JPS61238592A - Coupling structure of stern shaft mechanism - Google Patents

Coupling structure of stern shaft mechanism

Info

Publication number
JPS61238592A
JPS61238592A JP60081077A JP8107785A JPS61238592A JP S61238592 A JPS61238592 A JP S61238592A JP 60081077 A JP60081077 A JP 60081077A JP 8107785 A JP8107785 A JP 8107785A JP S61238592 A JPS61238592 A JP S61238592A
Authority
JP
Japan
Prior art keywords
joint
insulation
coupling
shaft mechanism
stern shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60081077A
Other languages
Japanese (ja)
Inventor
Fumiaki Otsubo
文明 大坪
Makoto Ootsuru
誠 大津留
Shiro Watanabe
渡辺 司郎
Setsuo Matsuda
松田 節雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHIYUUTANKOU KK
Yoshikawa Kogyo Co Ltd
Original Assignee
NIPPON CHIYUUTANKOU KK
Yoshikawa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHIYUUTANKOU KK, Yoshikawa Kogyo Co Ltd filed Critical NIPPON CHIYUUTANKOU KK
Priority to JP60081077A priority Critical patent/JPS61238592A/en
Publication of JPS61238592A publication Critical patent/JPS61238592A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/02Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like
    • F16D1/033Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like by clamping together two faces perpendicular to the axis of rotation, e.g. with bolted flanges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To improve insulation and get good creep-resistance by using sprayed ceramic coating film as an insulating material for the coupling of the propeller shaft mechanism. CONSTITUTION:A propeller shaft 3 and an intermediate shaft 4 are connected through a coupling member 6. Strayed ceramic coating film 10 is formed for insulation in this portion. The portion to be insulated by spraying include meeting surfaces A of a pair of flanges 6-1, 6-2 of the coupling member 6, the shank surface B of a coupling bolt 7 and the head lower surface C of the coupling bolt 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、船舶において船尾軸系と船体との電位差に起
因する電気放電によって、主機クランク軸に生ずる損傷
(スパークエロージョン)を防止せんとする船尾軸系に
おける絶縁継手に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention aims to prevent damage (spark erosion) to the main engine crankshaft caused by electrical discharge caused by a potential difference between the stern shaft system and the hull of a ship. This relates to an insulated joint in the stern shaft system.

〔従来の技術〕[Conventional technology]

船舶の船体は通常鉄系であり耐海水性が低く、一方、推
進用プロペラは銅合金系で耐海水性は高い。従って、一
般に船体は塗装等の防食対策が施される。
The hull of a ship is usually made of iron and has low seawater resistance, while the propulsion propeller is made of copper alloy and has high seawater resistance. Therefore, anti-corrosion measures such as painting are generally applied to ship bodies.

ところで、鉄と銅合金の自然電位はそれぞれ海水塩化銀
電極水準で−550〜−650mVと−250〜−35
0mVであるが、鉄の腐食しにくい自然電位は上記電位
より約150mV以下が好ましいとされているので、通
常−750〜−860mVとなるように防食電流が流さ
れ、腐食防止が行われている。
By the way, the natural potentials of iron and copper alloy are -550 to -650 mV and -250 to -35 mV, respectively, at the seawater silver chloride electrode level.
0 mV, but it is said that the natural potential of iron that is less likely to corrode is preferably about 150 mV or less than the above potential, so an anti-corrosion current is usually applied to -750 to -860 mV to prevent corrosion. .

ところが、プロペラの停止中はプロペラと船体間は同電
位になっているが、プロペラの回転中は軸受にオイルフ
ィルム(油膜絶縁)が生じるために、両金属間におよそ
400〜600mVの電位差が生じることになる。
However, when the propeller is stopped, the potential between the propeller and the hull is the same, but when the propeller is rotating, an oil film (oil film insulation) is formed on the bearing, resulting in a potential difference of approximately 400 to 600 mV between the two metals. It turns out.

その結果、主機、クランク軸と主軸受に電位放電による
損傷(ピッチング)が生じるという大きな問題点を有し
ている(これをスパークエロージョンという)。このス
パークエロージョンを防止する対策として、プロペラ軸
と主機との間に位置する中間軸にアース装置を取付けて
、電位差を一定値以下にするという方法がある。
As a result, there is a major problem in that damage (pitting) occurs to the main engine, crankshaft, and main bearing due to potential discharge (this is called spark erosion). As a measure to prevent this spark erosion, there is a method of attaching a grounding device to the intermediate shaft located between the propeller shaft and the main engine to keep the potential difference below a certain value.

しかしこの方法は、回転体である推進軸系接触抵抗が小
さく、かつ長時間安定性の高いアース装置を取付けるこ
とは困離であって、現状では頻度の高いメンテナンスが
要求され、なおかつ信輔性に乏しいという問題点を有し
ている。
However, with this method, it is difficult to install a grounding device that has low contact resistance and is highly stable over a long period of time for the propulsion shaft, which is a rotating body. It has the problem of being scarce.

また、アースによって強制的に電流を流すことにより、
Fdj)体側犠牲陽極の消耗が非常に激しくなるという
弊害も生しる。
In addition, by forcing current to flow through earth,
Fdj) Another disadvantage is that the sacrificial anode on the body side becomes extremely worn out.

そこで、推進軸系の軸継手に電気絶縁を施すという方法
が提示されているが、これはメンテナンスフリーで絶8
&機能の信顛性に優れた方式と考えられる。
Therefore, a method has been proposed in which electrical insulation is applied to the shaft joints of the propulsion shaft system, but this is maintenance-free and completely 8-year-old.
& It is considered to be a method with excellent functional reliability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

推進軸系の継手の絶縁材としては、現在、樹脂系(FR
P)の絶縁板やライニングが施されているが、耐クリー
プ性に劣り、使用中にガタが生しる等、長時間の使用に
耐えないため実用技術としては未だ十分とはいえなかっ
た。
Currently, resin-based (FR) is used as insulation material for propulsion shaft joints.
Although insulating plates and linings (P) have been applied, they have poor creep resistance, cause looseness during use, and cannot withstand long-term use, so they are not yet sufficient as a practical technology.

〔問題点を解決するための手段〕 本発明は、上記した絶縁材として、セラミック系溶射皮
膜を採用せんとするものである。
[Means for Solving the Problems] The present invention employs a ceramic sprayed coating as the above-mentioned insulating material.

以下、図面に従い本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

図にあっては、1は鉄系(Fe)の船体、2は銅合金系
(Cu)のプロペラを示す。3は推進用プロペラ軸、4
は中間軸で、中間軸4にはクランク軸等(図示せず)の
主機5が接続されている。
In the figure, 1 indicates an iron-based (Fe) hull, and 2 indicates a copper alloy-based (Cu) propeller. 3 is the propulsion propeller shaft, 4
is an intermediate shaft, and a main engine 5 such as a crankshaft (not shown) is connected to the intermediate shaft 4.

上記プロペラ軸3と中間軸4は、継手部材6を介して接
続されており、この部分に絶縁のために溶射皮膜10が
施される。この継手部t、!’ 6は一対のフランジ6
−L 6−2端面を合わせ、両フランジ6−L 6−2
を複数の継手ポルト7によって連結して形成する。溶射
による絶縁を施す個所は、第2図に示すように、一対の
フランジ6−1.6−2のそれぞれの合せ面Aと、各継
手ポルト7の胴部周面Bと更に該継手ポルト7の頭部下
面Cとである。
The propeller shaft 3 and intermediate shaft 4 are connected via a joint member 6, and a thermal spray coating 10 is applied to this portion for insulation. This joint part t! ' 6 is a pair of flanges 6
-L 6-2 Align the end faces, both flanges 6-L 6-2
are connected by a plurality of joint ports 7. As shown in FIG. 2, the locations where thermal spray insulation is applied are the mating surfaces A of the pair of flanges 6-1 and 6-2, the body peripheral surface B of each joint port 7, and the joint port 7. and the lower surface C of the head.

その際フランジ61.6−2の合せ面Aは必ずしも両面
に溶射する必要はなく、いずれか一方でもよい。
In this case, the mating surface A of the flange 61.6-2 does not necessarily need to be thermally sprayed on both sides, and either one side may be used.

次に、溶射皮膜10としては、セラミック系、特に絶縁
性の面からアルミナ系(例えばAl1 oa )が好ま
しい。溶射皮膜10の厚さは、特に限定されないが、絶
縁抵抗の面から少なくとも100μmは必要である。
Next, as the thermal spray coating 10, ceramic-based coatings, particularly alumina-based coatings (for example, Al1 oa) are preferable from the viewpoint of insulation properties. Although the thickness of the thermal spray coating 10 is not particularly limited, it is required to be at least 100 μm from the viewpoint of insulation resistance.

しかし、余り厚くすると剥離という問題があるため、5
00 !tmを超えないようにした方がよい。
However, if it is too thick, there is a problem of peeling, so 5
00! It is better not to exceed tm.

また、溶射施工は特別の限定された溶射条件を取る必要
はないが、溶射皮膜10の密着性を良くするために、 +1.l  スケールグリソト等により表面をプラスト
する (2)  母材を150℃程度予熱する+31  Ni
−Cr、  Ni−へ1等のメタルを下地層として溶射
する 等を適宜行って、セラミックを上記した如き所要の厚さ
に溶射する。
Further, although thermal spraying does not require special limited thermal spraying conditions, in order to improve the adhesion of the thermal spray coating 10, +1. l Plast the surface with scale glisotho, etc. (2) Preheat the base material to about 150℃+31 Ni
-Cr, Ni- is thermally sprayed with a metal of No. 1 as a base layer, etc., to form a ceramic to the required thickness as described above.

溶射後は必要に応じ適宜厚さに表面研磨を行なう。After thermal spraying, the surface is polished to an appropriate thickness if necessary.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、必要とされる絶縁性が極めて容
易に得られることは勿論、従来のものに比して耐クリー
プ性が極めて優れ、長時間の使用に耐えるため、実用技
術としての価値は非常に高い。
As described above, according to the present invention, not only can the required insulation properties be obtained extremely easily, but also the creep resistance is extremely superior to that of conventional products, and it can withstand long-term use, making it suitable as a practical technology. The value is very high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は船尾軸系の概略図、第2図は船尾軸系における
継手部の絶縁個所説明図である。
FIG. 1 is a schematic diagram of the stern shaft system, and FIG. 2 is an explanatory diagram of insulated parts of the joint in the stern shaft system.

Claims (1)

【特許請求の範囲】[Claims] 1、船舶推進用プロペラ軸と、主機との継手部にあって
、該継手部を構成する一対のフランジの合せ面の一方又
は両面と、継手ボルトの胴部周面と、該継手ボルトの頭
部下面とにセラミック溶射皮膜を形成したことを特徴と
する船尾軸系の継手部構造。
1. At the joint between the propeller shaft for marine propulsion and the main engine, one or both of the mating surfaces of a pair of flanges forming the joint, the circumferential surface of the body of the joint bolt, and the head of the joint bolt. A stern shaft joint structure characterized by a ceramic sprayed coating formed on the lower surface.
JP60081077A 1985-04-15 1985-04-15 Coupling structure of stern shaft mechanism Pending JPS61238592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60081077A JPS61238592A (en) 1985-04-15 1985-04-15 Coupling structure of stern shaft mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60081077A JPS61238592A (en) 1985-04-15 1985-04-15 Coupling structure of stern shaft mechanism

Publications (1)

Publication Number Publication Date
JPS61238592A true JPS61238592A (en) 1986-10-23

Family

ID=13736326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60081077A Pending JPS61238592A (en) 1985-04-15 1985-04-15 Coupling structure of stern shaft mechanism

Country Status (1)

Country Link
JP (1) JPS61238592A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7530757B2 (en) * 2001-08-27 2009-05-12 Mitsubishi Heavy Industries, Ltd. Rotor coupling having insulated structure
JP2011093382A (en) * 2009-10-28 2011-05-12 Tsuneishi Holdings Corp Device and method of preventing propeller stain for ship
WO2011115363A2 (en) * 2010-03-15 2011-09-22 주식회사 나라코퍼레이션 Pressure mounting slip coupling
WO2023006904A1 (en) * 2021-07-30 2023-02-02 Atlas Copco Airpower Nv Shaft assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127387A (en) * 1973-03-21 1974-12-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127387A (en) * 1973-03-21 1974-12-05

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7530757B2 (en) * 2001-08-27 2009-05-12 Mitsubishi Heavy Industries, Ltd. Rotor coupling having insulated structure
JP2011093382A (en) * 2009-10-28 2011-05-12 Tsuneishi Holdings Corp Device and method of preventing propeller stain for ship
WO2011115363A2 (en) * 2010-03-15 2011-09-22 주식회사 나라코퍼레이션 Pressure mounting slip coupling
WO2011115363A3 (en) * 2010-03-15 2011-11-24 주식회사 나라코퍼레이션 Pressure mounting slip coupling
US8905213B2 (en) 2010-03-15 2014-12-09 Nara Corporation Pressure mounting slip coupling
WO2023006904A1 (en) * 2021-07-30 2023-02-02 Atlas Copco Airpower Nv Shaft assembly

Similar Documents

Publication Publication Date Title
CN2929299Y (en) Connector for preventing corrosion at magnesium alloy cast piece connection point
CA1288721C (en) Electrolytic and flame sprayed aluminum coatings on steel
JPS61238592A (en) Coupling structure of stern shaft mechanism
Hoar Review Lecture-Corrosion of metals: its cost and control
US6045929A (en) Composite sliding contact bearing
JP2003112690A (en) Seal structure of transom flange
EP0332337A2 (en) Electrode and construction thereof
JPH02259089A (en) Device for preventing corrosion of marine propelling device
JP4093782B2 (en) Anticorrosion film on iron-based substrate and anticorrosion method
GB1462931A (en) Propeller shaft in a cathodic protection system for protection of a ships propeller
AU613122B2 (en) An apparatus for the cathodic corrosion protection of a component at the screw shaft pipe of a ship
JPS60165387A (en) Thin-film corrosion-resistant laminate plated steel pipe
GB1261249A (en) A method of improving an electrically conductive connection
CN217382075U (en) High-temperature-resistant tongue-and-groove surface sealing electric insulation flange
JPH034819Y2 (en)
CN1172011C (en) Hot spraying special alloy for resisting seawater corrosion and its process
RU191508U1 (en) FLOATING MARINE OBJECT
RU95100070A (en) Integrated protection from corrosion and marine growth
JPS6313249Y2 (en)
JPS59131892A (en) Heat exchanger
JP2717207B2 (en) Ground electrode
JPH0134789Y2 (en)
JPH0638384Y2 (en) Shaft grounding device
JPH0151549B2 (en)
Nienaber Trends and New Developments in Corrosion and Marine Coatings