JPS61238907A - Method for adding metallic oxide to refining furnace - Google Patents

Method for adding metallic oxide to refining furnace

Info

Publication number
JPS61238907A
JPS61238907A JP7753685A JP7753685A JPS61238907A JP S61238907 A JPS61238907 A JP S61238907A JP 7753685 A JP7753685 A JP 7753685A JP 7753685 A JP7753685 A JP 7753685A JP S61238907 A JPS61238907 A JP S61238907A
Authority
JP
Japan
Prior art keywords
refining
furnace
metallic oxide
duct
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7753685A
Other languages
Japanese (ja)
Inventor
Haruhiko Ishizuka
石塚 晴彦
Keizo Taoka
啓造 田岡
Yoshihide Kato
嘉英 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7753685A priority Critical patent/JPS61238907A/en
Publication of JPS61238907A publication Critical patent/JPS61238907A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To contrive the effective utilization of waste gas, the increase in the efficiency of refining reaction, the improvement of the consumption of heat quantity, etc., by passing a metallic oxide through a fluidized layer formed by a waste reducing gas formed in the stage of refining to reduce and preheat the same then charging the metallic oxide into a refining furnace. CONSTITUTION:The metallic oxide for refining to be added in the midway of refining in a converter 1 is ground to fine grains and is introduced into a duct 2 provided above the furnace mouth. On the other hand, the waste gas flow rate in the duct 2 is controlled by regulating the blow rate of the top and bottom blowing gas to the converter to form the fluidized layer of the above-mentioned metallic oxide in the duct 2 so that said layer stagnates therein. The metallic oxide is heated and reduced in such fluidized layer by the waste gas of the high temp. contg. CO at a high ratio. The blowing of the above-mentioned blowing gas is thereafter temporarily stopped and the reduced and preheated metal in the fluidized layer is dropped and charged into the furnace. The blowing is then restarted. The refining reaction is thus speeded up and the consumption of the heat quantity is improved without inducing the temp. drop of the molten steel in the furnace by the loading of the metallic oxide. The effective utilization of the waste gas is attained as well.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属精錬容器、とくに転炉内に添加する精錬
材としての鉱石等金属酸化物の添加方法について提案す
るものであり、添加すべき鉱石等を転炉より精錬中に生
成する還元性排ガスを利用した流動層を経由させてから
炉内に投入する技術であって、溶融還元技術に属する精
錬材の添加方法である。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention proposes a method for adding metal oxides such as ore as a refining material to a metal refining vessel, especially a converter. This is a technology in which ore, etc. to be processed is passed through a fluidized bed using reducing exhaust gas generated during refining from a converter, and then introduced into the furnace, and is a method of adding refining materials that belongs to the smelting reduction technology.

(従来の技術) 金属精錬容器、例えば転炉にて鋼を精錬する際合金鉄を
使用するが、Fe−Mn、 Fe−Cr、 Fe−Ni
等の合金鉄は高価なため、最近ではコスト低減の意味か
らMn、Ni、Cr等の各種鉱石(すなわち金属酸化物
のこと)を利用する技術が提案されている。
(Prior art) When refining steel in a metal refining vessel, for example, a converter, ferroalloys are used, including Fe-Mn, Fe-Cr, Fe-Ni.
Since ferroalloys such as ferroalloys such as ferroalloys are expensive, recently, techniques have been proposed that utilize various ores (i.e., metal oxides) of Mn, Ni, Cr, etc. in order to reduce costs.

かかる既知の技術は、特開昭54−158320号ある
いは特開昭55−91913号として提案されているよ
うに、精錬中金属酸化物とともに別途石炭、コークス等
の還元剤や熱源を一緒に添加するか、溶銑中のカーボン
を利用して溶融還元する技術として具体化された方法で
ある。
Such a known technique, as proposed in JP-A-54-158320 or JP-A-55-91913, involves adding a reducing agent such as coal or coke and a heat source together with the metal oxide during refining. It is a method that was realized as a technology for melting and reducing using carbon in hot metal.

(発明が解決しようとする問題点) 鉱石を上記既知技術に従って転炉内に添加する方法の場
合、一般に著しい温度降下を招き、そのため還元剤の他
に熱源としての炭材やSi等を余分に添加しなければな
らず経済的でない。
(Problems to be Solved by the Invention) In the case of the method of adding ore into the converter according to the above-mentioned known technology, a significant temperature drop generally occurs, and therefore, in addition to the reducing agent, carbonaceous material, Si, etc., are used as a heat source. must be added, which is not economical.

また、既知技術の場合転炉を例に取ると精錬反応が主で
あり、従って精錬排ガスの主成分はCOであるが、これ
は未燃焼のまま回収して加熱炉等の熱源として利用して
いるものの、回収時煙道途中で散水し冷却してから回収
しているために熱エネルギーをロスしていた。
In addition, in the case of known technology, taking a converter as an example, the main component is the refining reaction, and therefore the main component of the refining exhaust gas is CO, which is recovered unburned and used as a heat source for heating furnaces, etc. However, during collection, water was sprayed in the middle of the flue to cool it down before collection, resulting in a loss of heat energy.

(問題点を解決するための手段) 本発明は、上述した従来技術が抱える問題点を克服でき
る技術の開発を目指し、精錬炉内で生成する排ガスの還
元性および顕熱に着目し、添加すべき各種鉱石を精錬炉
口上の排ガス導出用ダクトに導いて流動化させ、少なく
ともも一部を高温の排ガスにより予備還元するとともに
熱交換を行わせて排ガス顕熱の回収をおこない、続いて
おこる転炉内での溶融還元の際の反応効率、熱効率の向
上を図るようにした方法であり、本発明の要旨とする構
成は、 精錬時に生成する還元性排ガスを炉口上に設けたダクト
を通じて回収できるようにした精錬炉内に、精錬に供す
る金属酸化物を精錬の途中で炉内に添加するに当たり、
予め細粒状化させた投入すべき前記金属酸化物を前記ダ
クト内に導入するとともに細粒状金属酸化物がダクト内
で流動層を形成して滞留するように上記排ガスの流速を
制御し、該金属酸化物の加熱還元を進行させた後、生成
した予熱還元生成物をガス流速の制御により精錬容器内
に落下投入すること、の点にある。
(Means for Solving the Problems) The present invention aims to develop a technology that can overcome the problems faced by the above-mentioned conventional technology, and focuses on the reducibility and sensible heat of exhaust gas generated in a smelting furnace. The various ores to be processed are introduced into the exhaust gas outlet duct above the smelting furnace mouth and fluidized, at least a portion of which is preliminarily reduced with high-temperature exhaust gas, and the sensible heat of the exhaust gas is recovered by heat exchange. This is a method designed to improve reaction efficiency and thermal efficiency during melting and reduction in a furnace, and the gist of the present invention is that reducing exhaust gas generated during refining can be recovered through a duct installed above the furnace mouth. When adding the metal oxide to be used for refining into the refining furnace during the refining process,
The metal oxide to be charged, which has been made fine in advance, is introduced into the duct, and the flow rate of the exhaust gas is controlled so that the fine-grained metal oxide forms a fluidized bed and stays in the duct. After the thermal reduction of the oxide has progressed, the generated preheated reduction product is dropped into the refining vessel by controlling the gas flow rate.

(作 用) 本発明性着想の背景につき、以下転炉の鋼精錬において
、精錬中に炉口より添加すべき金属酸化物を予め転炉排
ガスにて予熱・還元してから投入する技術を例にとり、
以下に説明する。
(Function) Regarding the background of the idea of the present invention, the following is an example of a technology in which metal oxides to be added from the furnace mouth during refining are preheated and reduced with converter exhaust gas before being added in steel refining in a converter. Nitori,
This will be explained below.

転炉に添加するMnやNi、Cr等の酸化物鉱石の還元
反応は吸熱反応であり、多大の熱量が必要である。そこ
で、転炉精錬中に生成するCOを多量に含む高温排ガス
の顕熱と還元特性を利用して、第1図に示すように、細
粒状にした上記酸化物鉱石を一旦転炉1の炉口上にもう
けたダクト2内に導入し、ガス流速の制御により流動層
を形成させ、一定時間経過した後に十分に予熱と還元が
行われた頃合いを見てガス流速を小さくして、予熱・還
元生成物を転炉内溶鋼中にむけて落下投入し、最終的な
溶融還元を果たす。
The reduction reaction of oxide ores such as Mn, Ni, and Cr added to the converter is an endothermic reaction and requires a large amount of heat. Therefore, by utilizing the sensible heat and reduction characteristics of the high-temperature exhaust gas containing a large amount of CO generated during converter refining, as shown in Figure 1, the above-mentioned oxide ore, which has been made into fine particles, is temporarily heated in the converter 1. The gas is introduced into the duct 2 provided on the opening, and a fluidized bed is formed by controlling the gas flow rate. After a certain period of time, when sufficient preheating and reduction have been achieved, the gas flow rate is reduced to preheat and reduce the gas flow rate. The reduction product is dropped into the molten steel in the converter to accomplish the final melt reduction.

炉口上のダクト2内で、酸化物鉱石を流動化させるため
には、ダクト下流側に設ける排ガス制御弁(図示せず)
或いは排風機(図示せず)を使い、次のような条件を満
足させればよい。
In order to fluidize the oxide ore in the duct 2 above the furnace mouth, an exhaust gas control valve (not shown) is installed on the downstream side of the duct.
Alternatively, a blower (not shown) may be used to satisfy the following conditions.

すなわち、金属酸化物の粒径、比重、排ガス流量、およ
び精錬容器(転炉)上部のダクト径(流動層)を次式に
示す範囲に制御すれば流動化が可能である。
That is, fluidization is possible by controlling the particle size, specific gravity, exhaust gas flow rate, and duct diameter (fluidized bed) of the upper part of the refining vessel (converter) within the range shown by the following formula.

U、、< U <  U、       (11U、、
f:流動化開始速度 U7.流動化終端速度(=8.72mf)d:粒径(m
) ρ、:粒子の密度(kg/ rI?) ρ、:排ガスの密度(kg/ rr?)g:重力加速度
 (m/sec”) 転炉の場合であれば、一般に金属酸化物の粒径、吹錬ガ
ス量及び排風機による排ガス量を制御することで流動層
の形成、保持、解除が可能しある。
U,, < U < U, (11U,,
f: Fluidization start speed U7. Fluidization terminal velocity (=8.72mf) d: particle size (m
) ρ,: Particle density (kg/rI?) ρ,: Exhaust gas density (kg/rr?) g: Gravitational acceleration (m/sec”) In the case of a converter, the particle size of the metal oxide is generally By controlling the amount of blowing gas and the amount of exhaust gas from the exhaust fan, it is possible to form, maintain, and release the fluidized bed.

(実施例) 次に、本発明につき、85トン上・底吹き転炉を用い、
その炉内に精錬中NiOを添加すべくダクトにて流動層
予備還元を行った例で説明する。実施の条件は以下に示
す通りである。
(Example) Next, according to the present invention, using an 85 ton top/bottom blowing converter,
An example will be described in which fluidized bed preliminary reduction is performed in a duct to add NiO into the furnace during refining. The conditions for implementation are as shown below.

O転炉内溶湯: SO5304(目標Ni 8.5χ)
QNiO使用量: 20kg/l  (Ni 1.5χ
相当)比重 5.O Ni = 75χ  粒径=平均粒径0.5 *n(A
)0 = 25 χ ○ダクト径:2.7mφ、排ガス温度: 1400’C
1○排ガス粒量: 2100ONm3/H、ダクト部(
6,1m/s)を確認した後、Ni0粒を導入し、ダク
ト内で流動化させた。
Molten metal in O converter: SO5304 (target Ni 8.5χ)
QNiO usage: 20kg/l (Ni 1.5χ
equivalent) specific gravity 5. O Ni = 75χ Particle size = Average particle size 0.5 *n(A
)0 = 25 χ ○Duct diameter: 2.7mφ, exhaust gas temperature: 1400'C
1○ Exhaust gas particle amount: 2100ONm3/H, duct part (
6.1 m/s), Ni0 grains were introduced and fluidized in the duct.

流動化時間は10分でこのときのランス羽口からのガス
吹込み量は、上吹き9ONm”O,/win %底吹き
8ONm”Oz/min + 2ONm’N、/min
である。流動化の終了は吹錬中断で果たした。その際の
排ガス流速は300ONm’/h  (0,9m/s 
) (底吹きNt 5ONm”/winのみ)であった
。炉内に落下させた後再びotを吹込み精錬した。
The fluidization time was 10 minutes, and the amount of gas blown from the lance tuyere at this time was: top blowing: 9ONm"O,/win% bottom blowing: 8ONm"Oz/min + 2ONm'N,/min
It is. Fluidization was completed by interrupting blowing. The exhaust gas flow rate at that time was 300ONm'/h (0.9m/s
) (Bottom blown Nt 5ONm"/win only). After dropping into the furnace, ot was blown again for refining.

上記実施条件における、U IIf+Ufは下記の通り
であった。
Under the above implementation conditions, U IIf+Uf was as follows.

U−r(流動化開始速度) = 4.8  m/sUt
  (流動化終端速度) =41.5  cm/5cl
−0,5tn 比較として粒径20m5 (B)  のNiOを精錬中
炉口より投入した例を示す。
U-r (fluidization start speed) = 4.8 m/sUt
(Fluidization terminal velocity) =41.5 cm/5cl
-0.5 tn For comparison, an example is shown in which NiO with a particle size of 20 m5 (B) was introduced from the furnace mouth during refining.

第3図は、この実施例における排ガス温度に及ぼす粒径
の関係を示す。排ガス温度値はNiO投人から10分間
の第1図中の温度測定装置3部での平均値である。平均
粒径d=0.5mmである(A)については、排ガス温
度は低下しており、上記条件からも明らかなように、熱
交換が行われていることが確実である。これに対し粒径
がd=20mである(B)については、流動化されてい
ないため、排ガス温度も通常のNiO添加なしの場合と
ほとんどかわっていない。
FIG. 3 shows the relationship of particle size to exhaust gas temperature in this example. The exhaust gas temperature value is the average value measured by the three temperature measuring devices shown in FIG. 1 for 10 minutes from the NiO injection. Regarding (A) where the average particle diameter d=0.5 mm, the exhaust gas temperature has decreased, and as is clear from the above conditions, it is certain that heat exchange is occurring. On the other hand, in case (B) with a particle size of d=20 m, since it is not fluidized, the exhaust gas temperature is almost the same as in the case where NiO is not added.

また、第4図にコークス原単位と粒径の関係を示した。Furthermore, Fig. 4 shows the relationship between coke consumption rate and particle size.

この図からも明らかなように、流動化していると思われ
る平均粒径d =0.5 wm (A)の方がコークス
原単位は低下している。
As is clear from this figure, the coke consumption rate is lower for the average particle diameter d = 0.5 wm (A), which is considered to be fluidized.

したがって、炉口上ダクト内での金属酸化物の流動化を
利用すれば、同時に還元用のコークスおよび昇熱用のコ
ークス1.5 kg/lの原単位を低減させることがで
きる。なお、Nt歩留りについては、粒径の差によって
顕著な差はみられず、またいずれも通常レベルであった
Therefore, by utilizing the fluidization of the metal oxide in the duct above the furnace mouth, it is possible to simultaneously reduce the basic unit of coke for reduction and coke for heating by 1.5 kg/l. Regarding the Nt yield, no significant difference was observed due to the difference in particle size, and both were at normal levels.

上述した実施例の効果については、装置の改造、すなわ
ち流動層となるダクトを大きくすることにより、大量使
用を果たば目指す効果はさらに大となる。
The effects of the above-mentioned embodiments will be even greater if they are used in large quantities by modifying the device, that is, by enlarging the duct that serves as the fluidized bed.

(発明の効果) 以上説明したように本発明によれば、精錬炉の操業に当
たって、精錬中に生成する高温排ガスにより添加物の予
熱・還元を行わせるので、排ガスの有効利用が達せられ
るとともに、精錬反応の迅速化、歩留りの向上、熱量原
単位の向上などの優れた効果が期待できる。
(Effects of the Invention) As explained above, according to the present invention, during the operation of the refining furnace, additives are preheated and reduced using the high-temperature exhaust gas generated during refining, so that the exhaust gas can be used effectively, and Excellent effects such as speeding up the refining reaction, improving yield, and improving unit heat consumption can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、転炉で本発明法を実施しているもようを示す
路線図、 第2図は、ダクト内流動を説明するための路線図、 第3図は、粒径と排ガス温度との関係を示すグラフ、 第4図は、粒径とコークス原単位との関係を示すグラフ
である。 ■・・・転炉       2・・・ダクト3・・・温
度測定装置
Figure 1 is a route diagram showing how the method of the present invention is implemented in a converter, Figure 2 is a route diagram to explain the flow in the duct, and Figure 3 is a diagram showing the relationship between particle size and exhaust gas temperature. Figure 4 is a graph showing the relationship between particle size and coke consumption rate. ■...Converter 2...Duct 3...Temperature measuring device

Claims (1)

【特許請求の範囲】[Claims] 1、精錬時に生成する還元性排ガスを炉口上に設けたダ
クトを通じて回収できるようにした精錬炉内に、精錬に
供する金属酸化物を精錬の途中で炉内に添加するに当り
、予め細粒状化させた投入すべき前記金属酸化物を前記
ダクト内に導入するとともに細粒状金属酸化物がダクト
内で流動層を形成して滞留するように上記排ガスの流速
を制御し、該金属酸化物の加熱還元を進行させた後、生
成した予熱還元生成物をガス流速の制御により精錬容器
内に落下投入することを特徴とする精錬炉への金属酸化
物添加方法。
1. The reducing exhaust gas generated during refining is collected in the refining furnace through a duct installed above the furnace mouth. Before adding the metal oxide to be used for refining into the furnace during the refining process, the metal oxide is pulverized in advance. The metal oxide to be charged is introduced into the duct, and the flow rate of the exhaust gas is controlled so that the fine particulate metal oxide forms a fluidized bed and stays in the duct, and the metal oxide is heated. A method for adding metal oxide to a smelting furnace, which comprises, after progressing the reduction, dropping the generated preheated reduction product into a smelting container by controlling the gas flow rate.
JP7753685A 1985-04-13 1985-04-13 Method for adding metallic oxide to refining furnace Pending JPS61238907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7753685A JPS61238907A (en) 1985-04-13 1985-04-13 Method for adding metallic oxide to refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7753685A JPS61238907A (en) 1985-04-13 1985-04-13 Method for adding metallic oxide to refining furnace

Publications (1)

Publication Number Publication Date
JPS61238907A true JPS61238907A (en) 1986-10-24

Family

ID=13636708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7753685A Pending JPS61238907A (en) 1985-04-13 1985-04-13 Method for adding metallic oxide to refining furnace

Country Status (1)

Country Link
JP (1) JPS61238907A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109406A (en) * 1976-03-11 1977-09-13 Nippon Kokan Kk <Nkk> Pre-treatment of raw materials for converter
JPS5626684A (en) * 1979-08-07 1981-03-14 Nippon Denso Co Ltd Production for electric welded tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109406A (en) * 1976-03-11 1977-09-13 Nippon Kokan Kk <Nkk> Pre-treatment of raw materials for converter
JPS5626684A (en) * 1979-08-07 1981-03-14 Nippon Denso Co Ltd Production for electric welded tube

Similar Documents

Publication Publication Date Title
AU2003238774B2 (en) Finisher-hearth-melter furnace and method of using for iron-making / steel-making
US4565574A (en) Process for production of high-chromium alloy by smelting reduction
US5431710A (en) Method for continuously producing iron, steel or semi-steel and energy
JP3057576B2 (en) Method and apparatus for heat treatment of particulate material
JP3136155B2 (en) Preheating and pre-reduction of metal oxide ores
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
CN104831070B (en) Smelting reduction metallurgical method
JP3511784B2 (en) Raw material charging method for vertical iron scrap melting furnace
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JPS61238907A (en) Method for adding metallic oxide to refining furnace
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JP4047422B2 (en) How to operate a vertical furnace
JP3522553B2 (en) Blast furnace raw material charging method
JP2895520B2 (en) Method and apparatus for supplying carbon material to smelting reduction furnace
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JPS61199009A (en) Iron making method by melt reduction
JPH01162710A (en) Method and apparatus for smelting reduction
JPH0372127B2 (en)
JPS5941402A (en) Operation of blast furnace
JPH01149911A (en) Smelting reduction process
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
AU604589B2 (en) Method for smelting reduction of iron ore and apparatus therefor
JP2502976B2 (en) Iron ore preliminary reduction device
JP2837282B2 (en) Production method of chromium-containing hot metal
JPH0310030A (en) Treating furnace for by-product in process for producing stainless steel