JPS6123837B2 - - Google Patents

Info

Publication number
JPS6123837B2
JPS6123837B2 JP4745578A JP4745578A JPS6123837B2 JP S6123837 B2 JPS6123837 B2 JP S6123837B2 JP 4745578 A JP4745578 A JP 4745578A JP 4745578 A JP4745578 A JP 4745578A JP S6123837 B2 JPS6123837 B2 JP S6123837B2
Authority
JP
Japan
Prior art keywords
phosphor
caf
present
thermal
srf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4745578A
Other languages
Japanese (ja)
Other versions
JPS54139895A (en
Inventor
Shusaku Eguchi
Chiaki Kataoka
Keiji Shinomya
Norio Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP4745578A priority Critical patent/JPS54139895A/en
Publication of JPS54139895A publication Critical patent/JPS54139895A/en
Publication of JPS6123837B2 publication Critical patent/JPS6123837B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は熱螢光性螢光体および熱螢光線量計素
子に関する。さらに詳しくは本発明は希土類元素
で付活したアルカリ土類金属弗化物熱螢光性螢光
体およびこの螢光体を用いた熱螢光線量計素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to thermal fluorescent phosphors and thermal fluorescent dosimeter elements. More specifically, the present invention relates to an alkaline earth metal fluoride thermal fluorescent phosphor activated with a rare earth element and a thermal fluorescent dosimeter element using this phosphor.

熱螢光性螢光体(以下「TL螢光体」と言う)
は、主としてその相対熱螢光強度と照射放射線量
との比例関係を利用した熱螢光線量計(以下
「TLD」と言う)の素子として用いられる。従来
TL螢光体は数多く知られているが、実際にTLD
素子として利用できるものは数少なく、現在
TLD素子として実用されているTL螢光体はマグ
ネシウム付活弗化リチウム螢光体(LiF:Mg)、
マンガン付活弗化カルシウム螢光体(CaF2
Mn)、ジスプロシウム付活弗化カルシウム螢光体
(CaF2:Dy)、シリウム付活硫酸カルシウム螢光
体(CaSO4:Tm)、テルビウム付活珪酸マグネ
シウム螢光体(Mg2SiO4:Tb)等、わずか数種
類にすぎない。最近のTLDの普及をみると、そ
の高感度性、取扱いの簡便性、高測定精度等の点
から個人被曝管理はもちろんのこと、環境放射線
管理等の微少線量管理にまで用いられようとして
いる。このような状況から出来るだけ高感度の素
子、即ち出来るだけ熱螢光効率の高いTL螢光体
の開発が望まれている。
Thermal fluorescent phosphor (hereinafter referred to as "TL phosphor")
is mainly used as an element in a thermal fluorescence dosimeter (hereinafter referred to as "TLD") that utilizes the proportional relationship between the relative thermal fluorescence intensity and the irradiated radiation dose. Conventional
Many TL fluorophores are known, but in fact TLD
There are only a few that can be used as elements, and currently
The TL phosphors used as TLD elements are magnesium-activated lithium fluoride phosphors (LiF:Mg).
Manganese-activated calcium fluoride phosphor ( CaF2 :
Mn), dysprosium-activated calcium fluoride phosphor (CaF 2 :Dy), silium-activated calcium sulfate phosphor (CaSO 4 :Tm), terbium-activated magnesium silicate phosphor (Mg 2 SiO 4 :Tb) There are only a few types. Looking at the recent spread of TLD, due to its high sensitivity, ease of handling, and high measurement accuracy, it is being used not only for personal radiation exposure control but also for microdose control such as environmental radiation control. Under these circumstances, it is desired to develop a device with as high sensitivity as possible, that is, a TL phosphor with as high thermal efficiency as possible.

本発明はこのような要望に鑑みてなされたもの
であり、感度の高い新規なTL螢光体を提供する
ことを目的とするものである。
The present invention was made in view of these demands, and an object of the present invention is to provide a novel TL phosphor with high sensitivity.

さらに本発明は本発明のTL螢光体を用いた新
規な高感度TLD素子を提供することを目的とす
るものである。
A further object of the present invention is to provide a novel high-sensitivity TLD device using the TL phosphor of the present invention.

本発明者等は上記目的を達成するため、主とし
てアルカリ土類金属弗化物について螢光体母体の
選択、母体を活性化する付活剤及びその添加量の
選択、母体と付活剤との組合わせ等について種々
の検討を行なつた。その結果、弗化カルシウムあ
るいは弗化ストロンチウムあるいはその両者から
なる複合弗化物を母体とし、これをTb、Pr、
Tm、Ho、SmおよびCeのうちの少なくとも1つ
の希土類元素で付活した螢光体は従来知られてい
るアルカリ土類金属弗化物TL螢光体よりも高感
度の熱螢光特性を示すことを見出し、本発明に到
つた。
In order to achieve the above object, the present inventors mainly selected a phosphor matrix for alkaline earth metal fluorides, selected an activator for activating the matrix and its additive amount, and determined the combination of the matrix and the activator. Various considerations were made regarding alignment, etc. As a result, a composite fluoride consisting of calcium fluoride, strontium fluoride, or both is used as a matrix, and this is combined with Tb, Pr,
The phosphor activated with at least one rare earth element among Tm, Ho, Sm, and Ce exhibits thermal fluorescent properties with higher sensitivity than conventionally known alkaline earth metal fluoride TL phosphors. They discovered this and arrived at the present invention.

本発明の希土類付活アルカリ土類金属弗化物
TL螢光体はその組成式が M〓F2:aX (但しM〓はCaおよびSrのうちの少なくとも1
つ、XはTb、Pr、Tm、Ho、SmおよびCeのうち
の少なくとも1つであり、aは10-5≦a≦10-2
る条件を満たす数である。以下同様である。) で表わされるものである。熱螢光強度の点から上
記組成式のより好ましいa値範囲は5×10-5≦a
≦2×10-3である。上記組成式で表わされる本発
明のTL螢光体は以下に述べる製造方法によつて
製造される。
Rare earth activated alkaline earth metal fluoride of the present invention
The compositional formula of the TL phosphor is M〓F 2 :aX (where M〓 is at least one of Ca and Sr).
X is at least one of Tb, Pr, Tm, Ho, Sm and Ce, and a is a number satisfying the condition 10 -5 ≦a≦10 -2 . The same applies below. ). From the viewpoint of thermal fluorescence intensity, the more preferable a value range of the above composition formula is 5×10 -5 ≦a
≦2×10 -3 . The TL phosphor of the present invention represented by the above compositional formula is manufactured by the manufacturing method described below.

まず螢光体原料としては (1) CaF2およびSrF2のうちの少なくとも1つ (2) Tb、Pr、Tm、Ho、SmおよびCeの弗化物、
酸化物および硝酸塩、塩化物、硫酸塩等の高温
で容易に酸化物に変りうる化合物からなる化合
物群から選ばれる化合物の1種もしくは2種以
上 が用いられる。上記2つの螢光体原料を化学量論
的にM〓F2:aX(M〓はCaおよびSrのうちの少
なくとも1つであり、aは10-5≦a≦10-2なる条
件を満たす数である。)なる混合組成式となるよ
うに秤量し、ボールミル、乳鉢等を用いて充分に
混合する。熱螢光強度の点から上記混合組成式の
a値のより好ましい範囲は5×10-4≦a≦2×
10-3である。次に上記螢光体原料混合物をアルミ
ナルツボまたは白金ルツボに充填して炭素雰囲
気、水素を含む窒素雰囲気等の弱還元雰囲気また
は窒素雰囲気、アルゴン雰囲気等の不活性雰囲気
中で焼成を行なう。焼成温度は600℃ないし1100
℃が適当である。焼成時間は原料の充填量によつ
ても多少異なるが0.5ないし5時間が適当であ
る。なお、上記の焼成条件で螢光体原料混合物を
焼成して一担TL螢光体を生成せしめた後、更に
上記焼成条件と同じ条件で1度あるいは2度以上
再焼成すれば熱螢光強度のより良好なTL螢光体
を得ることが出来る。焼成後必要であれば洗滌、
乾燥、ふるい等螢光体製造において度々採用あれ
る各操作を行なつてもよい。このようにして先に
述べた組成式で表わされる本発明の希土類付活ア
ルカリ土類金属弗化物TL螢光体を得ることが出
来る。
First, the phosphor raw materials include (1) at least one of CaF 2 and SrF 2 (2) fluorides of Tb, Pr, Tm, Ho, Sm, and Ce;
One or more compounds selected from the group consisting of oxides and compounds that can be easily converted into oxides at high temperatures, such as nitrates, chlorides, and sulfates, are used. The above two phosphor raw materials are stoichiometrically M〓F 2 :aX (M〓 is at least one of Ca and Sr, and a satisfies the condition 10 -5 ≦a≦10 -2 ), and mix thoroughly using a ball mill, mortar, etc. From the viewpoint of thermal fluorescence intensity, the more preferable range of the a value of the above mixed composition formula is 5×10 -4 ≦a≦2×
10 -3 . Next, the phosphor raw material mixture is filled into an alumina crucible or a platinum crucible and fired in a weakly reducing atmosphere such as a carbon atmosphere, a nitrogen atmosphere containing hydrogen, or an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere. Firing temperature is 600℃ to 1100℃
°C is appropriate. The firing time varies somewhat depending on the amount of raw materials charged, but 0.5 to 5 hours is appropriate. In addition, if the phosphor raw material mixture is fired under the above firing conditions to produce a single-layer TL phosphor, and then re-fired once or twice or more under the same firing conditions as above, the thermal phosphor intensity will increase. A better TL phosphor can be obtained. After firing, wash if necessary.
Drying, sieving, and other operations often employed in the manufacture of phosphors may be performed. In this way, the rare earth activated alkaline earth metal fluoride TL phosphor of the present invention represented by the above-mentioned compositional formula can be obtained.

第1図は本発明のTL螢光体の熱螢光曲線を従
来公知のアルカリ土類金属弗化物TL螢光体の1
つであるCaF2:Dyと比較して示したもので、曲
線aが本発明のCaF2:0.001Pr螢光体、曲線bが
同じく本発明のSrF2:0.001Tb螢光体、曲線cが
従来公知のCaF2:Dy螢光体の熱螢光曲線であ
る。第1図から明らかなように、本発明のTL螢
光体は、従来公知のCaF2:Dy螢光体より、その
熱螢光強度が著しく強い。(即ち高感度である)。
なお曲線bの熱螢光強度は1/10に縮小して描いた
ものである。また本発明のTL螢光体、特に
CaF2:Pr螢光体は熱螢光曲線の形状が単純であ
り、従つてこれを用いたTLD素子は線量直線
性、測定精度などの点で優れている。更に、本発
明のTL螢光体、特にSrF2:Tb螢光体は熱螢光曲
線のピークがCaF2:Dy螢光体のピークよりはる
かに高温側にあるため、CaF2:Dy螢光体よりも
放射線エネルギーの保存能が高く、フエーデイン
グが少ないという特徴を有している。
Figure 1 shows the thermal fluorescence curve of the TL phosphor of the present invention compared to that of a conventionally known alkaline earth metal fluoride TL phosphor.
The curve a is for the CaF 2 :0.001Pr phosphor of the present invention, the curve b is for the SrF 2 :0.001Tb phosphor of the present invention, and the curve c is for the SrF 2 :0.001Tb phosphor of the present invention. This is a thermal fluorescence curve of a conventionally known CaF 2 :Dy phosphor. As is clear from FIG. 1, the TL phosphor of the present invention has significantly higher thermal fluorescence intensity than the conventionally known CaF 2 :Dy phosphor. (i.e. high sensitivity).
Note that the thermal fluorescence intensity of curve b is drawn reduced to 1/10. In addition, the TL phosphor of the present invention, especially
The CaF 2 :Pr phosphor has a simple thermal fluorescence curve, and therefore, TLD devices using it are excellent in terms of dose linearity, measurement accuracy, etc. Furthermore, the peak of the thermal fluorescence curve of the TL phosphor of the present invention, particularly the SrF 2 :Tb phosphor, is on the much higher temperature side than the peak of the CaF 2 : Dy phosphor. It has a higher ability to store radiation energy than the body and is characterized by less fading.

第2図は本発明のTL螢光体の一つである。
CaF2:aPr螢光体のa値、即ち、CaF21モルに対
して添加された付加剤Prのグラム原子数と、熱
螢光強度との関係を示すグラフである。第2図で
明らかなように付加剤であるPrの添加量aが5
×10-5≦a≦2×10-3の範囲にある時、特にTL
強度の強いTL螢光体が得られる。なお、第2図
にはCaF2:aPr螢光体以外の螢光体については示
されていないが、付活剤としてPr以外の希土類
元素を用いた場合、および螢光体の母体として、
SrF2あるいはCaF2とSrF2の複合弗化物を用いた
場合にもa値と熱螢光強度との関係は第2図とほ
ぼ同様の傾向にあることが確認された。
FIG. 2 shows one of the TL phosphors of the present invention.
2 is a graph showing the relationship between the a value of the CaF 2 :aPr phosphor, that is, the number of grams of Pr added as an additive agent per 1 mole of CaF 2 and the thermal fluorescence intensity. As is clear from Figure 2, the amount a of the additive Pr added is 5.
When in the range ×10 -5 ≦a≦2×10 -3 , especially TL
A strong TL phosphor can be obtained. Although phosphors other than CaF 2 :aPr phosphor are not shown in Fig. 2, when a rare earth element other than Pr is used as an activator and as a matrix of the phosphor,
It was confirmed that when SrF 2 or a composite fluoride of CaF 2 and SrF 2 was used, the relationship between the a value and the thermal fluorescence intensity had almost the same tendency as shown in FIG. 2.

以上述べたように本発明のTL螢光体は従来公
知のアルカリ土類金属弗化物系TL螢光体の中で
特に感度の高いCaF2:Dy螢光体よりも著しく高
感度であり、またその熱螢光特性は安定であつて
TLD素子用螢光体として優れたものである。以
下に本発明のTL螢光体を用いたTLD素子につい
て述べる。
As described above, the TL phosphor of the present invention has significantly higher sensitivity than the CaF 2 :Dy phosphor, which has particularly high sensitivity among conventionally known alkaline earth metal fluoride TL phosphors, and also Its thermal fluorescent properties are stable and
It is an excellent phosphor for TLD devices. A TLD element using the TL phosphor of the present invention will be described below.

本発明のTL螢光体をTLD素子のTL螢光体とし
て使用することによつて高感度のTLD素子を得
ることが出来る。最適条件で得られた本発明の希
土類付活アルカリ土類金属弗化物TL螢光体を用
いたTLD素子はCaF2:Dyを用いた従来のTLD素
子の6〜50倍の感度を有するため、本発明の
TLD素子を用いることによつてTLDリーダーの
測光機構をより簡略化できるし、また線量検出限
界を下げることができる等、低線量の測定精度を
向上させることが出来る。
By using the TL phosphor of the present invention as a TL phosphor of a TLD device, a highly sensitive TLD device can be obtained. The TLD device using the rare earth-activated alkaline earth metal fluoride TL phosphor of the present invention obtained under optimal conditions has a sensitivity 6 to 50 times that of the conventional TLD device using CaF 2 :Dy. of the present invention
By using a TLD element, the photometry mechanism of the TLD reader can be further simplified, and the dose detection limit can be lowered, thereby improving low dose measurement accuracy.

なお、本発明のTLD素子の構成はTL螢光体と
して本発明の希土類付活アルカリ土類金属弗化物
TL螢光体を用いる他は従来のTLD素子と全く同
じである。一般にTL螢光体は粉末であり、その
一定量はそのままでTLD素子となりうる。しか
し粉末のままでは取扱いが困難であるため、例え
ば不活性ガスと共にガラス管に封入するとか、少
量の臭化カリウムの様な成型剤と共に圧縮錠剤化
するとか、または弗素樹脂、珪素樹脂の様な耐熱
性樹脂中に埋込む等、適当な手段により固形化、
つまり素子化されている。本発明のTL螢光体を
素子化するにあたつては、従来の方法がそのまま
採用される。第3図は本発明のTLD素子を例示
するものであり、aおよびbは柄付きガラス封入
素子、cはロツド状素子、dはシート状素子、e
はデイスク状素子である。
The TLD element of the present invention has a structure in which the rare earth-activated alkaline earth metal fluoride of the present invention is used as a TL phosphor.
Other than using a TL phosphor, it is exactly the same as a conventional TLD element. Generally, a TL phosphor is a powder, and a certain amount of it can be used as a TLD element as it is. However, it is difficult to handle it as a powder, so for example, it is sealed in a glass tube with an inert gas, compressed into tablets with a small amount of a molding agent such as potassium bromide, or made with a material such as fluororesin or silicone resin. Solidify by appropriate means such as embedding in heat-resistant resin,
In other words, it is elementized. In fabricating the TL phosphor of the present invention into a device, conventional methods can be used as is. FIG. 3 illustrates the TLD device of the present invention, in which a and b are glass-encapsulated elements with a handle, c is a rod-like element, d is a sheet-like element, and e
is a disk-shaped element.

以上説明したように、本発明のTL螢光体は熱
螢光特性の優れたものであつて、TLD素子のTL
螢光体として使用することができる。このように
本発明の工業的価値は非常に大きい。
As explained above, the TL phosphor of the present invention has excellent thermal fluorescent properties, and is suitable for use in TLD devices.
Can be used as a phosphor. As described above, the industrial value of the present invention is extremely large.

次に実施例によつて本発明を説明する。 Next, the present invention will be explained with reference to Examples.

実施例 1 弗化カルシウム CaF2 78 g 酸化プラセオジム Pr2O3 0.16g 上記原料をボールミルによつて充分粉砕し、混
合した。得られた混合物をアルミナルツボに充填
して炭素雰囲気中で800℃の温度で2時間焼成し
た。焼成後、焼成物を冷却し、篩にかけた。この
ようにしてCaF2:0.001Prを得た。このTL螢光
体に管電圧120KVP.のX線を5R照射した後その
熱螢光強度を測定したところ、主ピーク強度で従
来実用のCaF2:Dyのおよそ5倍であつた。
Example 1 Calcium fluoride CaF 2 78 g Praseodymium oxide Pr 2 O 3 0.16 g The above raw materials were sufficiently ground in a ball mill and mixed. The resulting mixture was filled into an alumina crucible and fired at a temperature of 800° C. for 2 hours in a carbon atmosphere. After baking, the baked product was cooled and passed through a sieve. In this way, CaF 2 :0.001Pr was obtained. When this TL phosphor was irradiated with X-rays at a tube voltage of 120 KV P for 5R and its thermal fluorescence intensity was measured, the main peak intensity was about 5 times that of the conventionally used CaF 2 :Dy.

実施例 2 弗化カルシウム CaF2 78 g 塩化プラセオジム PrCl3・7H2O 0.30g 上記原料をボールミルで十分に粉砕し混合し
た。得られた混合物をアルミナルツボに充填して
炭素雰囲気中で700℃の温度で2時間焼成した。
焼成後、焼成物を冷却し、篩にかけた。このよう
にしてCaF2:0.0008Prを得た。実施例1と同様
にしてこのTL螢光体の熱螢光強度を測定したと
ころ、従来実用のCaF2:Dyのおよそ6倍であつ
た。
Example 2 Calcium fluoride CaF 2 78 g Praseodymium chloride PrCl 3.7H 2 O 0.30 g The above raw materials were thoroughly ground and mixed in a ball mill. The resulting mixture was filled into an alumina crucible and fired at a temperature of 700° C. for 2 hours in a carbon atmosphere.
After baking, the baked product was cooled and passed through a sieve. In this way, CaF 2 :0.0008Pr was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was approximately 6 times that of CaF 2 :Dy, which has been used in conventional practice.

実施例 3 弗化カルシウム CaF2 78 g 塩化ツリウム TmCl3・7H2O 0.40g 上記原料をボールミルで十分に粉砕し混合し
た。得られた混合物をアルミナルツボに充填して
アルゴン雰囲気中で900℃の温度で2時間焼成し
た。焼成後、焼成物を冷却し、篩にかけた。この
ようにしてCaF2:0.001Tmを得た。実施例1と
同様にしてこのTL螢光体の熱螢光強度を測定し
たところ、従来実用のCaF2:Dyのおよそ2倍で
あつた。
Example 3 Calcium fluoride CaF 2 78 g Thulium chloride TmCl 3.7H 2 O 0.40 g The above raw materials were thoroughly ground and mixed in a ball mill. The resulting mixture was filled into an alumina crucible and fired at a temperature of 900° C. for 2 hours in an argon atmosphere. After baking, the baked product was cooled and passed through a sieve. In this way, CaF 2 :0.001Tm was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was approximately twice as high as that of CaF 2 :Dy, which has been used in conventional practice.

実施例 4 弗化ストロンチウム SrF2 125.6 g 酸化テルビウム Tb4O7 0.19g 上記原料をボールミルで十分に粉砕し混合し
た。得られた混合物をアルミナルツボに充填して
炭素雰囲気中で900℃で2時間焼成した。焼成
後、焼成物を冷却し、篩にかけた。このようにし
てSrF2:0.001Tbを得た。実施例1と同様にして
このTL螢光体の熱螢光強度を測定したところ、
従来実用のCaF2:Dyのおよそ50倍であつた。
Example 4 Strontium fluoride SrF 2 125.6 g Terbium oxide Tb 4 O 7 0.19 g The above raw materials were sufficiently ground in a ball mill and mixed. The resulting mixture was filled into an alumina crucible and fired at 900° C. for 2 hours in a carbon atmosphere. After baking, the baked product was cooled and passed through a sieve. In this way, SrF 2 :0.001Tb was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was found that
It was about 50 times that of conventionally used CaF 2 :Dy.

実施例 5 弗化ストロンチウム SrF2 125.6 g 塩化テルビウム TbCl3・6H2O 0.37g 上記原料をボールミルで十分に粉砕、混合し
た。得られた混合物をアルミナルツボに充填して
炭素雰囲気中で900℃で3時間焼成した。焼成
後、焼成物を冷却し、篩にかけた。このようにし
てSrF2:0.0001Tbを得た。実施例1と同様にし
てこのTL螢光体の熱螢光強度を測定したとこ
ろ、従来実用のCaF2:Dyのおよそ8倍であつ
た。
Example 5 Strontium fluoride SrF 2 125.6 g Terbium chloride TbCl 3 ·6H 2 O 0.37 g The above raw materials were thoroughly ground and mixed in a ball mill. The resulting mixture was filled into an alumina crucible and fired at 900° C. for 3 hours in a carbon atmosphere. After baking, the baked product was cooled and passed through a sieve. In this way, SrF 2 :0.0001Tb was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was approximately 8 times that of CaF 2 :Dy, which has been used in conventional practice.

実施例 6 弗化ストロンチウム SrF2 125.6 g 酸化プラセオジム Pr2O3 0.16g 上記原料をボールミルで十分に粉砕し、混合し
た。得られた混合物をアルミナルツボに充填して
2%の水素を含む窒素雰囲気中で900℃で3時間
焼成した。焼成後、焼成物を冷却し、篩にかけ
た。このようにしてSrF2:0.001Prを得た。実施
例1と同様にしてこのTL螢光体の熱螢光強度を
測定したところ、従来実用のCaF2:Dyのおよそ
3倍であつた。
Example 6 Strontium fluoride SrF 2 125.6 g Praseodymium oxide Pr 2 O 3 0.16 g The above raw materials were sufficiently ground in a ball mill and mixed. The resulting mixture was filled into an alumina crucible and fired at 900° C. for 3 hours in a nitrogen atmosphere containing 2% hydrogen. After baking, the baked product was cooled and passed through a sieve. In this way, SrF 2 :0.001Pr was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was approximately three times that of CaF 2 :Dy, which has been used in conventional practice.

実施例 7 弗化カルシウム CaF2 3.9 g 弗化ストロンチウム SrF2 56.5 g 弗化テルビウム TbF3 0.11g 上記原料をボールミルで十分に粉砕し、混合し
た。得られた混合物を白金ルツボに充填して炭素
雰囲気中で900℃の温度で2時間焼成した。焼成
後、焼成物を冷却し、篩にかけた。このようにし
て。(Ca0.1、Sr0.9)F2:0.0005Tbを得た。実施
例1と同様にしてこのTL螢光体の熱螢光強度を
測定したところ、従来実用のCaF2:Dyのおよそ
25倍であつた。
Example 7 Calcium fluoride CaF 2 3.9 g Strontium fluoride SrF 2 56.5 g Terbium fluoride TbF 3 0.11 g The above raw materials were sufficiently ground in a ball mill and mixed. The resulting mixture was filled into a platinum crucible and fired at a temperature of 900° C. for 2 hours in a carbon atmosphere. After baking, the baked product was cooled and passed through a sieve. In this way. (Ca0.1, Sr0.9) F2 :0.0005Tb was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was found that it was approximately equal to that of conventionally used CaF 2 :Dy.
It was 25 times hotter.

実施例 8 弗化カルシウム CaF2 78 g 酸化ホロミウム Ho2O3 0.189g 上記原料をボールミルで十分に粉砕し混合し
た。得られた混合物をアルミナルツボに充填して
炭素雰囲気中で900℃の温度で2時間焼成した。
焼成後、焼成物を冷却し、篩にかけた。この様に
してCaF2:0.001Hoを得た。実施例1と同様にし
てこのTL螢光体の熱螢光強度を測定したとこ
ろ、従来実用のCaF2:Dyの約1.5倍であつた。
Example 8 Calcium fluoride CaF 2 78 g Holmium oxide Ho 2 O 3 0.189 g The above raw materials were thoroughly ground and mixed in a ball mill. The obtained mixture was filled into an alumina crucible and fired at a temperature of 900° C. for 2 hours in a carbon atmosphere.
After baking, the baked product was cooled and passed through a sieve. In this way, CaF 2 :0.001Ho was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was about 1.5 times that of CaF 2 :Dy, which has been used in conventional practice.

実施例 9 原料の一つとしてCaF2の代りに125.6gの弗化
ストロンチウム(SrF2)を用いる以外は実施例8
と同様にしてSrF2:0.001Hoを得た。実施例1と
同様にしてこのTL螢光体の熱螢光強度を測定し
たところ、従来実用のCaF2:Dyの約25倍であつ
た。
Example 9 Example 8 except that 125.6 g of strontium fluoride (SrF 2 ) is used instead of CaF 2 as one of the raw materials.
Similarly, SrF 2 :0.001Ho was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was about 25 times that of CaF 2 :Dy, which has been used in conventional practice.

実施例 10 弗化カルシウム CaF2 78 g 酸化サマリウム Sm2O3 0.174g 上記原料をボールミルで十分に粉砕し混合し
た。得られた混合物をアルミナルツボに充填して
炭素雰囲気中で900℃の温度で2時間焼成した。
焼成物を冷却し篩にかけた。この様にして
CaF2:0.001Smを得た。実施例1と同様にして
このTL螢光体の熱螢光強度を測定したところ、
従来実用のCaF2:Dyの約1.2倍であつた。
Example 10 Calcium fluoride CaF 2 78 g Samarium oxide Sm 2 O 3 0.174 g The above raw materials were thoroughly ground and mixed in a ball mill. The obtained mixture was filled into an alumina crucible and fired at a temperature of 900° C. for 2 hours in a carbon atmosphere.
The baked product was cooled and passed through a sieve. like this
CaF2 : 0.001Sm was obtained. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was found that
Conventional practical CaF 2 :It was about 1.2 times that of Dy.

実施例 11 原料の1つとしてCaF2の代りに125.6gの弗化
ストロンチウム(SrF2)を用いる以外は実施例10
と同様にしてSrF2:0.001Smを得た。実施例1と
同様にしてこのTL螢光体の熱螢光強度を測定し
たところ、従来実用のCaF2:Dyの約1.05倍であ
つた。
Example 11 Example 10 except that 125.6 g of strontium fluoride (SrF 2 ) is used instead of CaF 2 as one of the raw materials.
SrF 2 :0.001Sm was obtained in the same manner as above. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was approximately 1.05 times that of CaF 2 :Dy, which has been used in conventional practice.

実施例 12 弗化ストロンチウム SrF2 125.6 g 酸化セリウム Ce2O3 0.164g 上記原料をボールミルで十分に粉砕し、混合し
た。得られた混合物をアルミナルツボに充填して
炭素雰囲気中で900℃の温度で2時間焼成した。
焼成物を冷却し篩にかけた。この様にして
SrF2:0.001Ceを得た。実施例1と同様にして、
このTL螢光体の熱螢光強度を測定したところ従
来実用のCaF2:Dyの約1.5倍であつた。
Example 12 Strontium fluoride SrF 2 125.6 g Cerium oxide Ce 2 O 3 0.164 g The above raw materials were sufficiently ground in a ball mill and mixed. The obtained mixture was filled into an alumina crucible and fired at a temperature of 900° C. for 2 hours in a carbon atmosphere.
The baked product was cooled and passed through a sieve. like this
SrF 2 :0.001Ce was obtained. In the same manner as in Example 1,
When the thermal fluorescence intensity of this TL phosphor was measured, it was approximately 1.5 times that of CaF 2 :Dy, which has been used in conventional practice.

実施例 13 原料の1つとしてSrF2の代りに78gの弗化カ
ルシウム(CaF2)を用いる以外は実施例12と同様
にしてCaF2:0.001Ceを得た。実施例1と同様に
してこのTL螢光体の熱螢光強度を測定したとこ
ろ、従来実用のCaF2:Dyの約3倍であつた。
Example 13 CaF 2 :0.001Ce was obtained in the same manner as in Example 12 except that 78 g of calcium fluoride (CaF 2 ) was used instead of SrF 2 as one of the raw materials. When the thermal fluorescence intensity of this TL phosphor was measured in the same manner as in Example 1, it was approximately three times that of CaF 2 :Dy, which has been used in conventional practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の希土類付活アルカリ土類金属
弗化物TL螢光体の熱螢光曲線を従来のCaF2:Dy
のそれと比較して示すものであり、曲線aが本発
明のプラセオジム付活弗化カルシウム螢光体の熱
螢光曲線、曲線bが同じく本発明のテルビウム付
活弗化ストロンチウム螢光体の熱螢光曲線、曲線
cがCaF2:Dyの熱螢光曲線である。なお、曲線
bの熱螢光曲線は1/10に縮少して描いてある。第
2図は本発明のPr付活弗化カルシウム螢光体に
おけるa値(CaF21モルに対する、添加された付
活剤Prのグラム原子数)と熱螢光強度との関係
を示すグラフである。第3図は本発明のTLD素
子を例示するものである。
Figure 1 shows the thermal fluorescence curve of the rare earth activated alkaline earth metal fluoride TL phosphor of the present invention compared to that of the conventional CaF 2 :Dy.
Curve a is the thermal fluorescence curve of the praseodymium-activated calcium fluoride phosphor of the present invention, and curve b is the thermal fluorescence curve of the terbium-activated strontium fluoride phosphor of the present invention. The light curve, curve c, is the thermal fluorescence curve of CaF 2 :Dy. Note that the thermal fluorescence curve of curve b is drawn reduced to 1/10. Figure 2 is a graph showing the relationship between the a value (the number of grams of Pr added as an activator per 1 mole of CaF 2 ) and the thermal fluorescence intensity in the Pr-activated calcium fluoride phosphor of the present invention. be. FIG. 3 illustrates the TLD element of the present invention.

Claims (1)

【特許請求の範囲】 1 組成式が M〓F2:aX (但しM〓はCaおよびSrのうち少なくとも1つ、
XはTb、Pr、Tm、Ho、SmおよびCeのうちの少
なくとも1つであり、aは10-5≦a≦10-2なる条
件を満たす数である) で表わされる希土類付活アルカリ土類金属弗化物
熱螢光性螢光体。 2 前記組成式のaが5×10-5≦a≦2×10-3
る条件を満たす数であることを特徴とする特許請
求の範囲第1項記載の熱螢光性螢光体。 3 組成式が M〓F2:aX (但しM〓はCaおよびSrのうち少なくとも1つ、
XはTb、Pr、Tm、Ho、SmおよびCeのうちの少
なくとも1つであり、aは10-5≦a≦10-2なる条
件を満たす数である) で表わされる希土類付活アルカリ土類金属弗化物
熱螢光性螢光体を用いた熱螢光線量計素子。 4 前記組成式のaが5×10-5≦a≦2×10-3
る条件を満たす数であることを特徴とする特許請
求の範囲第3項記載の熱螢光線量計素子。
[Claims] 1. The compositional formula is M〓F 2 :aX (where M〓 is at least one of Ca and Sr,
X is at least one of Tb, Pr, Tm, Ho, Sm, and Ce, and a is a number satisfying the condition 10 -5 ≦ a ≦ 10 -2 ) Metal fluoride thermal fluorescent phosphor. 2. The thermofluorescent phosphor according to claim 1, wherein a in the compositional formula is a number satisfying the following condition: 5×10 -5 ≦a≦2×10 -3 . 3 The compositional formula is M〓F 2 :aX (where M〓 is at least one of Ca and Sr,
X is at least one of Tb, Pr, Tm, Ho, Sm, and Ce, and a is a number satisfying the condition 10 -5 ≦ a ≦ 10 -2 ) A thermal fluorescent dosimeter element using a metal fluoride thermal fluorescent material. 4. The thermal fluorescence dosimeter element according to claim 3, wherein a in the compositional formula is a number satisfying the following condition: 5×10 -5 ≦a≦2×10 -3 .
JP4745578A 1978-04-21 1978-04-21 Thermoluminous phosphor and thermoluminous dosimeter element Granted JPS54139895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4745578A JPS54139895A (en) 1978-04-21 1978-04-21 Thermoluminous phosphor and thermoluminous dosimeter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4745578A JPS54139895A (en) 1978-04-21 1978-04-21 Thermoluminous phosphor and thermoluminous dosimeter element

Publications (2)

Publication Number Publication Date
JPS54139895A JPS54139895A (en) 1979-10-30
JPS6123837B2 true JPS6123837B2 (en) 1986-06-07

Family

ID=12775613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4745578A Granted JPS54139895A (en) 1978-04-21 1978-04-21 Thermoluminous phosphor and thermoluminous dosimeter element

Country Status (1)

Country Link
JP (1) JPS54139895A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045870A (en) * 2005-08-08 2007-02-22 Stella Chemifa Corp Fluoride scintillator material having low hygroscopicity and high amount of emission, radiation detector and x-ray ct apparatus
JP5889202B2 (en) * 2010-11-02 2016-03-22 株式会社トクヤマ Metal fluoride eutectic, neutron scintillator and neutron imaging device

Also Published As

Publication number Publication date
JPS54139895A (en) 1979-10-30

Similar Documents

Publication Publication Date Title
US4978472A (en) Phosphor
CA1082877A (en) (hf in1-x xxzr.sub.x).sub.3p.sub.2o in11 xx luminescent material
US4810416A (en) Borate phosphor
JPS5936183A (en) Preparation of fluorescent substance
JP3826210B2 (en) Rare earth complex oxide phosphor
JPS6123837B2 (en)
JP3260541B2 (en) Phosphor powder, ceramic scintillator and method for producing the same
JPS5945706B2 (en) fluorescent material
US5560867A (en) Phosphor with an additive for reducing afterglow
JPS5945707B2 (en) fluorescent material
JP2851006B2 (en) Phosphor
JPS5940176B2 (en) fluorescent material
JPS6033862B2 (en) Thermal fluorescent composite oxide phosphor
KR940006072B1 (en) Fluorescent substance
JPH0412313B2 (en)
JP3475565B2 (en) Phosphor
JPS5914512B2 (en) thermal fluorescent phosphor
JP4219518B2 (en) Europium-activated composite oxide phosphor
JPH06100860A (en) Blue-emitting phosphor
US3671454A (en) Silicon and/or germanium dioxide substituted manganese activated magnesium aluminate gallate phosphor
JPS5879814A (en) Fluorescent substance of zinc sulfide
JPS6225189A (en) Fluorescent substance and production thereof
JPS62260884A (en) Storage-type radioactive ray image converter
JPS6035954B2 (en) Thermal fluorescent phosphors and thermal fluorescent dosimeter elements
KR840000652B1 (en) Fluorescent substance composition