JPS61237992A - Intermediate heat exchanger - Google Patents

Intermediate heat exchanger

Info

Publication number
JPS61237992A
JPS61237992A JP60078436A JP7843685A JPS61237992A JP S61237992 A JPS61237992 A JP S61237992A JP 60078436 A JP60078436 A JP 60078436A JP 7843685 A JP7843685 A JP 7843685A JP S61237992 A JPS61237992 A JP S61237992A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
heat transfer
intermediate heat
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60078436A
Other languages
Japanese (ja)
Inventor
Kenji Mori
建二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60078436A priority Critical patent/JPS61237992A/en
Publication of JPS61237992A publication Critical patent/JPS61237992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To compact the heat exchanger and obtain the intermediate heat exchanger, excellent in the reliability of structure, by a method wherein a material, having a thermal expansion coefficient larger than the same of the material of heat transfer tube, is employed for the material of a lower cylinder of the intermediate heat exchanger for a nuclear reactor. CONSTITUTION:The intermediate heat exchanger 33 consists of a hollow tubular upper cylinder 38 and a lower cylinder 39, hung vertically from a roof slub 2. An upper tube plate 41 is provided at the connecting section between the upper cylinder 38 and the lower cylinder 39, while a lower tube plate 42 is provided horizontally at the lower end of the lower cylinder 39. 39Cr series ferrite steel or the like, excellent in high-temperature strength and having comparatively small thermal expansion coefficient, is employed for the materials of the upper tube plate 41, the lower tube plate 42 and the heat transfer tube 43 while stainless steel, excellent in high-temperature strength and having comparatively larger thermal expansion coefficient, is employed for the material of one part of the lower cylinder 39 and both of them are connected through a different material coupling 23. According to this constitution, a tension load, applied on the heat transfer tube 43, effects in a direction of mitigating the load when the temperature of the tube 43 is increased suddenly and the tube 43 expands further in the case of hot-shock accident and whereby Euler buckle of the heat transfer tube 43, which is caused in case the tube 43 and the lower cylinder 39 are made of the same material, may be avoided.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は例えば液体金属冷却タンク屋高速増殖炉の1次
冷却系と2次冷却系との熱交換用として用いられる炉容
器内設置型の中間熱交換器に係り、特に伝熱管束と胴の
熱膨張差の吸収方法を改良した中間熱交換器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an intermediate cooling system installed in a reactor vessel used for heat exchange between a primary cooling system and a secondary cooling system of a liquid metal cooling tank fast breeder reactor, for example. The present invention relates to a heat exchanger, and particularly to an intermediate heat exchanger with an improved method of absorbing the difference in thermal expansion between a heat exchanger tube bundle and a shell.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

液体金属冷却タンク現高速増殖炉では、炉容器としての
タンク主容器内の1次冷却材と、蒸気発生器を含む2次
冷却系を循環する2次冷却材とに液体金属、例えば液体
ナトリウムを使用し、この1次冷却材と2次冷却材との
熱交換を行なう中間熱交換器をタンク主容器内に設置し
ている。即ち、第3図に示すように、タンク主容器1は
上方をルーフスラブ2で覆われ、このルーフスラブ2に
中間熱交換器3が炉心4の周囲に1次循環ポンプ5とと
もに複数、間隔的に吊下されている。なお、タンク主客
器1の外側には万一の1次冷却材6のリークに備えて安
全容器7が設置されている。なお、図中、30は冷却材
6の液面である。
Liquid Metal Cooling Tank In current fast breeder reactors, liquid metal, such as liquid sodium, is used in the primary coolant in the tank main vessel, which serves as the reactor vessel, and in the secondary coolant circulating in the secondary cooling system including the steam generator. An intermediate heat exchanger for exchanging heat between the primary coolant and the secondary coolant is installed inside the tank main vessel. That is, as shown in FIG. 3, the upper part of the tank main vessel 1 is covered with a roof slab 2, and on this roof slab 2, a plurality of intermediate heat exchangers 3 are installed at intervals along with a primary circulation pump 5 around the core 4. is suspended from. It should be noted that a safety container 7 is installed outside the tank main passenger equipment 1 in case the primary coolant 6 leaks. In addition, in the figure, 30 is the liquid level of the coolant 6.

中間熱交換器3は例えば第4図に示すように、ルーフス
ラブ2に竪形に吊下した中空筒状の上部この上部胴Vに
は、周壁上部に複数の1次冷却材入口窓20を周方向に
間隔をおいて穿設するととも冷却材入口窓20と下部胴
Vの1次冷却材出ロノズル10との間に、上部管板11
および下部管板12で上下端部を支持された多数の伝熱
管13が垂直に配設され、1次冷却材6がこの伝熱管1
3内を流下するようになっている。また、上部胴8の上
端部に2次冷却材入ロノズル14および2次冷却材出ロ
ノズル15が設けられ、2次冷却材入ロノズル14と連
通した下降管16が下部胴9の軸心部に下部管板12ま
で垂下し、2次冷却材出ロノズル15と連通した上昇管
17が下降管16を囲んで上部管板11まで垂下してい
る。この下降管16および上昇管17がそれぞれ連通口
16a、17Bを介して上部管板11と下部管板12と
の間に形成された室、即ち熱交換室18で連通し、これ
により2次冷却材は下降管16から上昇管【7に流通す
る際に熱交換室18で伝熱管13の外周面に接して1次
冷却材6と熱交換される。
As shown in FIG. 4, for example, the intermediate heat exchanger 3 has a hollow cylindrical upper part vertically suspended from the roof slab 2. The upper body V has a plurality of primary coolant inlet windows 20 in the upper part of the peripheral wall. The upper tube plate 11 is provided at intervals in the circumferential direction and is provided between the coolant inlet window 20 and the primary coolant outlet nozzle 10 of the lower body V.
A large number of heat exchanger tubes 13 whose upper and lower ends are supported by a lower tube plate 12 are arranged vertically, and the primary coolant 6 is supplied to the heat exchanger tubes 1
It is designed to flow down within 3. Further, a secondary coolant inlet nozzle 14 and a secondary coolant outlet nozzle 15 are provided at the upper end of the upper body 8, and a downcomer pipe 16 communicating with the secondary coolant inlet nozzle 14 is provided at the axial center of the lower body 9. A rising pipe 17 that hangs down to the lower tube sheet 12 and communicates with the secondary coolant outlet nozzle 15 surrounds the down pipe 16 and hangs down to the upper tube sheet 11. The descending pipe 16 and the rising pipe 17 communicate with each other through communication ports 16a and 17B in a chamber formed between the upper tube sheet 11 and the lower tube sheet 12, that is, a heat exchange chamber 18, thereby providing secondary cooling. When the material flows from the downcomer pipe 16 to the riser pipe [7], it comes into contact with the outer peripheral surface of the heat transfer tube 13 in the heat exchange chamber 18 and exchanges heat with the primary coolant 6.

タンク主容器1内では、炉心4上方の高温となった1次
冷却材6が中間熱交換器3に上部胴8の1次冷却材入口
窓20から流入し、伝熱管13内を流下する際に2次冷
却材と熱交換した後、1次冷却材出ロノズル10から流
出し、1次循環ポンプ5を経て再び炉心4を冷却する。
In the tank main vessel 1, the high temperature primary coolant 6 above the reactor core 4 flows into the intermediate heat exchanger 3 through the primary coolant inlet window 20 of the upper shell 8, and as it flows down inside the heat transfer tube 13. After exchanging heat with the secondary coolant, it flows out from the primary coolant outlet nozzle 10, passes through the primary circulation pump 5, and cools the core 4 again.

また、2次冷却材は中間熱交換器3に上部の2次冷却材
入ロノズル14から流入し、熱交換室18で伝熱管13
の外周面に接触して1次冷却材と熱交換した後、2次冷
却材出ロノズル15ヲ経て2次冷却系に循環する。
In addition, the secondary coolant flows into the intermediate heat exchanger 3 from the secondary coolant nozzle 14 at the upper part, and enters the heat exchanger tube 13 in the heat exchange chamber 18.
After contacting the outer circumferential surface of the coolant and exchanging heat with the primary coolant, the coolant is circulated through the secondary coolant outlet nozzle 15 to the secondary cooling system.

一方、中間熱交換器3では、下部胴9と伝熱管13の熱
膨張差を吸収するために、1次冷却材出ロノズル10を
囲う形でベローズ22を設けている。伝熱管13の熱膨
張は下部管板12及び下部ヘッド21を介して1次冷却
材出ロノズル10に伝わり1.1次冷却材出ロノズル1
0と下部胴9の下端での相対的な熱変位はベローズ22
により吸収されている。また、ベローズ22は1次冷却
材と2次冷却材のバウンダリーを形成しており、1次冷
却材バウンダリーとしての設計要求を満足させる必要が
ある。
On the other hand, in the intermediate heat exchanger 3, a bellows 22 is provided to surround the primary coolant outlet nozzle 10 in order to absorb the difference in thermal expansion between the lower shell 9 and the heat exchanger tubes 13. The thermal expansion of the heat transfer tube 13 is transmitted to the primary coolant outlet nozzle 10 via the lower tube plate 12 and the lower head 21.
0 and the relative thermal displacement at the lower end of the lower shell 9 is the bellows 22
is absorbed by. Further, the bellows 22 forms a boundary between the primary coolant and the secondary coolant, and needs to satisfy design requirements as a primary coolant boundary.

このような形式の中間熱交換器では、下部管板12の下
方に下部ヘッド21と1次冷却材出ロノズル10のスペ
ース(11)が必要となる。1次冷却材出ロノズル10
の長さは周囲に設けられたベローズ22の必要長以上の
長さが必要であり、また、下部ヘッド21の長さは下部
管板12から流出する1次冷却材をスムーズに1次冷却
材出ロノズル10に導くに十分な長さが必要である。1
00100Oクラスのタンク型高速増殖炉に使用される
650MWt程度の交換熱量を有する中間熱交換器では
、前記のスペース(りは約2.5m程度となり、伝熱管
の長さに制約を与える。また、1次冷却材出ロノズル1
0で、1次冷却材の流れが絞られるため、中間熱交換器
の1次側圧力損失として約o、o s Ky/d程度を
与える。これは、中間熱交換器の1次側の全体の圧力損
失の約1/3の値となる。更に、ベローズ22は1次冷
却材バウンダリーとなるが、その構造信頼性の確証には
開発的要素も未だ残されている。
This type of intermediate heat exchanger requires a space (11) below the lower tube plate 12 for the lower head 21 and the primary coolant outlet nozzle 10. Primary coolant outlet nozzle 10
The length of the lower head 21 must be greater than or equal to the required length of the bellows 22 provided around it, and the length of the lower head 21 must be such that the primary coolant flowing out from the lower tube sheet 12 can be smoothly absorbed into the primary coolant. It needs to be long enough to lead to the exit nozzle 10. 1
In an intermediate heat exchanger having an exchange heat amount of about 650 MWt used in a 00100O class tank-type fast breeder reactor, the above-mentioned space is about 2.5 m, which puts restrictions on the length of the heat transfer tube. Primary coolant outlet nozzle 1
0, the flow of the primary coolant is throttled, giving a pressure loss of about o, o s Ky/d on the primary side of the intermediate heat exchanger. This is approximately 1/3 of the total pressure loss on the primary side of the intermediate heat exchanger. Furthermore, although the bellows 22 serves as a primary coolant boundary, there are still developmental elements to confirm its structural reliability.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもので、中間
熱交換器のコンパクト化を計ると共に、構造信頼性の優
れた中間熱交換器を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an intermediate heat exchanger that is compact and has excellent structural reliability.

〔発明の概要〕[Summary of the invention]

本発明では、原子炉の炉容器内に竪形に設置され、1次
冷却材入口窓を穿設した上部胴と、この上部胴に連接し
た下部胴と、下部胴の上端に設けられた上部管板と、下
部胴の下端に設けられた下部管板と、上部管板と下部管
板をつなぐ多数の伝熱管と、前記下部胴内に設けられた
2次冷却材の下降管および2次冷却材上昇管とを具備す
る中間熱交換器において、前記下部胴ν、前記伝熱管に
使用される材料よりも熱膨張率の大きい材料を使用する
ことを特徴としている。
In the present invention, an upper shell is installed vertically in the reactor vessel of a nuclear reactor and has a primary coolant inlet window, a lower shell is connected to the upper shell, and an upper shell is provided at the upper end of the lower shell. A tube sheet, a lower tube sheet provided at the lower end of the lower shell, a number of heat transfer tubes connecting the upper tube sheet and the lower tube sheet, and a downcomer pipe and a secondary coolant provided in the lower shell. The intermediate heat exchanger is characterized by using a material having a larger thermal expansion coefficient than the material used for the lower body ν and the heat transfer tube.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図および第2図を参照して
説明する。本実施例の中間熱交換器33は、ルーフスラ
ブ2に竪形に吊下した中空筒状の上部胴あおよび下部胴
39を主体として構成されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The intermediate heat exchanger 33 of this embodiment is mainly composed of a hollow cylindrical upper shell and a lower shell 39 vertically suspended from the roof slab 2.

上部通は、周壁上部に複数の1次冷部材入口窓50が間
隔をおいて穿設されている。上部胴38と下部胴39の
接続部には上部管板41が、また下部胴39の下端部に
は下部管板42が水平に設けられている。
In the upper passage, a plurality of primary cooling member inlet windows 50 are bored at intervals in the upper part of the peripheral wall. An upper tube plate 41 is provided horizontally at the connection portion between the upper body 38 and the lower body 39, and a lower tube plate 42 is provided horizontally at the lower end of the lower body 39.

上部管板41および下部管板42にはこれらを貫通する
多数の伝熱管43の上・下端が支持されている。
The upper and lower ends of a large number of heat transfer tubes 43 passing through the upper tube sheet 41 and the lower tube sheet 42 are supported.

よ、力量。よゆお、ゆ。ヶ、部材い。78ヤ、および2
次冷部材出ロノズル45が設けられている。
Yo, ability. Yoyuo, yu. Yes, there are some parts. 78 ya, and 2
A secondary cooling member delivery nozzle 45 is provided.

2次冷部材入ロノズル材と連通した下降管46は下部胴
39の細心部を下部管板42まで下降し、下部管板42
付近の下部開口46aで開口している。2次冷部材出ロ
ノズル45と連通した上昇管47は下降管46を囲んで
上部管板41まで垂下し、上部管板41下方の上部開口
47aで開口している。
The descending pipe 46 communicating with the nozzle material containing the secondary cooling member descends through the narrow part of the lower body 39 to the lower tube plate 42 .
It opens at a nearby lower opening 46a. An ascending pipe 47 communicating with the secondary cooling member outlet nozzle 45 surrounds the descending pipe 46 and hangs down to the upper tube plate 41, and opens at an upper opening 47a below the upper tube plate 41.

この実施例に係る中間熱交換器おでは、上部管板41、
下部管板42、並びに伝熱管43には、高温強度に優れ
ると共に熱膨張率の比較的小さい材料、例えば39Cr
系フエライト鋼(Mod、 9Cr−IMo鋼等)を使
用し、下部胴39の一部には、高温強度に優れると共に
熱膨張率の比較的大きい材料、例えばステンレス鋼(S
O2,304等)を使用し、異材継手23により接合す
る。下部胴39のうち、ステンレス鋼を使用する部分3
9bの長さは、運転時の下部胴39と伝熱管43の温度
分布から計算し、下部胴39と伝熱管43の間の熱膨張
差がほぼ等しく、伝熱管43には引張荷重が、また下部
胴39には圧縮荷重がわずかに作用するように設定する
In the intermediate heat exchanger according to this embodiment, the upper tube plate 41,
The lower tube plate 42 and the heat exchanger tubes 43 are made of a material that has excellent high-temperature strength and a relatively small coefficient of thermal expansion, such as 39Cr.
A part of the lower shell 39 is made of a material with excellent high-temperature strength and a relatively large coefficient of thermal expansion, such as stainless steel (S
02, 304, etc.) and are joined by a dissimilar material joint 23. Part 3 of the lower body 39 that uses stainless steel
The length of 9b is calculated from the temperature distribution of the lower shell 39 and the heat exchanger tube 43 during operation, and the difference in thermal expansion between the lower shell 39 and the heat exchanger tube 43 is approximately equal, and the tensile load and The lower body 39 is set so that a slight compressive load acts on it.

上記構成の中間熱交換器部において、1次冷却材6は、
1次冷部材入口窓50から上部胴38内に流入し、上部
管板41を通って伝熱管43内に流入し、ここを下降し
ながら2次冷却材に熱を伝え、下部管板42から下方へ
流出する。また、2次冷却材は、2次冷部材入ロノズル
必から、下降管46、下部開口46aを通って下部胴3
9内の伝熱管43外側の空間48へ送られる。次に、こ
の2次冷却材は、空間48を上昇しながら伝熱管43か
ら熱を受けて温度上昇し、上部開口位から、上昇管47
.2次冷部材出ロノズル45を経て炉外の蒸気発生器(
図示せず)へ送られる。
In the intermediate heat exchanger section having the above configuration, the primary coolant 6 is
The primary cooling member flows into the upper body 38 through the inlet window 50, passes through the upper tube sheet 41, flows into the heat transfer tubes 43, descends here and transfers heat to the secondary coolant, and then flows from the lower tube sheet 42. Flows downward. Further, the secondary coolant flows from the secondary coolant-filled nozzle to the lower shell 3 through the downcomer pipe 46 and the lower opening 46a.
It is sent to the space 48 outside the heat exchanger tube 43 in 9. Next, this secondary coolant receives heat from the heat exchanger tube 43 while rising in the space 48, and its temperature increases, and from the upper opening position, the temperature of the secondary coolant increases.
.. The steam generator outside the furnace (
(not shown).

通常運転時には、伝熱管招と下部胴39の温度はそれぞ
れの上下方向の平均で考えると、はぼ等しい。この場合
、製作時(常温)よりも高温状態にあり、伝熱管43の
方が下部胴39よりも熱膨張が小さいため、伝熱管43
には引張荷重が、下部胴39には圧縮荷重が作用する。
During normal operation, the temperatures of the heat exchanger tubes and the lower shell 39 are approximately equal when considered as an average in the vertical direction. In this case, the heat exchanger tube 43 is in a higher temperature state than at the time of manufacture (room temperature), and the thermal expansion of the heat exchanger tube 43 is smaller than that of the lower body 39, so the heat exchanger tube 43
A tensile load acts on the lower body 39, and a compressive load acts on the lower body 39.

次に、ホットショック事故で、伝熱管43温度が急上昇
した場合、伝熱管43がさらに熱膨張するが、この場合
は、伝熱管43にかかつていた引張荷重が緩和する方向
に作用する。
Next, when the temperature of the heat exchanger tube 43 rises rapidly due to a hot shock accident, the heat exchanger tube 43 further thermally expands, but in this case, the tensile load that was previously on the heat exchanger tube 43 acts in a direction to be relieved.

したがって伝熱管43には大きな圧縮荷重がかからず、
伝熱管43と下部胴39とが同一材で製作された場合に
生じる伝熱管43のオイラー座屈を避けることができる
。下部胴39には圧縮荷重がかかるが、下部胴39は伝
熱管43に比べて大径であり、座屈に対して余裕がある
Therefore, no large compressive load is applied to the heat exchanger tubes 43,
Euler buckling of the heat exchanger tube 43, which occurs when the heat exchanger tube 43 and the lower body 39 are made of the same material, can be avoided. Although a compressive load is applied to the lower shell 39, the lower shell 39 has a larger diameter than the heat transfer tubes 43, and has a margin against buckling.

例えば、伝熱管43の長さを8mとし、通常運転時に伝
熱管梠の引張応力および下部胴39の圧縮応力が、50
0°Cの温度で設計寿命中のクリープが無視できる6K
p/ad以下であるようにすると、下部胴39のうちの
ステンレス鋼部分39bの長さは約20係となる。この
設計に対し、上記のホットショック事故を想定し、ホッ
トショック事故時の伝熱管43金属平均温度を450°
C1下部胴39の金属平均温度を400°Cとすると、
伝熱管43には約2 K9Adの圧縮応力がかかること
になるが、オイラー座屈の限界に対しては十分余裕があ
る。
For example, if the length of the heat exchanger tube 43 is 8 m, the tensile stress of the heat exchanger tube cage and the compressive stress of the lower shell 39 during normal operation are 50 m.
6K with negligible creep during the design life at a temperature of 0°C
If p/ad or less is set, the length of the stainless steel portion 39b of the lower body 39 will be about 20 mm. For this design, assuming the hot shock accident described above, the average metal temperature of the heat exchanger tube 43 at the time of a hot shock accident was set to 450°.
Assuming that the average metal temperature of the C1 lower body 39 is 400°C,
A compressive stress of approximately 2K9Ad is applied to the heat exchanger tube 43, but there is sufficient margin for the Euler buckling limit.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で詳述したように、本発明に係る中間熱交
換器によれば、中間熱交換器の下部に従来設置されてい
た下部ヘッド、1次冷部材出ロノズル、並びにベローズ
を削除することが可能となり、中間熱変換器の炉容器内
の全長りを同一とすれば、有効伝熱部を長くとることが
可能となる。
As detailed in the above embodiments, the intermediate heat exchanger according to the present invention eliminates the lower head, the primary cooling member outlet nozzle, and the bellows that were conventionally installed at the lower part of the intermediate heat exchanger. By making the entire length of the intermediate heat converter in the furnace vessel the same, the effective heat transfer section can be made longer.

従って、必要な伝熱面積を同一とした場合には伝熱管本
数を大幅【削減することが可能となり、中間熱交換器の
胴径を小さくすることができる。
Therefore, if the required heat transfer area is kept the same, the number of heat transfer tubes can be significantly reduced, and the body diameter of the intermediate heat exchanger can be reduced.

伝熱管本数を削減すると、1次側の圧力損失が増加する
ことが考えられるが、本発明では1次冷部材出ロノズル
を削除したことによる圧力損失の減少と相殺され、1次
側の圧力損失も許容値に抑えることが可能となる。
Reducing the number of heat transfer tubes may increase the pressure loss on the primary side, but in the present invention, the pressure loss on the primary side is offset by the reduction in pressure loss due to the removal of the primary cooling nozzle, and the pressure loss on the primary side is reduced. can also be suppressed to an allowable value.

一方、構造信頼性の観点から開発要素の残されているベ
ローズが不要になること、また、流動の不均一性等で一
部の伝熱管が高温になり相対的に圧縮荷重が加わっても
、通常の荷重が引張荷重なので相殺され座屈に散るよう
な圧縮荷重にはなり得ない等の構造信頼性の向上に寄与
することが出来る。
On the other hand, from the viewpoint of structural reliability, the bellows, which remains a development element, is no longer necessary, and even if some heat exchanger tubes become hot due to non-uniform flow etc. and a relative compressive load is applied, Since the normal load is a tensile load, it is canceled out and cannot become a compressive load that would cause buckling, contributing to improved structural reliability.

更に、中間熱交換器の胴径の減小は、ひいては炉容器の
縮小等にもつながり、原子カプラント全体のコンパクト
化に寄与できる等の著しい効果を生ずる。
Furthermore, the reduction in the intermediate heat exchanger body diameter also leads to a reduction in the size of the reactor vessel, resulting in significant effects such as contributing to the downsizing of the entire nuclear couple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示すもので、
第1図は中間熱交換器の縦断面図、第2図は下部胴を拡
大して示す部分縦断面図、第3図は従来の高速増殖炉の
縦断面図、第4図は従来の中間熱交換器の縦断面図であ
る。 1・・・炉容器      お・・・中間熱交換器38
・・・上部胴      39・・・下部胴41・・・
上部管板     42・・・下部管板43・・・伝熱
管      46・・・下降管47・・・上昇管  
    50・・・1次冷却材入口窓代理人 弁理士 
則 近 憲 佑 (ほか1名)償   I  M 第  2 図 第3図 第4図
1 and 2 show an embodiment of the present invention,
Figure 1 is a longitudinal sectional view of an intermediate heat exchanger, Figure 2 is a partial longitudinal sectional view showing an enlarged view of the lower shell, Figure 3 is a longitudinal sectional view of a conventional fast breeder reactor, and Figure 4 is a longitudinal sectional view of a conventional intermediate heat exchanger. FIG. 3 is a longitudinal cross-sectional view of the heat exchanger. 1...Furnace vessel O...Intermediate heat exchanger 38
... Upper body 39... Lower body 41...
Upper tube plate 42... Lower tube plate 43... Heat exchanger tube 46... Descending pipe 47... Rising pipe
50...Primary coolant inlet window agent Patent attorney
Noriyuki Kensuke Chika (and 1 other person) Redemption I M Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)原子炉の炉容器内に竪形に配設され、1次冷却材
入口窓を穿設した上部胴と、この上部胴の下方に連接し
た下部胴と、この下部胴の上端および下端にそれぞれ水
平に設置された上部管板および下部管板と、これら上部
管板と下部管板をつなぐ多数の伝熱管と、上記下部胴内
に設けられた2次冷却材の下降管および上昇管とから成
る中間熱交換器において、上記下部胴の材料として、上
記伝熱管の材料よりも熱膨張率の大きいものが使用され
ていること特徴とする中間熱交換器。
(1) An upper shell that is arranged vertically in the reactor vessel of a nuclear reactor and has a primary coolant inlet window, a lower shell that is connected to the lower part of the upper shell, and the upper and lower ends of this lower shell. an upper tube sheet and a lower tube sheet installed horizontally in each, a large number of heat transfer tubes connecting these upper tube sheets and lower tube sheets, and a downcomer pipe and a riser pipe for secondary coolant provided in the lower body. An intermediate heat exchanger comprising: a material having a higher coefficient of thermal expansion than a material for the heat transfer tubes as a material for the lower shell.
(2)上記下部胴の一部分に、上記伝熱管の材料よりも
熱膨張率の大きい材料が使用されていることを特徴とす
る特許請求の範囲第1項記載の中間熱交換器。
(2) The intermediate heat exchanger according to claim 1, wherein a material having a higher coefficient of thermal expansion than the material of the heat exchanger tubes is used for a portion of the lower shell.
JP60078436A 1985-04-15 1985-04-15 Intermediate heat exchanger Pending JPS61237992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60078436A JPS61237992A (en) 1985-04-15 1985-04-15 Intermediate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078436A JPS61237992A (en) 1985-04-15 1985-04-15 Intermediate heat exchanger

Publications (1)

Publication Number Publication Date
JPS61237992A true JPS61237992A (en) 1986-10-23

Family

ID=13661987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078436A Pending JPS61237992A (en) 1985-04-15 1985-04-15 Intermediate heat exchanger

Country Status (1)

Country Link
JP (1) JPS61237992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180268A (en) * 2003-12-18 2005-07-07 Isuzu Motors Ltd Egr cooler for engine
CN105143807A (en) * 2013-04-23 2015-12-09 马勒国际公司 Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005180268A (en) * 2003-12-18 2005-07-07 Isuzu Motors Ltd Egr cooler for engine
CN105143807A (en) * 2013-04-23 2015-12-09 马勒国际公司 Heat exchanger

Similar Documents

Publication Publication Date Title
EP0141158B1 (en) Double tank type fast breeder reactor
JPS61237992A (en) Intermediate heat exchanger
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
US4664876A (en) Fast breeder reactor
US4585058A (en) Heat exchanger having a bundle of straight tubes
JPS61112888A (en) High-temperature double piping
WO2023090744A1 (en) Double-walled single-pass steam generator
JPS623392B2 (en)
JP2809700B2 (en) Core structure for fast breeder reactor
JPS61226697A (en) Intermediate heat exchanger for tank type fast breeder reactor
JPH0473079B2 (en)
JPS6033083A (en) Tank type fast breeder reactor
JPS61268994A (en) Intermediate heat exchanger
JPH0274896A (en) Structure of nuclear reactor
JPS62268997A (en) Intermediate heat exchanger
JPS6330079Y2 (en)
JPH01217192A (en) Intermediate heat exchanger
JPS61122597A (en) Intermediate heat exchanger
JPS63127188A (en) Tank type fast breeder reactor
JPS61272596A (en) Intermediate heat exchanger
JPH04268495A (en) Removing equipment for core decay heat
JPH01181002A (en) Vapor generator
JPH01112197A (en) Intermediate heat exchanger
JPS62186101A (en) Steam generator
JPH0656423B2 (en) Double tank type fast breeder reactor