type stirring. Disperse it uniformly in water using S, etc. to make a slurry, and use it in a round netting machine,
When producing vapor by paper-making using a fourdrinier machine or the like, the fibers may break and become short, and the vapor made of single fibers has a problem in that it does not have sufficient mechanical strength.

本発明では、ムライト結晶20〜70重量%と残部がク
リスト・パライト結晶とシリカを主体とするガラスより
成るファイバー50〜95重量%と耐酸性の無機又は有
機質繊維から成る補強ファイバー5〜50重量%を複合
化せしめ、必要に応じて有機結合剤10重量%以下を加
えることによりベーパーの機械的な強度を向上せしめた
In the present invention, 20 to 70% by weight of mullite crystals, 50 to 95% by weight of fibers consisting of glass mainly consisting of cristopalite crystals and silica, and 5 to 50% by weight of reinforcing fibers consisting of acid-resistant inorganic or organic fibers. The mechanical strength of the vapor was improved by adding 10% by weight or less of an organic binder as necessary.

有機質の耐酸性補強ファイバーとしてはポリエチレン繊
維、アクリル繊維、ポリプロピレン繊維あるいはビニリ
デン繊維が好適である。これらの有機繊維はその繊維径
が例えば5〜20μである。
Suitable organic acid-resistant reinforcing fibers are polyethylene fibers, acrylic fibers, polypropylene fibers, or vinylidene fibers. These organic fibers have a fiber diameter of, for example, 5 to 20 microns.

有機結合剤としては、酢酸ビニy樹脂、アクリル樹脂、
フェノ−〃樹脂、塩ビ系樹脂、PVA、ゼラチン、デン
プンなどがある。
Examples of organic binders include vinyl acetate resin, acrylic resin,
Examples include pheno resin, PVC resin, PVA, gelatin, and starch.

ムライト結晶20〜70重量%と残部がクリストバフイ
ト結晶とシリカを主体とするガラスより成るファイバー
の構成比が50重量%未満ではベーパーの耐酸性が十分
でなく、コストが高くなる問題があり、96重量%を越
えるとベーパーの機械的な強度が十分でなくなる。
If the composition ratio of fibers consisting of 20 to 70% by weight of mullite crystals and the balance being cristobafite crystals and glass mainly composed of silica is less than 50% by weight, the acid resistance of the vapor will not be sufficient and there will be a problem that the cost will increase. If it exceeds 96% by weight, the mechanical strength of the vapor will not be sufficient.

耐酸性の無機又は有機質繊維から成る補強ファイバーの
構成比が5重量%未満ではベーパーの機械的な強度が十
分でなく、50重量%を越えるとコストが高くなる問題
がある。
If the composition ratio of reinforcing fibers made of acid-resistant inorganic or organic fibers is less than 5% by weight, the mechanical strength of the vapor will not be sufficient, and if it exceeds 50% by weight, there will be a problem that the cost will increase.

また、濾過材、鉛蓄電池の極板隔離保護材以外の用途で
ベーパーの空隙率、空隙の大きさよりベーパーの強度を
重要な性質とする用途に対しては有機結合剤を10重量
%以下配合せしめることもできる。
In addition, for applications other than filtration materials and electrode plate isolation and protection materials for lead-acid batteries, where the strength of the vapor is more important than the porosity of the vapor or the size of the pores, an organic binder of 10% by weight or less is added. You can also do that.

〔実施例及び比較例〕[Examples and comparative examples]

以下、本発明の実施例を比較例と共に示す。 Examples of the present invention will be shown below along with comparative examples.

化学組成がAt雪0147.8%、Stow 51.9
96、Flllxes O,06%、Nato 0.2
4%、Ca0O,01’fJ、T i Of O,02
%であり、繊維径が平均径とし10μであるアyミナ・
シリカ系のセラミックファイバーを電気炬くて95G−
1400°Cの温度範囲にて所定時間熱処理した。前述
の熱処理により得られたファイバーの鉱物組成を第1表
に示す。
Chemical composition: At snow 0147.8%, Stow 51.9
96, Flllxes O, 06%, Nato 0.2
4%, Ca0O,01'fJ, T i Of O,02
%, and the fiber diameter is 10μ as the average diameter.
Silica-based ceramic fiber was heated to 95G with an electric torch.
Heat treatment was performed at a temperature range of 1400°C for a predetermined time. Table 1 shows the mineral composition of the fibers obtained by the heat treatment described above.

第1表 また前述の熱処理により得られたファイバーを温度80
″C1比重1.2の硫酸に5時間浸漬し、その時のファ
イバーの重量減少量として酸溶出%を表わし、その結果
を第2表に示す。
Table 1 also shows that the fibers obtained by the above heat treatment were heated to 80°C.
The fibers were immersed in sulfuric acid with a C1 specific gravity of 1.2 for 5 hours, and the percentage of acid elution was expressed as the weight loss of the fiber at that time, and the results are shown in Table 2.

第2表 次に前述の熱処理により得られたファイバーとCガフス
繊維、ンリカ繊維、ポリエチレン繊維、アクリル繊維、
ポリプロピレン繊維、ビニリデン繊維からなるl1i1
酸性の補強繊維とを所定の配合比で固形分濃度O61%
となる様に水に添加し、攪拌機で十分に攪拌、混合して
均一なスラリーとなし、必要に応じ5〜10重量%重量
%式インダーを添加し攪拌混合して抄紙機により厚さ1
.0− L OtRのベーパーを抄造して乾燥した。前
述の抄紙によ妙得らnたベーパーの耐酸性を示す酸溶出
%およびp過材、鉛蓄電池の極板隔離保護材として重要
な品質である気孔率等を第8表に示す。
Table 2: Fibers obtained by the heat treatment described above, C gaff fibers, Nlica fibers, polyethylene fibers, acrylic fibers,
l1i1 made of polypropylene fiber and vinylidene fiber
A solid content concentration of 061% with a predetermined blending ratio of acidic reinforcing fibers.
Add to water so that
.. 0-L OtR vapor was made into paper and dried. Table 8 shows the acid elution percentage, which indicates the acid resistance, and the porosity, which is an important quality for the isolation and protection material of the electrode plates of lead-acid batteries, of the vapor obtained from the above-mentioned paper making process.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、非常に安価なファイ
バーを主材料とする耐酸性に優れたペーパーが得られ、
酸溶液の濾過材、鉛蓄電池の極板隔離保護材として極め
て有用なものである。
As described above, according to the present invention, it is possible to obtain a paper with excellent acid resistance that is made mainly of fibers at a very low cost.
It is extremely useful as a filter material for acid solutions and as a material for isolating and protecting electrode plates of lead-acid batteries.

Claims (1)

【特許請求の範囲】 1、ムライト結晶20〜70重量%と残部がクリストパ
ライト結晶及びシリカを主体とするガラスより成るファ
イバー50〜95重量%とCガラス繊維、シリカ繊維、
アクリル繊維、ポリプロピレン繊維、ビニリデン繊維の
何れか1種又は2種以上5〜50重量%と必要に応じて
有機結合剤10重量%以下とから成る耐酸性セラミック
ペーパー。 2、前記ムライト結晶20〜70重量%と残部クリスト
パライト結晶及びシリカを主体とするガラスより成るフ
ァイバーは、アルミナ−シリカ質セラミックファイバー
を950℃〜1400℃の温度範囲で熱処理されてなる
ことを特徴とする特許請求範囲第1項記載の耐酸性セラ
ミックペーパー。
[Scope of Claims] 1. 50 to 95% by weight of fibers consisting of 20 to 70% by weight of mullite crystals, the balance being cristopalite crystals and glass mainly composed of silica, C glass fibers, silica fibers,
An acid-resistant ceramic paper comprising 5 to 50% by weight of one or more of acrylic fibers, polypropylene fibers, and vinylidene fibers and, if necessary, 10% by weight or less of an organic binder. 2. The fiber made of 20 to 70% by weight of mullite crystals and the balance of cristopalite crystals and glass mainly composed of silica is obtained by heat-treating alumina-siliceous ceramic fibers at a temperature range of 950°C to 1400°C. Acid-resistant ceramic paper according to claim 1.
JP60079905A 1985-04-15 1985-04-15 Acid resistant ceramic paper Pending JPS61239100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079905A JPS61239100A (en) 1985-04-15 1985-04-15 Acid resistant ceramic paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079905A JPS61239100A (en) 1985-04-15 1985-04-15 Acid resistant ceramic paper

Publications (1)

Publication Number Publication Date
JPS61239100A true JPS61239100A (en) 1986-10-24

Family

ID=13703297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079905A Pending JPS61239100A (en) 1985-04-15 1985-04-15 Acid resistant ceramic paper

Country Status (1)

Country Link
JP (1) JPS61239100A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489353A (en) * 1992-02-03 1996-02-06 Lanxide Technology Company, Lp Process for forming ceramic laminates
US5714025A (en) * 1989-10-05 1998-02-03 Lanxide Technology Company, Lp Process for forming a ceramic body
JP2002173860A (en) * 2000-12-07 2002-06-21 Sekisui Chem Co Ltd Nonwoven fabric of glass fiber and molding of fiber- reinforced thermosetting synthetic resin
WO2002053511A1 (en) 2000-12-28 2002-07-11 3M Innovative Properties Company Thermal insulating material and pollution control device using the same
US7261864B2 (en) 2001-06-22 2007-08-28 3M Innovative Properties Company Catalyst carrier holding material and catalytic converter
US7524546B2 (en) 2000-12-28 2009-04-28 3M Innovative Properties Company Thermal insulating material and pollution control device using the same
WO2009084367A1 (en) * 2007-12-28 2009-07-09 Sharp Kabushiki Kaisha Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
WO2010109894A1 (en) * 2009-03-27 2010-09-30 シャープ株式会社 Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
WO2010116720A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and device provided with same
WO2010116719A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and appliance provided therewith
US8226897B2 (en) 2007-03-30 2012-07-24 3M Innovative Properties Company Fiber mat containing an organosilicon compound and pollution control device using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140605A (en) * 1976-05-17 1977-11-24 Ibigawa Electric Ind Co Ltd Procee for making paperrlike material from ceramic fiber
JPS5992982A (en) * 1982-11-17 1984-05-29 ニチアス株式会社 Low shrinkage fire resistant fiber composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140605A (en) * 1976-05-17 1977-11-24 Ibigawa Electric Ind Co Ltd Procee for making paperrlike material from ceramic fiber
JPS5992982A (en) * 1982-11-17 1984-05-29 ニチアス株式会社 Low shrinkage fire resistant fiber composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714025A (en) * 1989-10-05 1998-02-03 Lanxide Technology Company, Lp Process for forming a ceramic body
US5489353A (en) * 1992-02-03 1996-02-06 Lanxide Technology Company, Lp Process for forming ceramic laminates
JP2002173860A (en) * 2000-12-07 2002-06-21 Sekisui Chem Co Ltd Nonwoven fabric of glass fiber and molding of fiber- reinforced thermosetting synthetic resin
JP4503819B2 (en) * 2000-12-07 2010-07-14 積水化学工業株式会社 Glass fiber nonwoven fabric and fiber reinforced thermosetting synthetic resin molding
WO2002053511A1 (en) 2000-12-28 2002-07-11 3M Innovative Properties Company Thermal insulating material and pollution control device using the same
US7524546B2 (en) 2000-12-28 2009-04-28 3M Innovative Properties Company Thermal insulating material and pollution control device using the same
US7261864B2 (en) 2001-06-22 2007-08-28 3M Innovative Properties Company Catalyst carrier holding material and catalytic converter
US8226897B2 (en) 2007-03-30 2012-07-24 3M Innovative Properties Company Fiber mat containing an organosilicon compound and pollution control device using it
US8916103B2 (en) 2007-03-30 2014-12-23 3M Innovative Properties Company Fiber mat containing an organosilicon compound and pollution control device using it
WO2009084367A1 (en) * 2007-12-28 2009-07-09 Sharp Kabushiki Kaisha Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
JP2009162267A (en) * 2007-12-28 2009-07-23 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material, and manufacturing method for them
WO2010109894A1 (en) * 2009-03-27 2010-09-30 シャープ株式会社 Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
JP2010230082A (en) * 2009-03-27 2010-10-14 Sharp Corp Core material for vacuum heat insulating material, vacuum heat insulating material, and method for manufacturing them
CN102362115A (en) * 2009-03-27 2012-02-22 夏普株式会社 Core material for vacuum insulation material, vacuum insulation material, and processes for producing these
WO2010116720A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and device provided with same
JP4726970B2 (en) * 2009-04-07 2011-07-20 シャープ株式会社 Vacuum insulation and equipment equipped with it
JP2010242867A (en) * 2009-04-07 2010-10-28 Sharp Corp Vacuum heat insulating material and apparatus having the same
CN102388252A (en) * 2009-04-07 2012-03-21 夏普株式会社 Vacuum insulation material and device provided with same
CN102388253A (en) * 2009-04-07 2012-03-21 夏普株式会社 Vacuum insulation material and appliance provided therewith
JP2010242868A (en) * 2009-04-07 2010-10-28 Sharp Corp Vacuum heat insulating material and apparatus having the same
WO2010116719A1 (en) * 2009-04-07 2010-10-14 シャープ株式会社 Vacuum insulation material and appliance provided therewith

Similar Documents

Publication Publication Date Title
US4148962A (en) Fibrous refractory composite insulation
DE69300003T2 (en) Microporous, heat insulating material.
JPS61239100A (en) Acid resistant ceramic paper
US4240833A (en) Shrink-resistant refractory fiber and process for making same
JP4000834B2 (en) Raw material compound for glass fiber
EP0007485A1 (en) A process for the manufacture of a shrink resistant refractory ceramic fiber and fiber of this kind
EP1112239A1 (en) Ceramic product based on lithium aluminium silicate
JPS6263000A (en) Acid resistant ceramic paper
DE2310618A1 (en) FIRE-RESISTANT ALUMINUM SILICATE FIBER
US4751205A (en) Thermally bonded fibrous product
US4992396A (en) Fused AZS refractory composition
JP2990320B2 (en) Insulation material and its manufacturing method
CN107190363A (en) A kind of aluminosilicate refractory fiber of high intensity
JPS62226871A (en) High acid resistance ceramic paper
JPH0794347B2 (en) Insulation
CN114409429B (en) Preparation method of titanium-based foamed ceramic
JPS6218516B2 (en)
JPS62231019A (en) Ceramic fiber having high acid resistance
JPH07102560B2 (en) Method for manufacturing nonflammable molded body
JPH0148225B2 (en)
JPH045770B2 (en)
JPS59107983A (en) Heat resistant formed body
JPH0355578B2 (en)
US2160923A (en) Refractory material
KR101349708B1 (en) A making method of silicon carbide separators for thermal batteries using wet-laid nonwoven paper process