JPS61238936A - Ni-base precipitation strengthening type alloy having fine crystal grain - Google Patents

Ni-base precipitation strengthening type alloy having fine crystal grain

Info

Publication number
JPS61238936A
JPS61238936A JP8064985A JP8064985A JPS61238936A JP S61238936 A JPS61238936 A JP S61238936A JP 8064985 A JP8064985 A JP 8064985A JP 8064985 A JP8064985 A JP 8064985A JP S61238936 A JPS61238936 A JP S61238936A
Authority
JP
Japan
Prior art keywords
crystal grain
precipitation strengthening
temperature
grain size
base precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8064985A
Other languages
Japanese (ja)
Other versions
JPH0742535B2 (en
Inventor
Toshiaki Nonomura
敏明 野々村
Tsutomu Nohara
努 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60080649A priority Critical patent/JPH0742535B2/en
Publication of JPS61238936A publication Critical patent/JPS61238936A/en
Publication of JPH0742535B2 publication Critical patent/JPH0742535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stably obtain fine crystal grains in a wide temp. range forming solid solution, by precipitating specific amounts of MC-type carbides in an Ni-base precipitation strengthening type alloy containing specific percentage of Cr, Al, Ti, Nb and Ta. CONSTITUTION:In the Ni-base precipitation strengthening type alloy containing, by weight, at least 5-30% Cr, 0.1-7.0% Al, 1-10% of 1 or >=2 kinds among Ti, Nb and Ta, the MC-type carbides are precipitated by 0.5-2.0vol%. Further, Mo, W, Fe, Co, B, Zr, Y, Si, Mn, Hf, Mg, rare earth elements, etc., can be properly added to this alloy. Furthermore, it is preferable that the JIS austenite crystal grain size No. is regulated to 4.0-8.0. In this way, the fine grading of crystal grain size is enabled, so that the Ni-base precipitation strengthening type alloy having superior microstructure, macrostructure and mechanical properties can be easily manufactured.

Description

【発明の詳細な説明】 イ、産業上の利用分野 不発明は、結晶粒の整粒化及び微細化された良好なミク
ロm蛾と、併せてta部分の少ない艮好なマクロ組域を
有するNi基析出う重化型合金に関するものである。
Detailed Description of the Invention A. Industrial application field The invention has good microstructure with well-organized and refined crystal grains, as well as a well-defined macrostructure with less ta parts. This relates to a heavy type alloy in which Ni base precipitates.

口・ 従来の技術 一般に、合金、鉄j4材料において、その結晶粒度が材
料の強度に及ぼす影響は大きく、粗粒((なれば材料の
強薇、延性が著しく低下する、Ni基析出強化型合金に
ついても例外でなく、強度、延性に関しては、できるだ
け細粒とするのが望ましい。
- Conventional technology In general, in alloys and iron J4 materials, the grain size has a large effect on the strength of the material. This is no exception, and in terms of strength and ductility, it is desirable to make the grains as fine as possible.

しかしながら、クリープ破断頻度に関しては微細すぎて
もよくない。したがって、要求されるすべての%性を十
分に満足する理想的なti晶粒関としては、JISオー
ステナイト結晶粒IJ[No4.0〜8.0程度である
However, in terms of creep rupture frequency, too fine a grain is not good. Therefore, the ideal Ti crystal grain ratio that fully satisfies all required percentage properties is JIS austenite crystal grain IJ [No. 4.0 to about 8.0.

従来、Ni基析出強化型合金の結晶粒制御は、熱間加工
後の固溶化処理によって行われ℃いる。すなわち、通常
の熱間加工つまり熱間塑性加工を与えただけでは十分に
再結晶を生ぜず結晶粒は粗大なままであるか、粒界近傍
だけが再結晶した混粒組織であることが多い。このため
に、固溶化処理において十分にP+結晶させ、結晶粒な
倣細、整粒化するのである。しかしながら、この固溶化
処理温度が通常使用される一度軛囲の低温側(再結晶温
度以上、金属間化合物固溶温度以上)である場合には、
再結晶はほとんど起らず、熱間加工後の組織と同様であ
る。また、固尋化@度を低温とすることは、強化相であ
る 生成元素としてのAt。
Conventionally, grain control of Ni-based precipitation-strengthened alloys has been carried out by solution treatment after hot working. In other words, simply applying normal hot working, that is, hot plastic working, does not sufficiently cause recrystallization and the crystal grains remain coarse, or there is often a mixed grain structure in which only the vicinity of the grain boundaries are recrystallized. . For this purpose, sufficient P+ crystals are generated in the solution treatment, and the crystal grains are refined and sized. However, if this solution treatment temperature is on the low temperature side of the normally used one-way range (above the recrystallization temperature, above the intermetallic compound solid solution temperature),
Almost no recrystallization occurs, and the structure is similar to that after hot working. In addition, setting the temperature to a low temperature means that At as a forming element is a strengthening phase.

Ti、Nb、Taの十分な固溶が行なわれずひいては時
効処理を行なった場合に十分な の析出が生じず、艮好
な特性を得ることができなくなる。そこで、再結晶を生
じかつ 生成元素であるAt、 T+ 、Nb@Taの
十分に固溶する高温側の固溶化処理温度(再結晶温度以
上、金属間化合物固溶温度以上)にて固溶化処理を行な
うと再結晶を生じ整粒化されるものの、その結晶粒は非
箒に大きく、十分に機械的性實を満足するものとはなり
難い場合が多い。
Ti, Nb, and Ta are not sufficiently dissolved in solid solution, and furthermore, when aging treatment is performed, sufficient precipitation of 2 is not produced, making it impossible to obtain good properties. Therefore, solution treatment was performed at a solution treatment temperature on the high temperature side (above the recrystallization temperature and above the intermetallic compound solid solution temperature) where recrystallization occurs and the generated elements At, T+, and Nb@Ta are sufficiently dissolved. Although recrystallization occurs when this process is carried out, and the grain size is regulated, the crystal grains are larger than those of other grains, and it is often difficult to achieve sufficient mechanical properties.

・・0発明が解決しようとする問題点 前述の如(、Ni基析出強化型合金では固溶化処理温度
の限定によってのみでは温度による結晶粒度のバラツキ
が大きく、機械的特性に秀れた倣細贅粒の結晶粒を得る
ことは困難である。
Problems to be Solved by the Invention As mentioned above, in Ni-based precipitation-strengthened alloys, if only the solution treatment temperature is limited, the grain size varies greatly depending on the temperature, It is difficult to obtain fine crystal grains.

本発明は、この様な状況に対して、高い固溶化温度でも
安定して結晶粒を倣細、歪粒に制御できるようにし、広
い[i!i1m化温度範囲にて安定して結晶粒の微細な
Ni基析出強化型合金を提供しようとするものである。
The present invention solves this situation by making it possible to stably control crystal grains into fine, distorted grains even at high solution temperatures, and widening the range of [i! The purpose is to provide a Ni-based precipitation-strengthened alloy with fine crystal grains that is stable in the i1m temperature range.

二1問題点を解決するための手段 本発明は電t%で少なくともCr5〜30%、Al0.
1〜ZO%、およびT’ * N b 、T aを1種
又は2種以上で1〜10%を含有するNi基析出強化型
合金において、MCfi炭化物を体al俤で0.5〜2
゜0%析出させることにより前述の問題点を解決するも
のである。
21 Means for Solving the Problems The present invention is characterized by having at least 5 to 30% of Cr and 0.0% of Al in electrical t%.
In a Ni-based precipitation strengthened alloy containing 1 to 10% of T'*Nb, Ta and one or more of T'*Nb and Ta, the MCfi carbide is 0.5 to 2
By precipitating 0%, the above-mentioned problem is solved.

本発明合金には上記成分以外にMn 、 ’vV、 F
e 、 Co 。
In addition to the above-mentioned components, the alloy of the present invention also contains Mn, 'vV, F
e, Co.

B、Zr、Y、Si、Mn、Hf、Mg、希土類元素等
を適宜添力口でき、これらの元加本発明には本質的に何
ら影響をおよぼすものでない。
B, Zr, Y, Si, Mn, Hf, Mg, rare earth elements, etc. can be added as appropriate, and these additions do not essentially have any effect on the present invention.

また、前述したようにJISオーステナイト結晶粒度N
oは4〜8程度にすると機械的特性(りIJ−プ破断強
度)が良好になる。
In addition, as mentioned above, the JIS austenite grain size N
When o is about 4 to 8, the mechanical properties (rip IJ-pull breaking strength) will be good.

ホ、作用 固溶化温度を昼!(再結晶温度以上、金属間化合物置#
温度以上)にすることによって整粒化させる場合、その
再結晶粒は非常に大きくなり易い。
Ho, the working solution temperature is noon! (above recrystallization temperature, intermetallic compound #
When grain size is adjusted by increasing the temperature (temperature or higher), the recrystallized grains tend to become very large.

これは結晶粒の収長をピニング効果によって抑制してい
た金属間化合物が固溶され再結晶の進行が急激に阻害さ
れなくなることによるものである。
This is because the intermetallic compound that had been suppressing the growth of crystal grains due to the pinning effect is dissolved in solid solution, and the progress of recrystallization is no longer inhibited rapidly.

したがってこの様な高温(金属間化合物固溶@度以上)
で結晶粒の底長な抑制してやることのできる金属間化合
物に代わる他の抑制物質を析出させておけば十分高温ま
で結晶粒を制御できる様になるのである。
Therefore, such high temperatures (solid solution of intermetallic compounds @ over
By precipitating another inhibitor instead of the intermetallic compound that can suppress the base length of crystal grains, it becomes possible to control the crystal grains up to a sufficiently high temperature.

この抑制物として適切なのはMC型炭化物である。MC type carbide is suitable as this suppressor.

罷型炭化物は、十分高温まで結晶粒を微細に保つために
は体8%で0.5%以上が必要である。よって裟型炭化
物の下限を体積チで0.5%とした。一方式型炭化物を
必要以上に析出させた場合、ファイバーフローに沿って
炭化物が輪状に析出し、これと直角方向の機械的特性が
著しく低下する様になる。
In order to maintain fine crystal grains up to a sufficiently high temperature, 0.5% or more of the carbide is required in a total of 8%. Therefore, the lower limit of the hollow type carbide was set at 0.5% by volume. If one-sided carbide is precipitated more than necessary, the carbide will precipitate in a ring shape along the fiber flow, and the mechanical properties in the direction perpendicular to this will significantly deteriorate.

またMCu炭化物を生成する元素であるTi、Nb、T
llは強化相 の生成元素であり、MC型炭化物tが多
くなると強化にを与する有効Ti、Nb、Taを減少さ
せることになり好ましくない。よってMC型炭化物の上
限は偉績チで2%までとする。
In addition, Ti, Nb, and T, which are elements that form MCu carbides,
ll is an element that forms a reinforcing phase, and as MC type carbide t increases, effective Ti, Nb, and Ta that contribute to strengthening decrease, which is not preferable. Therefore, the upper limit of MC type carbide is set at 2% in the case of high performance.

本発明の通用合竜は、Ni基の析出値化型合金であるが
、一般にNi基析出強化型合金は強化相である 生成元
素としてAtを0.1〜10%および’ri、Nb。
The general alloy of the present invention is a Ni-based precipitation-strengthened alloy, and generally, Ni-based precipitation-strengthened alloys have a strengthening phase of 0.1 to 10% At, 'ri, and Nb as forming elements.

Taを1徨または2種以上で1〜10%含有している。Contains 1 to 10% of one or more types of Ta.

このTi、Nb、TaはそれぞれがCと粕びついて、高
温でも安定なMC型炭化物を形成する。
These Ti, Nb, and Ta each stick to C to form an MC type carbide that is stable even at high temperatures.

また、Crは耐酸化性の付与及び固溶強化などの効果が
あり、5%以上必要であるが、一方30%を越よるとオ
ーステナイトマトリックスの不安定化を招くので好まし
くない。したがってNi基析出強化型合金において、C
rは5チル30%に限定される。
Further, Cr has effects such as imparting oxidation resistance and solid solution strengthening, and is required to be present in an amount of 5% or more, but on the other hand, if it exceeds 30%, it is not preferable because it causes instability of the austenite matrix. Therefore, in Ni-based precipitation strengthened alloys, C
r is limited to 5 chill and 30%.

本発明では、上記元素以外に前述したような徨々の添加
元素を包含するものであるが、これら元素の松加は本発
明には本質的に何ら影響をおよぼすものではない。
The present invention includes various additional elements as described above in addition to the above-mentioned elements, but the addition of these elements does not essentially have any influence on the present invention.

へ。 実施例 本発明を以下実施例に基づき詳細に説明する。fart. Example The present invention will be explained in detail below based on Examples.

〔実施例1〕 、g1表に示す取分のNi基析出強化型合金を以下の処
理を行った。
[Example 1] The Ni-based precipitation strengthened alloys shown in Table g1 were subjected to the following treatments.

第 1 衣 fi+  1030℃に刀口熱した40綱角棒材を壺菫
44チで犯簡角律材まで鍛造を行ない仝冷する。
1st Cloth fi+ 40 wire square bar heated to 1030°C is forged with a 44 piece pot sumi to a steel square rod and cooled.

(2+  +11処理後の角偉材を990℃。1020
℃、 1030℃。
(2++11 treated square wood at 990℃.1020
℃, 1030℃.

1080℃、1110℃のそれぞれの温度で2hr保持
後、9冷する固溶化処理を行なう。
After holding at each temperature of 1080° C. and 1110° C. for 2 hours, a solid solution treatment is performed by cooling for 9 hours.

(2)の固溶化処理温度と結晶粒度の関係を示すのが第
1図である。なおMC型炭化物量(体積チ)は試料A’
L2.5それぞれα14%、0.42%、0.67%で
アル。
FIG. 1 shows the relationship between solution treatment temperature and crystal grain size (2). The amount of MC type carbide (volume) is sample A'
Al at L2.5 α14%, 0.42%, and 0.67%, respectively.

第1図より、本発明のMC型炭化物量(体積%)を含む
試料A5は、試料ム1及びA2に比べ固溶処理温度に対
する結晶粒度の依存性が小さく高温まで安定して結晶粒
が5I1.細であることがわかる。
From FIG. 1, sample A5 containing the MC type carbide amount (volume %) of the present invention has a smaller dependence of crystal grain size on solid solution treatment temperature than samples M1 and A2, and is stable up to high temperatures, with crystal grain size of 5I1. .. You can see that it is thin.

第2図は、本実施例合金の代表的固浴化処理龜就である
1080℃で処理したときの試料A1〜5のミクロa鐵
(xloo)を示す図である。この図からも、本発明に
よる試料A5の結晶粒が微細かつ螢粒に制御されている
ことがわかる。
FIG. 2 is a diagram showing the micro a iron (xloo) of samples A1 to A5 when treated at 1080° C., which is a typical hard bath treatment performance of the alloy of this example. This figure also shows that the crystal grains of sample A5 according to the present invention are controlled to be fine and powdery.

〔実施例2〕 〔実施例1〕の固溶化処理材の内、本合竜の代表的同浴
化処理TML度である1080℃で固溶化処理した試料
に、700℃×16時間空冷の時効処理をゐした後、常
温で引張試験した結果を表2に示す。
[Example 2] Among the solution-treated materials of [Example 1], a sample that had been solution-treated at 1080°C, which is Hongoryu's typical same-bath treatment TML degree, was subjected to air-cooling aging at 700°C for 16 hours. Table 2 shows the results of a tensile test at room temperature after the treatment.

以下余白 表  2 表2から明らかな様に、本発明で結晶粒が微細。Below margin Table 2 As is clear from Table 2, the crystal grains are fine in the present invention.

整粒化している試料3は、試料t2に比べてα2チ耐力
、引張強さが、5 K9f/d−15縁f/−向上して
いるにかかわらず延性はほぼ同等のレベルである。
Sample 3, which is grain-sized, has approximately the same level of ductility even though the α2 yield strength and tensile strength are improved by 5 K9f/d-15 edge f/- compared to sample t2.

これから不発明による結晶粒の5R細、整粒化により艮
好な機械的特性が得られることがわかる。
It can be seen from this that excellent mechanical properties can be obtained by making the crystal grains finer and more regulated by the invention.

〔実施例5〕 第3表に示す成分のNi基析出強化型合金の1001角
ビレツトを1130℃に加熱して熱間圧延を行ない、直
径11■の偉材を作製した。
[Example 5] A 1001 square billet of a Ni-based precipitation-strengthened alloy having the components shown in Table 3 was heated to 1130°C and hot rolled to produce a large piece with a diameter of 11 cm.

不+11灯を1040℃及び1080℃でそれぞれ保持
時間4時間の固溶化処理後及び熱間圧延後のマクロ組織
を示すのが第3図である。本発明である試料墓6及び7
は1040℃、1080℃の固溶化処理後でも、粗粒発
生がなく艮好なマクロ組織を有している。
FIG. 3 shows the macrostructure of the non-+11 lamp after solution treatment and hot rolling at 1040° C. and 1080° C. for 4 hours, respectively. Sample graves 6 and 7 according to the present invention
Even after solution treatment at 1,040°C and 1,080°C, it has a fine macrostructure with no generation of coarse grains.

これに比して、試料A4.5は固溶化処理により結晶粒
が粗大化していることがわかる。
In contrast, it can be seen that the crystal grains of sample A4.5 have become coarser due to the solution treatment.

第3表 〔実施例4〕 第4表に示す成分のNi基析出強化型合金について以下
の処理を行なった。
Table 3 [Example 4] The Ni-based precipitation-strengthened alloys having the components shown in Table 4 were subjected to the following treatments.

第4表 (1) 1030℃に加熱した40.角棒材を歪fi4
4%で30箇角棒材まで鍛造を行い空冷する。
Table 4 (1) 40. Heated to 1030°C. Distort the square bar fi4
Forged up to 30 square bars at 4% and air cooled.

(2) (1)処理後の角棒材を920℃、930℃、
980℃、1010C,1040℃のそれぞれの温度で
lhr保持後空冷する固尋化処理を行なう。
(2) (1) Square bars after treatment at 920℃, 930℃,
A hardening process is performed in which the material is held at 980° C., 1010° C., and 1040° C. for 1 hour and then air cooled.

(2)の固溶化処理温度と結晶粒度の関係を示すのが第
4図である。なお、MC型炭化物fi(体積%)は、試
料48,9.10それぞれα11慢、α45チ、α75
チである。
FIG. 4 shows the relationship between solution treatment temperature and crystal grain size (2). The MC type carbide fi (volume %) is α11, α45, and α75 for samples 48 and 9.10, respectively.
It is Chi.

第4図より、本実施例においても本発明のX型炭化物重
(体積%)を含む試料AIOは高温まで安定して4R細
であることがわかる。
From FIG. 4, it can be seen that in this example as well, the sample AIO containing the X-type carbide weight (volume %) of the present invention is stable up to high temperatures and has a 4R fineness.

ト0発明の効果 以上の如く本発明によれば、Ni基析出強化型合金の結
晶粒制御が容易に行なえ、結晶粒度を値組1贅粒とする
ことができ、ミクロ組域、マクロ組織。
Effects of the Invention As described above, according to the present invention, the crystal grains of a Ni-based precipitation-strengthened alloy can be easily controlled, the crystal grain size can be set to a value of 1, and the microstructure region and macrostructure can be improved.

機械的特性の艮好なNi基析出強化型合金を簡単に#造
できる。
A Ni-based precipitation-strengthened alloy with excellent mechanical properties can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実地例のNi基析出強化型合金のN
IC型炭化物m(体積%)による固溶化温度と結晶粒度
の関係を示す図、第2図は本発明の1実4図は従来のN
i基析1:t151!化型合象および本発明の他の実施
例のNi基析出強化型合金の1040℃と100℃li
!i浴化処理後のマクロ金属組織を示す顕倣俤写真、第
3図は本発明のさらにその他の実施例のNi基析出強化
型合金のMCt1M炭化物菫(体+IjIチ)による同
浴処理温度と結晶粒度の関係を示す図である。 卒l 目 図臼裏娑イ乙スふ理温度(穎 第26 裏3凹 第4団 第j凹 固う容ノ乙多ynAhΔ駐 (C) 手続補正書(自発)
Figure 1 shows the N
Figure 2 shows the relationship between solution temperature and crystal grain size for IC type carbide m (volume %).
i-based analysis 1:t151! 1040° C. and 100° C.li of Ni-based precipitation-strengthened alloys of chemical phenomenon and other examples of the present invention
! Fig. 3 is a microscopic photograph showing the macrometallic structure after the i-bath treatment, and shows the temperature and temperature of the same-bath treatment with MCt1M carbide violet (body + IjI) of a Ni-based precipitation-strengthened alloy according to another embodiment of the present invention. FIG. 3 is a diagram showing the relationship between crystal grain sizes. Graduation l eye diagram usuurasakii otsufuri temperature (26th Ura 3 concave 4th group j concave solid body otsuta ynAhΔ station (C) Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】 1、重量%で少なくともCr5〜30%、Al0.1〜
7.0%、およびTi、Nb、Taを1種又は2種以上
で1〜10%を含有するNi基析出強化型合金において
、MC型炭化物を体積%で0.5〜2.0%析出させた
ことを特徴とする微細結晶粒Ni基析出強化型合金。 2、Ni基析出強化型合金が重量%でC0.1%以下、
Cr18〜21%、Al1.0〜2.0%、Ti1.5
〜2.5残部Niおよび不可避的不純物よりなることを
特徴とする特許請求の範囲第1項記載の微細結晶粒Ni
基析出強化型合金。 3、Ni基析出強化型合金が重量%でC0.1%以下、
Cr14〜18%、Al0.4%以下、Ti1.5〜2
.0%、Nb+Ta2.5〜3.5%、残部Niおよび
不可避的不純物よりなることを特徴とする特許請求の範
囲第1項記載の微細結晶粒Ni基析出強化型合金。 4、JISオーステナイト結晶粒度Noが4.0〜8.
0であることを特徴とする特許請求の範囲第1項から第
3項いずれか記載の微細結晶粒Ni基析出強化合金。
[Claims] 1. At least 5 to 30% Cr and 0.1 to 30% Al by weight.
7.0%, and 1 to 10% of one or more of Ti, Nb, and Ta, in which 0.5 to 2.0% by volume of MC type carbides are precipitated. A fine-grained Ni-based precipitation strengthened alloy. 2. Ni-based precipitation strengthened alloy has C0.1% or less by weight,
Cr18-21%, Al1.0-2.0%, Ti1.5
The fine crystal grain Ni according to claim 1, characterized in that the balance consists of ~2.5 Ni and unavoidable impurities.
Group precipitation strengthened alloy. 3. Ni-based precipitation strengthened alloy has C0.1% or less by weight,
Cr 14-18%, Al 0.4% or less, Ti 1.5-2
.. 2.5% to 3.5% of Nb+Ta, the balance being Ni and unavoidable impurities. 4. JIS austenite grain size No. 4.0-8.
The fine grained Ni-based precipitation strengthened alloy according to any one of claims 1 to 3, wherein
JP60080649A 1985-04-16 1985-04-16 Fine grain Ni-based precipitation strengthening alloy Expired - Fee Related JPH0742535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080649A JPH0742535B2 (en) 1985-04-16 1985-04-16 Fine grain Ni-based precipitation strengthening alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080649A JPH0742535B2 (en) 1985-04-16 1985-04-16 Fine grain Ni-based precipitation strengthening alloy

Publications (2)

Publication Number Publication Date
JPS61238936A true JPS61238936A (en) 1986-10-24
JPH0742535B2 JPH0742535B2 (en) 1995-05-10

Family

ID=13724209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080649A Expired - Fee Related JPH0742535B2 (en) 1985-04-16 1985-04-16 Fine grain Ni-based precipitation strengthening alloy

Country Status (1)

Country Link
JP (1) JPH0742535B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640285A1 (en) * 1988-12-13 1990-06-15 Gen Electric FATTY GROWTH NICKEL-BASED ALLOY ARTICLE AND ALLOY AND METHOD OF MANUFACTURING THE SAME
WO2014148463A1 (en) 2013-03-21 2014-09-25 日立金属株式会社 Method of producing ring-rolling blank

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169741A (en) * 1980-05-30 1981-12-26 Hitachi Ltd Component for nuclear reactor and heat treating method thereof
JPS59229474A (en) * 1983-06-08 1984-12-22 Hitachi Metals Ltd Method for controlling grain of precipitation strengthening ni alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169741A (en) * 1980-05-30 1981-12-26 Hitachi Ltd Component for nuclear reactor and heat treating method thereof
JPS59229474A (en) * 1983-06-08 1984-12-22 Hitachi Metals Ltd Method for controlling grain of precipitation strengthening ni alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640285A1 (en) * 1988-12-13 1990-06-15 Gen Electric FATTY GROWTH NICKEL-BASED ALLOY ARTICLE AND ALLOY AND METHOD OF MANUFACTURING THE SAME
WO2014148463A1 (en) 2013-03-21 2014-09-25 日立金属株式会社 Method of producing ring-rolling blank
WO2014148464A1 (en) 2013-03-21 2014-09-25 日立金属株式会社 Ring-rolling blank
US9719369B2 (en) 2013-03-21 2017-08-01 Hitachi Metals, Ltd. Manufacturing method for material for ring rolling
US10094238B2 (en) 2013-03-21 2018-10-09 Hitachi Metals, Ltd. Material for ring rolling

Also Published As

Publication number Publication date
JPH0742535B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
EP2770081B1 (en) Nickel-base alloys and methods of heat treating nickel base alloys
US4144102A (en) Production of low expansion superalloy products
EP3327158B1 (en) Method for producing ni-based superalloy material
US4080201A (en) Nickel-base alloys
CN108118192B (en) Method for producing Ni-based superalloy material
US4386976A (en) Dispersion-strengthened nickel-base alloy
EP3526357B1 (en) High temperature, damage tolerant superalloy, an article of manufacture made from the alloy, and process for making the alloy
US3748192A (en) Nickel base alloy
EP3208355B1 (en) Ni-based superalloy for hot forging
JPH0641623B2 (en) Controlled expansion alloy
US4460542A (en) Iron-bearing nickel-chromium-aluminum-yttrium alloy
KR102332018B1 (en) High temperature titanium alloy and method for manufacturing the same
US3649379A (en) Co-precipitation-strengthened nickel base alloys and method for producing same
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JPS61238936A (en) Ni-base precipitation strengthening type alloy having fine crystal grain
KR100628795B1 (en) Heavy wall steel material having superior weldability and method for producing the same
CA2010147A1 (en) Tantalum-containing superalloys
JPH04297537A (en) Ni-base alloy for high temperature water
US6068714A (en) Process for making a heat resistant nickel-base polycrystalline superalloy forged part
RU2791029C1 (en) Nickel alloy with good corrosion resistance and high tensile strength and method for production of semi-products
EP0214080A2 (en) Reduction of twinning in directional recrystallization of nickel base superalloys
JPS59229474A (en) Method for controlling grain of precipitation strengthening ni alloy
JPS63255346A (en) Manufacture of soft al-mg alloy material
KR950001112B1 (en) Ferrite-shape memory alloy
JPS62214163A (en) Manufacture of stress corrosion-resisting aluminum-magnesium alloy soft material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees