JPH0742535B2 - Fine grain Ni base precipitation strengthened alloy - Google Patents

Fine grain Ni base precipitation strengthened alloy

Info

Publication number
JPH0742535B2
JPH0742535B2 JP60080649A JP8064985A JPH0742535B2 JP H0742535 B2 JPH0742535 B2 JP H0742535B2 JP 60080649 A JP60080649 A JP 60080649A JP 8064985 A JP8064985 A JP 8064985A JP H0742535 B2 JPH0742535 B2 JP H0742535B2
Authority
JP
Japan
Prior art keywords
ni
strengthened alloy
precipitation strengthened
fine grain
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60080649A
Other languages
Japanese (ja)
Other versions
JPS61238936A (en
Inventor
努 野原
敏明 野々村
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP60080649A priority Critical patent/JPH0742535B2/en
Publication of JPS61238936A publication Critical patent/JPS61238936A/en
Publication of JPH0742535B2 publication Critical patent/JPH0742535B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Description

【発明の詳細な説明】 イ. DETAILED DESCRIPTION OF THE INVENTION i. 産業上の利用分野 本発明は、結晶粒の整粒化及び微細化された良好なミクロ組織と、併せて粗粒部分の少ない良好なマクロ組織を有するNi基析出強化型合金に関するものである。 INDUSTRIAL APPLICABILITY The present invention is directed to a Ni-based precipitation-strengthened alloys having a grain sizing and miniaturization have been good microstructure, the same time the coarse portion less favorable macrostructure.

ロ. B. 従来の技術 一般に、合金,鉄鋼材料において、その結晶粒度が材料の強度に及ぼす影響は大きく、粗粒になれば材料の強度,延性が著しく低下する、Ni基析出強化型合金についても例外でなく、強度,延性に関しては、できるだけ細粒とするのが望ましい。 The prior art generally, alloys, iron and steel materials, large effect on the strength of the grain size material, the strength of the material if the coarse particles, the ductility is significantly lowered, rather than the exception even for Ni base precipitation strengthened alloy , strength, with respect to ductility, it is desirable to possible fine. しかしながら、クリープ破断強度に関しては微細すぎてもよくない。 However, it not may be too fine with respect to creep rupture strength. したがって、要求されるすべでの特性を十分に満足する理想的は結晶粒度としては、JISオーステナイト結晶粒度No4.0〜8.0程度である。 Therefore, ideally sufficiently satisfy characteristics at the required Sube as the grain size, a JIS austenite grain size of about No4.0~8.0.

従来、Ni基析出強化型合金の結晶粒制御は、熱間加工後の個溶化処理によって行われている。 Conventionally, the crystal grain control of the Ni-base precipitation strengthened alloys are made by pieces solubilization treatment after hot working. すなわち、通常の熱間加工つまり熱間塑性加工を与えただけでは十分に再結晶を生ぜず結晶粒は粗大なままであるが、粒界近傍だけが再結晶した混粒組織であることが多い。 That is, only gave between conventional thermal processing that is hot plastic working not generated sufficiently recrystallized grain remains coarse, often only near the grain boundary is recrystallized mixed grain structure . このため、 For this reason,
固溶化処理において十分に再結晶させ、結晶粒を微細, Fully recrystallized in solution treatment, the fine crystal grains,
整粒化するのである。 It is to the particle diameter regulation. しかしながら、この固溶化処理温度が通常使用される温度範囲の低温側(再結晶温度以上,金属間化合物固溶温度以下)である場合には、再結晶はほとんど起らず、熱間加工後の組織の同様である。 However, the temperature range in which the solid solution treatment temperature normally used low-temperature side (the recrystallization temperature or higher, less intermetallic compound dissolution temperature) in the case of recrystallization hardly Okoshira, after hot working a similar organization.
また、固溶化温度を低温とすることは、強化相であるγ′生成元素としてのAl,Ti,Nb,Taの十分な固溶が行なわれずひいては時効処理を行なった場合に十分なγ′の析出が生じず、良好な特性を得ることができなくなる。 Further, to the solid solution temperature and low temperature, gamma is a strengthening phase of 'as forming elements Al, Ti, Nb, sufficient gamma when subjected to turn aging treatment, sufficient solid solution is made of Ta' precipitation is not generated, it is impossible to obtain good properties.
そこで、再結晶を生じかつγ′生成元素であるAl,Ti,N Therefore, a cutlet gamma 'forming element results in recrystallization Al, Ti, N
b,Taの十分に固溶する高温側の固溶化処理温度(再結晶温度以上,金属間化合物固溶温度以上)にて固溶化処理を行なうと再結晶を生じ整粒化されるものの、その結晶粒は非常に大きく、十分に機械的性質を満足するものとはなり難い場合が多い。 b, solution treatment temperature of the high temperature side to sufficiently solid solution of Ta (recrystallization temperature or more, an intermetallic compound or solid solution temperature) but is sized reduction caused recrystallization and performing solution treatment at its crystal grains is very large, often hard to become the fully achieved, thereby satisfying the mechanical properties.

ハ. Ha. 発明が解決しようとする問題点 前述の如く、Ni基析出強化型合金では固溶化処理温度の限界によってのみでは温度による結晶粒度のバラツキが大きく、機械的特性に秀れた微細,整粒の結晶粒を得ることは困難である。 Invention as it try to the above-described problems resolution, large variation in grain size with temperature only by limiting the solution treatment temperature is Ni base precipitation strengthened alloys, the mechanical properties Xiu the fine crystals of sizing to obtain a particle is difficult.

本発明は、この様な状況に対して、高い固溶化温度でも安定して結晶粒を微細,整粒に制御できるようにし、広い固溶化温度範囲にて安定して結晶粒の微細なNi基析出強化型合金を提供しようとするものである。 The present invention is, with respect to such circumstances, high stability even in a solid solution temperature to fine crystal grains, and to control the grading, stable grain fine Ni-base over a wide solid solution temperature range it is intended to provide a precipitation strengthened alloy.

ニ. Two. 問題点を解決するための手段 本発明は重量%で少なくともCr5〜30%,Al0.1〜7.0%, Means the present invention for solving the problem at least Cr5~30% by weight%, Al0.1~7.0%,
およびTi,Nb,Taを1種又は2種以上で1〜10%を含有するNi基析出強化型合金において、MC型炭化物を体積%で And Ti, Nb, in the Ni-based precipitation-strengthened alloy containing 1-10% by one or two or more Ta, the MC-type carbides in percent by volume
0.5〜2.0%析出させることにより前述の問題点を解決するものである。 It is intended to solve the problems described above by 0.5 to 2.0% deposited.

本発明合金には上記成分以外にMo,W,Fe,Co,B,Zr,Y,Si,M Mo in addition to the above-mentioned components in the present invention alloy, W, Fe, Co, B, Zr, Y, Si, M
n,Hf,Mg,希土類元素等を適宜添加でき、これらの添加は本発明には本質的に何ら影響をおよぼすものではない。 n, Hf, Mg, can be added as appropriate a rare earth element or the like, these additives are not on essentially any influence on the present invention.

また、前述したようにJISオーステナイト結晶粒度Noは4〜8程度にすると機械的特性(クリープ破断強度)が良好になる。 Further, JIS austenite grain size No As described above, upon the order of 4-8 mechanical properties (creep rupture strength) is improved.

ホ. E. 作用 固溶化温度を高温(再結晶温度以上,金属間化合物固溶温度以上)にすることによって整粒化される場合、その再結晶粒は非常に大きくなり易い。 Effect solid solution temperature hot (recrystallization temperature or higher, the intermetallic compound or solid solution temperature) When sized by that the, the recrystallized grains are liable to become very large. これは結晶粒の成長をピニング効果によって抑制していた金属間化合物が固溶され再結晶の進行が急激に阻害されなくなることによるものである。 This is because the progress of recrystallization are dissolved intermetallic compounds was suppressed by pinning effect grain growth is no longer rapidly inhibited. したがってこの様な高温(金属間化合物固溶温度以上)で結晶粒の成長を抑制してやることのできる金属間化合物に代わる他の抑制物質を析出させておけば十分高温まで結晶粒を制御できる様になるのである。 Thus as it can control the crystal grain to a sufficiently high temperature if by precipitating other inhibitors in place of the intermetallic compound capable of'll inhibit the growth of crystal grains at such a high temperature (above intermetallic compound dissolution temperature) it is made of.

この抑制物として適切なのはMC型炭化物である。 Suitable as the suppressor is MC-type carbides. MC型炭化物は、十分高温まで結晶粒を微細に保つためには体積%で0.5%以上が必要である。 MC-type carbides, in order to keep the grain fine to a sufficiently high temperature is required at least 0.5% by volume%. よってMC型炭化物の下限を体積%で0.5%とした。 Thus was 0.5% the lower limit of the MC-type carbides in percent by volume. 一方MC型炭化物を必要以上に析出させた場合、ファイバーフローに沿って炭化物が縞状に析出し、これと直角方向の機械的特性が著しく低下する様になる。 On the other hand, when precipitated unnecessarily MC type carbides, carbides are precipitated in stripes along the fiber flow, mechanical properties of this perpendicular direction is as remarkably lowered. またMC型炭化物を生成する元素であるT T also is an element to generate a MC-type carbide
i,Nb,Taは強化相γ′の生成元素であり、MC型炭化物量が多くなると強化に寄与する有効Ti,Nb,Taを減少させることになり好ましくない。 i, Nb, Ta is the forming element of the reinforcing phase gamma ', effective contributes to strengthening the MC type carbide amount becomes more Ti, Nb, unfavorably reducing the Ta. よってMC型炭化物の上限は体積%で2%までとする。 Thus the upper limit of the MC-type carbide and up to 2% by volume%.

本発明の適用合金は、Ni基の析出強化型合金であるが、 Applying the alloy of the present invention is a precipitation strengthened alloys of the Ni-base,
一般にNi基析出強化型合金は強化相であるγ′生成元素としてAlを0.1〜7.0%およびTi,Nb,Taを1種または2種以上で1〜10%含有している。 Generally Ni based precipitation-strengthened alloy contains 1-10% Al as gamma 'forming element is a strengthening phase from 0.1 to 7.0% and Ti, Nb, and Ta in one or more. このTi,Nb,TaはそれぞれがCと結びついて、高温でも安定なMC型炭化物を形成する。 The Ti, tied Nb, Ta are each C, the also form stable MC-type carbides at high temperature.

また、Crは耐酸化性の付与及び固溶強化などの効果があり、5%以上必要であるが、一方30%を越えるとオーステナイトマトリックスの不安定化を招くので好ましくない。 Further, Cr has effects such as imparting oxidation resistance and solid-solution strengthening, but must be at least 5%, whereas undesirable leading exceeds 30% destabilization of the austenite matrix. したがってNi基析出強化型合金において、Crは5% Thus, in the Ni-based precipitation strengthened alloy, Cr 5%
〜30%に限定される。 It is limited to 30%.

本発明では、上記元素以外に前述したような種々の添加元素を包含するものであるが、これら元素の添加は本発明には本質的に何ら影響をおよぼすものではない。 In the present invention, but is intended to cover various additive elements as described above in addition to the above elements, the addition of these elements does not exert essentially no influence on the present invention.

ヘ. F. 実施例 本発明を以下実施例に基づき詳細に説明する。 EXAMPLES The present invention will be described in detail with reference to the following examples.

〔実施例1〕 第1表に示す成分のNi基析出強化型合金を以下の処理を行った。 Example 1 The Ni-base precipitation strengthened alloy components shown in Table 1 were subjected to the following process.

(1) 1050℃に加熱した40mm角棒材を歪量44%で30mm (1) 30 mm to 40mm square bars heated to 1050 ° C. at a strain amount 44%
角棒材まで鍛造を行ない空冷する。 Air-cooled performs forging to the corner bars.

(2) (1)処理後の角棒材を990℃,1020℃,1050℃, (2) (1) the square rod 990 ° C. after treatment, 1020 ℃, 1050 ℃,
1080℃,1110℃のそれぞれの胃度で2hr保持後、空冷する固溶化処理を行なう。 1080 ° C., after 2hr held in each of the stomach of the 1110 ° C., performing solution treatment to air cooling.

(2)の固溶化処理温度と結晶粒度の関係を示すのが第1図である。 That shows the relationship between the solution treatment temperature and the grain size of (2) is a first view. なおMC型炭化物量(体積%)は試料No.1. Note MC type carbide amount (vol%) of sample No.1.
2.3それぞれ0.14%,0.42%,0.67%である。 2.3 0.14%, respectively 0.42% and 0.67%. 第1図より、本発明のMC型炭化物量(体積%)を含む試料No.1及びNo.2に比べ固溶処理温度に対する結晶粒度の依存性が小さく高温まで安定して結晶粒が微細であることがわかる。 From Figure 1, the MC type carbide amount stably grain to grain size dependence small hot for the solid solution treatment temperature compared with Sample No.1 and No.2 containing (% by volume) of the present invention is fine there it can be seen.

第2図は、本実施例合金の代表的固溶化処理温度である Figure 2 is a typical solution treatment temperature in this example the alloy
1080℃で処理したときの試料No.1〜3のミクロ組織(x1 1080 microstructure of samples No.1~3 when treated with ° C. (x1
00)を示す図である。 00) is a diagram showing a. この図からも、本発明による試料 From the figure, the samples according to the present invention
No.2の結晶粒が微細かつ整粒に制御されていることがわかる。 No.2 grain it can be seen that the control of the fine and granulated.

〔実施例2〕 〔実施例1〕の固溶化処理材の内、本合金の代表的固溶化処理温度である1080℃で固溶化処理した試料に、700 Example 2 of the solution treatment material Example 1, the solid solution treated samples at 1080 ° C. is a typical solution treatment temperature of the alloy, 700
℃×16時間空冷の時効処理を施した後、常温で引張試験した結果を表2に示す。 Was subjected to aging treatment ° C. × 16 hours air cooling, it shows the results of tensile test at room temperature in Table 2.

表2から明らかな様に、本発明で結晶粒が微細,整粒化している試料3は、試料1.2に比べて0.2%耐力,引張強さが、5kgf/mm 2 −15kgf/mm 2向上しているにかかわらず延性はほぼ同等のレベルである。 As apparent from Table 2, sample 3 crystal grains in the present invention is fine, and particle diameter regulation, the 0.2% yield strength as compared to sample 1.2, tensile strength, 5kgf / mm 2 -15kgf / mm 2 improvement and ductility regardless of which is almost the same level. これから本発明による結晶粒の微細,整粒化により良好な機械的特性が得られることがわかる。 It can be seen that the crystal grains fine, good mechanical properties by the particle diameter regulating obtained according to the present invention will now.

〔実施例3〕 第3表に示す成分のNi基析出強化型合金の100mm角ビレットを1150℃に加熱して熱間圧延を行ない、直径11mmの棒材を作製した。 Heating the 100mm angle billet Example 3 The 3 Ni base precipitation strengthened alloy components shown in table 1150 ° C. subjected to hot rolling to produce a rod having a diameter of 11 mm.

本棒材を1040℃及び1080℃でそれぞれ保持時間4時間の固溶化処理後及び熱間圧延後のマクロ組織を示すのが第3図である。 The present bars indicate the 1040 ° C. and 1080 ° C. In the macrostructure after solution treatment and after hot rolling of the respective retention time of 4 hours is the third diagram. 本発明である試料No.6及び7は1040℃,108 Samples No.6 and 7 is the invention 1040 ° C., 108
0℃の固溶化処理後でも、粗粒発生がなく良好なマクロ組織を有している。 0 even after solution treatment in ° C., coarse occurrence has a rather good macrostructure. これに比して、試料No.4,5は固溶化処理により結晶粒が粗大化していることがわかる。 By comparison, the sample No.4,5 it is seen that the crystal grains are coarsened by solution treatment.

〔実施例4〕 第4表に示す成分のNi基析出強化型合金について以下の処理を行なった。 For Example 4 the 4 Ni base precipitation strengthened alloys components shown in Table were subjected to the following process.

(1) 1050℃に加熱した40mm角棒材を歪量44%で30mm (1) 30 mm to 40mm square bars heated to 1050 ° C. at a strain amount 44%
角棒材まで鍛造を行い空冷する。 Air-cooled performs a forging to the corner bars.

(2) (1)処理後の角棒材を920℃,950℃,980℃,10 (2) (1) square bars of 920 ° C. after treatment, 950 ℃, 980 ℃, 10
10℃,1040℃のそれぞれの温度で1hr保持後空冷する固溶化処理を行なう。 10 ° C., performing solution treatment to air cooling after 1hr held at each temperature of 1040 ° C..

(2)の固溶化処理温度と結晶粒度の関係を示すのが第4図である。 That shows the relationship between the solution treatment temperature and the grain size of (2) is a fourth view. なお、MC型炭化物量(体積%)は、試料N Incidentally, MC type carbide amount (vol%), the sample N
o.8,9,10それぞれ0.11%,0.43%,0.75%である。 o.8,9,10 0.11%, respectively 0.43% and 0.75%.

第4図より、本実施例においても本発明のMC型炭化物量(体積%)を含む試料No.10は高温まで安定して微細であることがわかる。 From Figure 4, sample No.10 comprising MC type carbide amount (vol%) also present invention in this embodiment it can be seen that is stable finely to a high temperature.

ト. Door. 発明の効果 以上の如く本発明によれば、Ni基析出強化型合金の結晶粒制御が容易に行なえ、結晶粒度を微細,整粒とすることができ、ミクロ組織,マクロ組織,機械的特性の良好なNi基析出強化型合金を簡単に製造できる。 According as more effects of the invention to present invention, the crystal grain control of the Ni-base precipitation strengthened alloys easily performed, it is possible to a grain size fine, and sizing, microstructure, macrostructure, mechanical properties good Ni base precipitation strengthened alloy can be easily manufactured.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

第1図は本発明の1実施例のNi基析出強化型合金のMC型炭化物量(体積%)による固溶化温度と結晶粒度の関係を示す図、第2図は本発明の1実施例および従来のNi基析出強化型合金の1080℃固溶体化処理のミクロ金属組織を示す顕微鏡写真、第3,4図は従来のNi基析出強化型合金および本発明の他の実施例のNi基析出強化型合金の10 It shows the grain size of the relationship between solid solution temperature by MC type carbide amount of the Ni-base precipitation strengthened alloys 1 Example (% by volume) in Figure 1 the present invention, one embodiment of Fig. 2 the invention and conventional Ni-based precipitation strengthened alloy of 1080 ° C. the solid solution treatment photomicrograph showing the microstructure metal structure of, third and fourth figure strengthening of the Ni-base precipitation another embodiment of the conventional Ni-based precipitation-strengthened alloys and the present invention type alloy 10
40℃と1080℃固溶化処理後のマクロ金属組織を示す顕微鏡写真、第5図は本発明のさらにその他の実施例のNi基析出強化型合金のMC型炭化物量(体積%)による固溶処理温度と結晶粒度の関係を示す図である。 Micrograph showing the 40 ° C. and 1080 ° C. solution treatment after the macro metallographic, Fig. 5 solid solution treatment by further MC type carbides of Ni base precipitation strengthened alloys other embodiments of the present invention (vol%) temperature is a diagram showing the grain size of the relations.

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】重量%で少なくともCr5〜30%,Al0.1〜7.0 1. A least Cr5~30% by weight%, Al0.1~7.0
    %,およびTi,Nb,Taを1種又は2種以上で1〜10%を含有するNi基析出強化型合金において、MC型炭化物を体積%で0.5〜2.0%析出させたことを特徴とする微細結晶粒 %, And Ti, Nb, in the Ni-based precipitation-strengthened alloy containing 1-10% by one or more Ta, characterized in that precipitated from 0.5 to 2.0 percent of MC-type carbide by volume% fine grain
    Ni基析出強化型合金。 Ni-based precipitation strengthened alloy.
  2. 【請求項2】Ni基析出強化型合金が重量%でC0.1%以下,Cr18〜21%,Al1.0〜2.0%,Ti1.5〜2.5%残部Niおよび不可避的不純物よりなることを特徴とする特許請求の範囲第1項記載の微細結晶粒Ni基析出強化型合金。 Wherein in the Ni-based precipitation strengthened alloy is by weight% C0.1% or less, Cr18~21%, Al1.0~2.0%, characterized by consisting of Ti1.5~2.5% balance Ni and unavoidable impurities to claims first claim of fine grain Ni base precipitation strengthened alloy.
  3. 【請求項3】Ni基析出強化型合金が重量%でC0.1%以下,Cr14〜18%,Al0.4%以下,Ti1.5〜2.0%,Nb+Ta2.5〜 3. Ni-based precipitation strengthened alloy in weight% C0.1% or less, Cr14~18%, Al0.4% or less, Ti1.5~2.0%, Nb + Ta2.5~
    3.5%,残部Niおよび不可避的不純物よりなることを特徴とする特許請求の範囲第1項記載の微細結晶粒Ni基析出強化型合金。 3.5%, the balance Ni and Claims first claim of fine grain Ni base precipitation strengthened alloy characterized by comprising from unavoidable impurities.
  4. 【請求項4】JISオーステナイト結晶粒度Noが4.0〜8.0 4. A JIS austenite grain size No is 4.0 to 8.0
    であることを特徴とする特許請求の範囲第1項から第3 Third from the patent claims the first term of which is characterized in that it is
    項いずれか記載の微細結晶粒Ni基析出強化合金。 Claim any description of fine grain Ni based precipitation strengthened alloy.
JP60080649A 1985-04-16 1985-04-16 Fine grain Ni base precipitation strengthened alloy Expired - Fee Related JPH0742535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080649A JPH0742535B2 (en) 1985-04-16 1985-04-16 Fine grain Ni base precipitation strengthened alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080649A JPH0742535B2 (en) 1985-04-16 1985-04-16 Fine grain Ni base precipitation strengthened alloy

Publications (2)

Publication Number Publication Date
JPS61238936A JPS61238936A (en) 1986-10-24
JPH0742535B2 true JPH0742535B2 (en) 1995-05-10

Family

ID=13724209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080649A Expired - Fee Related JPH0742535B2 (en) 1985-04-16 1985-04-16 Fine grain Ni base precipitation strengthened alloy

Country Status (1)

Country Link
JP (1) JPH0742535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957567A (en) * 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
CN105050749B (en) 2013-03-21 2017-06-09 日立金属株式会社 The manufacture method of looping mill rolling material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604895B2 (en) * 1980-05-30 1985-02-07 Hitachi Ltd
JPS59229474A (en) * 1983-06-08 1984-12-22 Hitachi Metals Ltd Method for controlling grain of precipitation strengthening ni alloy

Also Published As

Publication number Publication date
JPS61238936A (en) 1986-10-24

Similar Documents

Publication Publication Date Title
Chandler Heat treater's guide: practices and procedures for nonferrous alloys
Koch Optimization of strength and ductility in nanocrystalline and ultrafine grained metals
Yamaguchi et al. High-temperature structural intermetallics
Stoloff Iron aluminides: present status and future prospects
EP2770081B1 (en) Nickel-base alloys and methods of heat treating nickel base alloys
DE69531532T2 (en) Iron-based alloys containing aluminum, useful for electrical resistance heating elements
JP2006070360A (en) Ni-Cr-Co ALLOY FOR ADVANCED GAS TURBINE ENGINE
Maziasz et al. Development of ultrafine lamellar structures in two-phase γ-TiAl alloys
CN100379889C (en) Nickel-base alloy
US6890370B2 (en) High strength powder metallurgy nickel base alloy
EP2145967B1 (en) Titanium aluminide alloys
Appel et al. Novel design concepts for gamma-base titanium aluminide alloys
US5006163A (en) Turbine blade superalloy II
US3164465A (en) Nickel-base alloys
EP0804627B1 (en) Oxidation resistant molybdenum alloy
Naka et al. Potential and prospects of some intermetallic compounds for structural applications
US9453274B2 (en) Cobalt-base alloy with high heat resistance and high strength and process for producing the same
CA2116987C (en) Creep resistant titanium aluminide alloy
US6398843B1 (en) Dispersion-strengthened aluminium alloy
CA2479507C (en) Age-hardenable, corrosion resistant ni-cr-mo alloys
US4209348A (en) Heat treated superalloy single crystal article and process
US4671931A (en) Nickel-chromium-iron-aluminum alloy
EP0803585B1 (en) Nickel alloy for turbine engine component
EP0361524B1 (en) Ni-base superalloy and method for producing the same
EP0302302B1 (en) Nickel-base alloy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees