JPS61272596A - Intermediate heat exchanger - Google Patents

Intermediate heat exchanger

Info

Publication number
JPS61272596A
JPS61272596A JP11512585A JP11512585A JPS61272596A JP S61272596 A JPS61272596 A JP S61272596A JP 11512585 A JP11512585 A JP 11512585A JP 11512585 A JP11512585 A JP 11512585A JP S61272596 A JPS61272596 A JP S61272596A
Authority
JP
Japan
Prior art keywords
bellows
heat exchanger
outer shell
tube
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11512585A
Other languages
Japanese (ja)
Inventor
Hiroto Kawakami
川上 博人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11512585A priority Critical patent/JPS61272596A/en
Publication of JPS61272596A publication Critical patent/JPS61272596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To secure soundness of bellows themselves, by providing the bellows comprising multiple layers in the vicinity of the lower ends of an outer drum and an inner drum, fixing the bellows by a folded tube, sealing the outer drum and the inner drum with the relatively short bellows, and absorbing the difference in thermal expansions by the temperature difference among the outer drum, an upper tube plate, a heat transfer pipe, a lower tube plate and the inner drum. CONSTITUTION:Outer and inner double bellows 34a and 34b are provided between an outer drum 19 and an inner drum 33 and have the double-bellows shape. The upper end of the outer bellows 34a is fixed to the outer drum 19, and the lower end is coupled and fixed to the lower end of the a folded tube 38. The upper end of the inner bellows 34b is fixed to the upper end of the folded tube 38, and the lower end is coupled and fixed to the lower end of the inner drum 33. The difference in thermal expansions at the lower end parts of the outer drum 19 and the inner drum 33, which is caused by the temperature difference among the outer drum 19, an upper tube plate 20a, a heat transfer pipe 21, a lower tube plate 20b and the inner drum 33, is absorbed by the expansion and the contraction of the outer bellows 34a and the inner bellows 34b, which are provided between the outer drum 29 and the inner drum 33, in the axial direction.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明はタンク型高速増殖炉に用いられる中間熱交換器
に係り、特に胴と管束間の熱膨張差を吸収する構造を有
する中間熱交換器に関する。
Detailed Description of the Invention [Technical Field of the Invention 1] The present invention relates to an intermediate heat exchanger used in a tank-type fast breeder reactor, and particularly to an intermediate heat exchanger having a structure that absorbs a difference in thermal expansion between a shell and a tube bundle. Regarding.

[発明の技術的背景とその問題点] 従来、タンク型高速増殖炉において、原子炉容器のルー
フスラブに長尺円筒状のシェルアンドチューブ型中間熱
交換器を一次主循環ボンブと周方向に交互に複数台、間
隔的に吊下したものがある。
[Technical background of the invention and its problems] Conventionally, in tank-type fast breeder reactors, long cylindrical shell-and-tube intermediate heat exchangers are installed on the roof slab of the reactor vessel alternately with the primary main circulation bomb in the circumferential direction. There are multiple units suspended at intervals.

この中間熱交換器により原子炉容器内で一次冷却材と二
次冷却材との熱交換を行なう。中間熱交換器は一次冷却
材を循環させる垂直な外胴と、この外胴の軸心部に同心
的に配置され二次冷却材を循環させる内側管および外側
管を有している。この中間熱交換器の下端部は、原子炉
容器内の上下部にホットプールとコールドプールとを画
成する水平な隔壁の上下方向に沿う貫通孔に挿入され、
外胴は前記隔壁の貫通孔周縁に沿って設けたスタンドパ
イプにシール保持され−ている。そして、ホットプール
の高温の一次冷却材が中間熱交換器の外胴にあけた窓孔
から流入し、その外用内に設けた伝熱管部で、内側管お
よび外側管を流れる二次冷却材と熱交換して低温となり
、外胴の下端部からコールドプールに流入する。なお、
コールドブールの低温の一次冷却材は一次主循環ポンプ
によって強制的に炉心下部に導入され、炉心で加熱され
て上昇し、ホットブールに至る。
This intermediate heat exchanger performs heat exchange between the primary coolant and the secondary coolant within the reactor vessel. The intermediate heat exchanger has a vertical outer shell that circulates the primary coolant, and inner and outer tubes that are arranged concentrically around the axis of the outer shell and that circulate the secondary coolant. The lower end of this intermediate heat exchanger is inserted into a through hole along the vertical direction of a horizontal partition wall that defines a hot pool and a cold pool in the upper and lower parts of the reactor vessel,
The outer shell is sealed and held by a stand pipe provided along the periphery of the through hole in the partition wall. The high-temperature primary coolant from the hot pool flows in through the window hole drilled in the outer shell of the intermediate heat exchanger, and the secondary coolant flows through the inner and outer tubes through the heat transfer tube section provided inside the external heat exchanger. It exchanges heat, becomes low temperature, and flows into the cold pool from the lower end of the outer shell. In addition,
The low-temperature primary coolant in the cold boule is forcibly introduced into the lower core by the primary main circulation pump, heated in the core, rises, and reaches the hot boule.

ところで、上記のような中間熱交換器が設置された高速
増殖炉において、原子炉の種々の運転モードにおいて中
間熱交換器に生じる温度分布を考察する。ここで、外胴
に設けられた窓孔から伝熱管部に流入する一次冷却材を
温度TPH1外胴の下端部からコールドプールに流出す
る一次冷却材温度をTPOとする。また、内側管を流れ
て伝熱管部へ流入する二次冷却材温度と外側管を流れて
伝熱管部から流出する二次冷却材温度をそれぞれTSC
とTSHとする。そこで、伝熱管部と高さを同じくする
外胴との温度差について考えることにする。伝熱管の内
部には一次冷却材が下降して流れ、外部は二次冷却材が
接しながら上方へ移行するため伝熱管の温度は一次冷却
材と二次冷却材のそれぞれの温度の中間的な温度になっ
ていて高さ方向に温度分布を異にしている。
By the way, in a fast breeder reactor equipped with an intermediate heat exchanger as described above, the temperature distribution occurring in the intermediate heat exchanger in various operating modes of the reactor will be considered. Here, the temperature of the primary coolant flowing into the heat transfer tube section from the window hole provided in the outer shell is TPH1, and the temperature of the primary coolant flowing out from the lower end of the outer shell into the cold pool is TPO. In addition, the temperature of the secondary coolant flowing through the inner tube and flowing into the heat exchanger tube section and the temperature of the secondary coolant flowing through the outer tube and flowing out from the heat exchanger tube section are calculated by TSC.
and TSH. Therefore, let us consider the temperature difference between the heat exchanger tube portion and the outer shell, which has the same height. The primary coolant flows downward inside the heat exchanger tube, and the secondary coolant flows upward while being in contact with the outside, so the temperature of the heat exchanger tube is between the temperatures of the primary coolant and the secondary coolant. temperature, and the temperature distribution differs in the height direction.

従って、下部管板付近ではTPOとTSCとの間、上部
管板の付近ではTPHとTSHとの間の温度になってい
る。
Therefore, the temperature near the lower tube sheet is between TPO and TSC, and the temperature near the upper tube sheet is between TPH and TSH.

一方、外胴の温度は、この内側と二次冷却材が伝熱管を
通過して上方へ移行して流れ、その外側はスタンドパイ
プとの間のほとんど流動しない一次冷却材によって満た
されているので、およそ二次冷却材の温度に等しいと考
えられる。したがって外胴の温度は下部管板付近ではT
SG、上部管板付近ではTSH程度である。
On the other hand, the temperature of the outer shell is determined by the fact that the inside and secondary coolant flows upward through the heat transfer tube, and the outside is filled with the primary coolant that hardly flows between it and the standpipe. , is considered to be approximately equal to the temperature of the secondary coolant. Therefore, the temperature of the outer shell is T near the lower tube plate.
SG, it is about TSH near the upper tube plate.

上記したように伝熱管と外胴との間には温度差が常に存
在しているものと考えられ、この温度差によって生ずる
熱膨張差は、外胴あるいは伝熱管に過大な熱応力を引き
起こす可能性があるので、この熱膨張差を吸収する機構
を設置することが必要である。
As mentioned above, it is thought that a temperature difference always exists between the heat exchanger tube and the outer shell, and the difference in thermal expansion caused by this temperature difference can cause excessive thermal stress on the outer shell or the heat exchanger tube. Therefore, it is necessary to install a mechanism to absorb this difference in thermal expansion.

この熱膨張差を生じる外胴と伝熱管の温度差を設計上安
全側に見積るために、伝熱管温度はそこ・を通過する一
次冷却材の温度に等しいと仮定し、外胴の温度はそこを
通過する二次冷却材温度に等しいと仮定する。したがっ
て、外胴と伝熱管の温度差は下部管板の付近ではTPO
−TSClまた上部管板付近ではTPH−TSH程度で
ある。これらの値はタンク型高速増殖炉のシステム全体
の設計に基づく一次および二次冷却材の温度変化に依存
するわけであるが、通常の運転時にはおよそ40〜50
℃程度になっているものとされる。しかし、原子炉の運
転上の温度に伴って生ずる一次および二次冷却材温度の
過渡的な変化においてはかなり大ぎな温度差が生ずる可
能性もあり、特に二次冷却系が停止するようなホットシ
ョックが起こる現象において、この温度差は安全性を考
慮して大きめに見積っても下部管板の付近で150℃程
度にもなるものと考えておく必要がある。また、伝熱管
部の縦方向の長さは一般に5〜6m程度であるから、こ
の温度差(縦方向に一様と仮定する)によって生ずる熱
膨張差はおよそ15〜1811となる。このような大き
な熱膨張差を放置すれば伝熱管に生ずる圧縮応力による
伝熱管の座屈等、中間熱交換器の機器の健全性保持に悪
影響を及ぼすことが考えられる。
In order to estimate the temperature difference between the outer shell and the heat transfer tube, which causes this difference in thermal expansion, on the safe side in terms of design, it is assumed that the temperature of the heat transfer tube is equal to the temperature of the primary coolant passing through it, and the temperature of the outer shell is is assumed to be equal to the secondary coolant temperature passing through. Therefore, the temperature difference between the outer shell and the heat transfer tube is TPO near the lower tube sheet.
-TSCl, and near the upper tube sheet, it is about TPH-TSH. These values depend on the temperature changes of the primary and secondary coolants based on the overall system design of the tank-type fast breeder reactor, but during normal operation they are approximately 40-50°C.
It is assumed that the temperature is around ℃. However, transient changes in primary and secondary coolant temperatures that occur with the operating temperature of a nuclear reactor can result in fairly large temperature differences, especially in hot conditions where the secondary cooling system shuts down. In the event of a shock, it is necessary to consider that this temperature difference will be approximately 150 degrees Celsius near the lower tube sheet, even if it is estimated to be large considering safety. Further, since the length of the heat exchanger tube portion in the vertical direction is generally about 5 to 6 m, the difference in thermal expansion caused by this temperature difference (assumed to be uniform in the vertical direction) is approximately 15 to 1811 m. If such a large difference in thermal expansion is left unaddressed, compressive stress generated in the heat exchanger tubes may cause buckling of the heat exchanger tubes, which may adversely affect the maintenance of the integrity of the intermediate heat exchanger equipment.

そこで、従来この対策として考えられたのは中間熱交換
器の下端部において、外胴と下部プレナムを形成する内
胴との間に熱膨張差吸収用のベローズを設けるというも
のである。このベローズは中間熱交換器の軸方向の変位
を吸収しやすい性質を有しており、これにより伝熱管と
外胴の熱膨張差を吸収する。
A conventional solution to this problem has been to provide a bellows for absorbing the difference in thermal expansion between the outer shell and the inner shell forming the lower plenum at the lower end of the intermediate heat exchanger. This bellows has the property of easily absorbing displacement in the axial direction of the intermediate heat exchanger, thereby absorbing the difference in thermal expansion between the heat exchanger tube and the outer shell.

第4図は、上記ベローズの従来構造を拡大して示すもの
で、外胴19の下端テーパ部の下端付近と内胴33の下
端との間に一重のベローズ34が設置されている。内胴
33は下部管板20bと一体であり、下部管板20bと
図示しない上部管板とは伝熱管21を介して溶接等によ
り大きな剛性を持って結合されている。更に、上部管板
はその周囲において外胴19と再−び溶接等の方法によ
り溶着されている。したがって上部管板のレベルより下
側の外胴の温度と、上部管板、伝熱管21、下部管板2
0bおよび内胴33の温度との差によって生ずる外胴1
9下端と内胴33下端の軸方向相対変位はほとんどすべ
てをベローズ34により吸収され、外胴19および伝熱
管21に生ずる熱応力を緩和している。また、ベローズ
34は、二次冷却材で満たされた外胴19と内1113
3で形成されたテーパ状のアニユラス空間36の圧力と
下部プレナム10の一次冷却材の圧力との差圧を支えて
バウンダリーを形成している。
FIG. 4 shows an enlarged view of the conventional structure of the bellows, in which a single bellows 34 is installed between the vicinity of the lower end of the lower tapered portion of the outer shell 19 and the lower end of the inner shell 33. The inner shell 33 is integral with the lower tube sheet 20b, and the lower tube sheet 20b and an unillustrated upper tube sheet are connected with great rigidity by welding or the like via the heat transfer tubes 21. Further, the upper tube plate is welded to the outer shell 19 again by welding or the like around the upper tube plate. Therefore, the temperature of the outer shell below the level of the upper tube sheet, the upper tube sheet, the heat transfer tube 21, and the lower tube sheet 2
Outer shell 1 caused by the difference in temperature between 0b and inner shell 33
Almost all of the relative displacement in the axial direction between the lower end of the inner shell 33 and the lower end of the inner shell 33 is absorbed by the bellows 34, thereby relieving the thermal stress generated in the outer shell 19 and the heat transfer tubes 21. The bellows 34 also has an outer shell 19 and an inner shell 1113 filled with secondary coolant.
The boundary is formed by supporting the differential pressure between the pressure in the tapered annulus space 36 formed by the annulus 3 and the pressure of the primary coolant in the lower plenum 10.

なお、図示しない隔壁およびその下方に配置する隔壁支
持体に、中間熱交換器挿入用の貫通孔の周縁に沿うスタ
ンドバイブ30が固定されている。
Note that a stand vibrator 30 is fixed to a partition wall (not shown) and a partition wall support disposed below the partition wall, along the periphery of a through hole for inserting an intermediate heat exchanger.

このスタンドバイブ30は、中間熱交換器14の据付は
位置における外胴19の下端よりも下方に長く延出して
いる。このスタンドバイブ30と外胴19との間にはベ
ローズ35が設けられ、ホットブールとコールドブール
10との間をシールするとともに、スタンドバイブ30
と外胴19との熱膨張差を吸収し得るようになっている
This stand vibe 30 extends further downward than the lower end of the outer shell 19 at the location where the intermediate heat exchanger 14 is installed. A bellows 35 is provided between the stand vibe 30 and the outer body 19, and seals between the hot boule and the cold boule 10, and the stand vibe 30
The difference in thermal expansion between the outer shell 19 and the outer shell 19 can be absorbed.

ところで、かような従来の中間熱交換器では、ベローズ
以外の部分はほとんど剛体であるとみなし、変位、つま
りひずみはベローズ34.35に集中する傾向があるた
め、ベローズ34.35自信の構造健全性が問題となる
。ベローズ34,35に作用される主な荷重は、上記熱
膨張差による軸方向の変位制御型の荷重および一次と二
次冷却材の圧力差である。特にタンク型の高速増殖炉の
場合、−次冷却材の圧力は低く、上記圧力差はかなり大
きい一次荷重として作用する。したがって、これに熱膨
張差による荷重が重畳した場合ベローズのラチェット変
形等の過大な変形挙動を引き起こす恐れがある。それを
防止するためには、熱膨張差による応力をできるだけ小
さくする必要があるが、それには、ベローズの軸長を増
して、ベローズの山数を多くする処置が考えられている
。しかしながら、このようにすると中間熱交換器の全長
は必然的に増大し、原子炉容器の深さ方向のサイズに制
約を与え、ひいてはタンク型高速増殖炉のコスト増大に
つながる問題点がある。
By the way, in such a conventional intermediate heat exchanger, most of the parts other than the bellows are considered to be rigid bodies, and displacement, that is, strain, tends to be concentrated on the bellows 34.35, so the structural integrity of the bellows 34.35 is not guaranteed. Gender becomes an issue. The main loads acting on the bellows 34, 35 are the axial displacement control type load due to the thermal expansion difference and the pressure difference between the primary and secondary coolants. Particularly in the case of a tank-type fast breeder reactor, the pressure of the secondary coolant is low, and the pressure difference acts as a fairly large primary load. Therefore, if a load due to the difference in thermal expansion is superimposed on this, there is a risk of causing excessive deformation behavior such as ratchet deformation of the bellows. In order to prevent this, it is necessary to reduce the stress due to the difference in thermal expansion as much as possible, and for this purpose, measures have been considered to increase the axial length of the bellows and increase the number of ridges on the bellows. However, in this case, the overall length of the intermediate heat exchanger inevitably increases, which limits the size of the reactor vessel in the depth direction, which in turn leads to an increase in the cost of the tank-type fast breeder reactor.

[発明の目的] ・本発明はこのような問題引を解決するためになされた
もので、中間熱交換器の下端附近の外胴と内胴との間に
熱膨張差吸収用に内外二重のベローズを設けることによ
り、ベローズ自身の構造健全性を確保するとともに、中
間熱交換器の伝熱管や外用に生ずる熱応力の大幅な緩和
が図れ、コストダウンにつながる中間熱交換器を提供す
ることにある。
[Object of the invention] - The present invention has been made to solve these problems, and includes a double inner and outer shell between the outer shell and the inner shell near the lower end of the intermediate heat exchanger to absorb the difference in thermal expansion. To provide an intermediate heat exchanger in which the structural soundness of the bellows itself is ensured by providing a bellows, and the thermal stress generated in the heat exchanger tubes and external use of the intermediate heat exchanger can be significantly alleviated, leading to cost reduction. It is in.

し発明の概要] 本発明はこの目的を達成するため、中間熱交換器の下端
附近の外胴と内胴との間に、多層から成るベローズを装
着し、ベローズの一方を外胴に、他方を内胴に固定し、
多層のベローズ相互間には円筒状の折り返し筒を設置す
ることにより、短尺でかつ多数の山数を結果的にシリー
ズに設置し、外胴と内胴の大きな相対変位を吸収して一
次および二次冷却材のバウンダリーを形成するようにし
ている。
[Summary of the Invention] In order to achieve this object, the present invention installs a multi-layered bellows between an outer shell and an inner shell near the lower end of an intermediate heat exchanger, one of the bellows is attached to the outer shell, and the other is attached to the outer shell. is fixed to the inner body,
By installing cylindrical folded tubes between the multi-layered bellows, a large number of short tubes can be installed in series, absorbing the large relative displacement between the outer shell and the inner shell, and reducing the primary and secondary bellows. Next, a coolant boundary is formed.

[発明の実施例] 以下、本発明の一実施例を図面を参照して説明する。な
お、第1図ないし第3図中、同一部分には同一符号を付
して重複した部分の説明を省略する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In addition, in FIGS. 1 to 3, the same parts are given the same reference numerals, and the explanation of the overlapping parts will be omitted.

まず、タンク型高速増殖炉の全体を第2図によって説明
する。
First, the entire tank-type fast breeder reactor will be explained with reference to FIG.

原子炉容器1は安全のため内側の主容器1aとガードベ
ッセル1bとの二重構造とされており、円筒状のキャビ
ティウオール2内に吊下げ支持されている。この原子炉
容器1およびキャビティウオール2はルーフスラブ3に
より閉塞されている。
For safety, the reactor vessel 1 has a double structure consisting of an inner main vessel 1a and a guard vessel 1b, and is suspended and supported within a cylindrical cavity wall 2. The reactor vessel 1 and cavity wall 2 are closed by a roof slab 3.

そして、主容器1a内の下部には炉心支持体4を介して
プレナム部5および炉心6が順次積層されている。この
炉心6の上部にはルーフスラブ3に炉心上部機構7が設
けられている。また、炉心6のちょうど上端部位置にお
いて、主容器1a内を上方のホットブール9と下方のコ
ールドブール10とに区画する隔壁8が隔壁支持体8b
によって設けられている。
A plenum portion 5 and a core 6 are sequentially stacked with a core support 4 interposed in the lower part of the main vessel 1a. A core upper mechanism 7 is provided on the roof slab 3 above the core 6 . Further, at the exact upper end position of the core 6, a partition wall 8 that partitions the inside of the main vessel 1a into an upper hot boule 9 and a lower cold boule 10 is attached to a partition wall support 8b.
established by.

また、ルーフスラブ3からは主容器1a内の一次冷却材
15を循環させる複数の−次主循環ボンブ11が周方向
に等間隔に吊下されている。これらの−法主循環ボンプ
11の外側を包囲する薄肉円筒体12が隔壁8を上下に
貫通して設けられている。また、各々の一次主循環ボン
ブ11の下端からは炉内配管13が導出され、その先端
がプレナム部5に接続されている。
Further, a plurality of secondary main circulation bombs 11 that circulate the primary coolant 15 within the main container 1a are suspended from the roof slab 3 at equal intervals in the circumferential direction. A thin cylindrical body 12 surrounding the outside of these primary circulation pumps 11 is provided to vertically penetrate the partition wall 8. Further, an in-furnace pipe 13 is led out from the lower end of each primary main circulation bomb 11, and its tip is connected to the plenum part 5.

さらに、ルーフスラブ3からは一次冷却材と二次冷却材
との熱交換を行なう複数の中間熱交換器14が周方向に
等間隔に主容器1内に吊下されており、その下端は隔壁
8を貫通してコールドブール10内に達している。この
ルーフスラブ3は内部の空洞部へ主容器1外に設置した
ガス循環装置17により冷却ガスを循環供給することに
より加熱防止を図っている。また、ルーフスラブ3の下
面と一次冷却材15の上面との空間には不活性ガスのカ
バーガスが充填されている。
Further, from the roof slab 3, a plurality of intermediate heat exchangers 14 for exchanging heat between the primary coolant and the secondary coolant are suspended in the main container 1 at equal intervals in the circumferential direction, and their lower ends are connected to the partition wall. 8 and reaches into the cold boule 10. This roof slab 3 is designed to prevent heating by circulating and supplying cooling gas to the internal cavity by a gas circulation device 17 installed outside the main container 1. Further, the space between the lower surface of the roof slab 3 and the upper surface of the primary coolant 15 is filled with an inert cover gas.

ここで、以上のように構成されたタンク型高速増殖炉の
作用を説明する。
Here, the operation of the tank-type fast breeder reactor configured as described above will be explained.

まず、液体ナトリウム等の液体金属からなる一次冷却材
15は、炉心6を上方に向って通過する間に核反応によ
る熱エネルギを受けて加熱されて高温となり、炉心上部
機構7の窓孔を通してホットプール9内へ流入する。そ
して、−次冷却材15は中間熱交換器14へ上部から流
入し、二次冷却材としての液体金属へ熱エネルギを伝達
し、自らは温度降下してコールドブール10内へ流入す
る。
First, the primary coolant 15 made of a liquid metal such as liquid sodium is heated to a high temperature by receiving thermal energy from a nuclear reaction while passing upward through the reactor core 6, and passes through a window hole in the upper core mechanism 7 to a hot temperature. It flows into the pool 9. Then, the secondary coolant 15 flows into the intermediate heat exchanger 14 from above, transfers heat energy to the liquid metal serving as the secondary coolant, cools itself, and flows into the cold boule 10.

一方、コールドブール10内の一次冷却材15は、薄肉
円筒体12内を上昇して一次主循環ボンブ11により昇
圧され、炉内配管13を通ってプレナム部5へ戻される
On the other hand, the primary coolant 15 in the cold boule 10 rises within the thin-walled cylindrical body 12, is pressurized by the primary main circulation bomb 11, and is returned to the plenum portion 5 through the furnace piping 13.

次に中間熱交換器の構成および作用を第3図によって説
明する。
Next, the structure and operation of the intermediate heat exchanger will be explained with reference to FIG.

中間熱交換器14は長尺な中空状の外胴19を有し、こ
の外胴19の上端に形成したフランジ19aがルーフス
ラブ3に支持され、中間熱交換器14全体は吊下されて
いる。この外胴19の下端はテーパ状に縮径され、隔壁
8の貫通孔8aに押通されてコールドブール10内に出
口ノズル19bをもって開口している。
The intermediate heat exchanger 14 has a long hollow outer shell 19, a flange 19a formed at the upper end of the outer shell 19 is supported by the roof slab 3, and the entire intermediate heat exchanger 14 is suspended. . The lower end of this outer body 19 has a tapered diameter, is pushed through a through hole 8a of the partition wall 8, and opens into the cold boule 10 with an outlet nozzle 19b.

また、外胴19の下部には上下管板20a、2obの間
に貫通支持された多数の伝熱管21が収納されている。
Further, a large number of heat transfer tubes 21 are housed in the lower part of the outer shell 19 and are supported through the upper and lower tube plates 20a and 2ob.

そして、外胴19にあけた入口窓22から上管板2Oa
上に流入した一次冷却材15〈大曲矢印)は、各伝熱管
21内を流下して下管板20bから流出し、出口ノズル
19bを通ってコールドブール10内に流下する。
Then, from the entrance window 22 made in the outer shell 19, the upper tube plate 2Oa is opened.
The primary coolant 15 (large curved arrow) that has flowed upward flows down inside each heat transfer tube 21, flows out from the lower tube plate 20b, and flows down into the cold boule 10 through the outlet nozzle 19b.

また、外胴19の中心部には、ルーフスラブ3の外部か
ら液体ナトリウム等の液体金属から成る二次冷却材23
(大黒矢印)を上下管板20a、2Ob間の空間2Oc
内に下端開口24aを通して送給する内側管24と、前
記空間20Gから一次冷却材15との熱交換によって加
温されて二次冷却材23を取出し、ルーフスラブ3外へ
導出する外側管25とで形成されたダウンカフ26が設
けられている。
In addition, a secondary coolant 23 made of liquid metal such as liquid sodium is supplied from the outside of the roof slab 3 to the center of the outer shell 19.
(Daikoku arrow) is the space 2Oc between the upper and lower tube plates 20a and 2Ob.
an inner pipe 24 that feeds the inside through the lower end opening 24a, and an outer pipe 25 that takes out the secondary coolant 23 heated by heat exchange with the primary coolant 15 from the space 20G and leads it out to the outside of the roof slab 3. A down cuff 26 is provided.

なお、内側管下端で下管板20bとの貫通部は、二次冷
却材23が直接当たる゛ことから鏡板31として構成し
である。
The penetrating portion with the lower tube plate 20b at the lower end of the inner tube is configured as an end plate 31 because the secondary coolant 23 comes into direct contact with it.

また、外胴19の上端部には一次冷却材15からの輻射
熱防止のための熱遮蔽板27と、放射線遮断のため鋼球
を充填した放射線遮蔽体28とが設けられている。ホッ
トプール9内の外胴19の外側には、入口窓22から外
胴19内へ流入する一次冷却材を整流させるスカート2
9がルーフスラブ3の下面から垂下している。
Furthermore, a heat shield plate 27 for preventing radiant heat from the primary coolant 15 and a radiation shield 28 filled with steel balls for blocking radiation are provided at the upper end of the outer shell 19. On the outside of the outer shell 19 in the hot pool 9, there is a skirt 2 that rectifies the primary coolant flowing into the outer shell 19 from the inlet window 22.
9 hangs down from the lower surface of the roof slab 3.

ここで、中間熱交換器14での熱交換作用を説明する。Here, the heat exchange action in the intermediate heat exchanger 14 will be explained.

一次冷却材15は、第3図に大曲矢印で示すように、ホ
ットプール9内において、外胴1つとスカート29との
間を通り、整流された状態で入口窓22から外胴19内
へ流入する。
As shown by the large curved arrow in FIG. 3, the primary coolant 15 passes between one outer shell and the skirt 29 in the hot pool 9, and flows into the outer shell 19 from the inlet window 22 in a rectified state. do.

一方、二次冷却材23は、大黒矢印で示ずように、ダウ
ンカフ26の内側管24内を流下し、下端開口24aを
通って空間2Oc内に流入する。
On the other hand, the secondary coolant 23 flows down inside the inner tube 24 of the down cuff 26, as shown by the large black arrow, and flows into the space 2Oc through the lower end opening 24a.

そして、伝熱管21内を流下する一次冷却材15と、空
間20cを上昇する二次冷却材23とが相互に熱交換さ
れる。この熱交換後、低温状態になった一次冷却材15
は伝熱管21の開口から外胴19内に流出し、出口ノズ
ル19bを通ってコールビブール10内に流入する。
The primary coolant 15 flowing down in the heat transfer tube 21 and the secondary coolant 23 rising in the space 20c exchange heat with each other. After this heat exchange, the primary coolant 15 is in a low temperature state.
flows out into the outer shell 19 from the opening of the heat exchanger tube 21, and flows into the corbibourg 10 through the outlet nozzle 19b.

一方、高温状態になった二次冷却材23は、上管板20
aの部分でダウンカフ26の外側管25内に流入し、二
次主冷却材系の蒸気発生器(図示せず)へ送給される。
On the other hand, the secondary coolant 23 that has reached a high temperature is transferred to the upper tube plate 20.
It flows into the outer tube 25 of the down cuff 26 at a portion a, and is fed to a steam generator (not shown) of the secondary main coolant system.

次に、外胴19と内胴33との間に設けた外、白画ベロ
ーズ34a、34bの構成について説明する。
Next, the structure of the outer blank bellows 34a and 34b provided between the outer shell 19 and the inner shell 33 will be described.

第1図は第3図における中間熱交換器の外、白画ベロー
ズ34a、34b、35の部分を拡大して左半分のみを
示す断面図である。外内二重ベローズ34a、34bは
外胴19と内胴33との間に設置されており、外胴19
側の外ベローズ34aと内胴33側の内ベローズ34b
の二重ベローズの形をとっている。外ベローズ34aの
上端は外1119に、下端は折返し筒38の下端に結合
固定され、また内ベローズ34bの上端は折返し筒38
の上端に、下端は内胴33の下端に結合固定している。
FIG. 1 is an enlarged sectional view showing only the left half of the white bellows 34a, 34b, and 35 outside the intermediate heat exchanger in FIG. The outer and inner double bellows 34a and 34b are installed between the outer shell 19 and the inner shell 33, and the outer shell 19
Outer bellows 34a on the side and inner bellows 34b on the inner body 33 side
It takes the form of a double bellows. The upper end of the outer bellows 34a is connected to the outside 1119, the lower end is connected and fixed to the lower end of the folded tube 38, and the upper end of the inner bellows 34b is fixed to the folded tube 38.
The upper end and the lower end are fixedly connected to the lower end of the inner shell 33.

次に上記構成の一実施例の作用を第1図によって説明す
る。
Next, the operation of one embodiment of the above configuration will be explained with reference to FIG.

外胴19と上部管板20a、伝熱管21、下部管板20
bおよび内胴33との温度差により生じた、外Ji19
と内1133のそれぞれの下端部に現われる熱膨張差は
、外rIA19と内胴33の間に設置された外ベローズ
34aおよび内ベローズ34bの軸方向の伸縮によって
吸収される。−例として高速増殖炉の通常運転時に、外
胴19と上部管板20a、伝熱管21、下部管板20b
および内胴33との間に40℃程度の温度差が生じてい
る場合を考察する。この場合、外胴19と内胴33の下
端部に生ずる熱膨張差による相対変位は、中間熱交換器
14の詳細寸法にもよるがおよそ4龍程度になるものと
考えられる。また、この時、外胴19側の温度が低い側
であるから、外胴19の下端より内胴33下端の方が下
に4n伸びた状態となっている。二重ベローズ34aお
よび34bは径が若干異なる他はほとんど同一の形状、
寸法を有しているので、それらの変位盪はほぼ均等に2
nずつに配分されると考えられる。したがってベローズ
を一重にした第4図に示す従来例に比較すれば、熱膨張
差を吸収するためにベローズ自身叫生ずる二次応力は半
減され、例え、二次冷却系が停止するホットショックの
事象において生じる過大な温度差による熱膨張であって
もベローズの健全性を確保して吸収し得ることができる
。特に、タンク型の高速増殖炉においては二次冷却材と
一次冷却材の圧力差が大きく、これによるベローズに生
じる一次応力は大きく、更にこの上に熱膨張差による一
次応力が繰り返し負荷された場合にはへローズの熱的ラ
チェットのような過大変形が心配されるが、本発明によ
れば、およそ半分の長さのベローズを用いることにより
このような過大変形の起こらない熱膨張吸収機構を提供
できる。
Outer shell 19, upper tube sheet 20a, heat transfer tube 21, lower tube sheet 20
b and the inner shell 33 caused by the temperature difference.
The difference in thermal expansion that appears at the lower ends of the outer rIA 19 and the inner bellows 33 is absorbed by the axial expansion and contraction of the outer bellows 34a and the inner bellows 34b installed between the outer rIA 19 and the inner shell 33. - For example, during normal operation of a fast breeder reactor, the outer shell 19, upper tube sheet 20a, heat transfer tube 21, lower tube sheet 20b
Let us consider the case where there is a temperature difference of about 40° C. between the inner shell 33 and the inner shell 33. In this case, the relative displacement due to the difference in thermal expansion occurring at the lower end portions of the outer shell 19 and the inner shell 33 is considered to be about 400 mm, although it depends on the detailed dimensions of the intermediate heat exchanger 14. Also, at this time, since the temperature on the outer shell 19 side is low, the lower end of the inner shell 33 extends 4n downwards than the lower end of the outer shell 19. The double bellows 34a and 34b have almost the same shape except for a slight difference in diameter.
dimensions, their displacements are approximately equally 2
It is considered that the number is distributed in n increments. Therefore, compared to the conventional example shown in FIG. 4 in which the bellows are single-layered, the secondary stress generated by the bellows itself to absorb the difference in thermal expansion is halved, and even in the event of a hot shock that stops the secondary cooling system, Even thermal expansion due to an excessive temperature difference that occurs in the bellows can be absorbed while ensuring the integrity of the bellows. In particular, in tank-type fast breeder reactors, the pressure difference between the secondary coolant and the primary coolant is large, and the primary stress generated in the bellows due to this is large, and on top of this, when the primary stress due to the thermal expansion difference is repeatedly applied. However, according to the present invention, by using a bellows with approximately half the length, a thermal expansion absorption mechanism that does not cause such excessive deformation can be provided. can.

なお、本発明は上記実施例に限定されるものでなく、第
3図における上部管板20aの上部空間に崩壊熱除去用
伝熱管(図示せず)が設けられている方式の中間熱交換
器に本発明を適用できる。
Note that the present invention is not limited to the above-mentioned embodiments, and may be applied to an intermediate heat exchanger of a type in which a heat exchanger tube (not shown) for removing decay heat is provided in the upper space of the upper tube plate 20a in FIG. The present invention can be applied to.

この例の効果について述べる。この方式の中間熱交換器
においては、崩壊熱除去運転時、上部管板20aより上
部空間′で熱交換が行なわれるため、−次冷却材15は
上部管板20aより上部でコールド状態となり、伝熱管
21もコールド状態になる。これに対して外胴19はホ
ットブール9の熱的影響を受けるため、比較的高温に4
保持され、ベローズ34には通常運転時とは逆でかつ大
きな熱膨張変位を生じることになる。
The effects of this example will be described. In this type of intermediate heat exchanger, during the decay heat removal operation, heat exchange is performed in the space above the upper tube sheet 20a, so the secondary coolant 15 is in a cold state above the upper tube sheet 20a, and the heat transfer is The heat tube 21 also becomes cold. On the other hand, the outer shell 19 is exposed to relatively high temperatures because it is thermally affected by the hot boule 9.
As a result, the bellows 34 undergoes a large thermal expansion displacement that is opposite to that during normal operation.

このような中間熱交換器にあっては、本発明のベローズ
はより一層の効果を発揮する。
In such an intermediate heat exchanger, the bellows of the present invention exhibits even more effects.

[発明の効果] 以上説明したように本発明は、中間熱交換器の外胴と内
胴下端附近に多層から成るベローズを装置し、これらを
折り返し筒でシリーズに固定し、外胴と内胴を比較的短
いベローズによってシールしてなるものである。したが
って、外胴と、上部管板、伝熱管、下部管板および内胴
との温度差による熱膨張差を吸収し、しかもべO−ズ自
身の健全性を確保できる。また、−軸方向に短尺である
ような中間熱交換器を比較的安価に提供し、タンク型高
速増殖炉の主容器の深さ低減に寄与し、ひいては原子炉
全体のコストダウンに導くことができる。
[Effects of the Invention] As explained above, the present invention provides a multi-layered bellows near the lower end of the outer shell and inner shell of an intermediate heat exchanger, and fixes these in series with a folded tube, thereby connecting the outer shell and the inner shell. is sealed by a relatively short bellows. Therefore, the difference in thermal expansion caused by the temperature difference between the outer shell, the upper tube sheet, the heat transfer tube, the lower tube sheet, and the inner shell can be absorbed, and the integrity of the oven itself can be ensured. In addition, it is possible to provide an intermediate heat exchanger that is short in the axial direction at a relatively low cost, contributing to a reduction in the depth of the main vessel of a tank-type fast breeder reactor, and ultimately leading to a reduction in the cost of the entire reactor. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における中間熱交換器の下端
附近のみを拡大して示す断面図、第2図は原子炉容器全
体を示す断面図、第3図は本発明に係る中間熱交換器を
示す断面図、第4図は従来の中間熱交換器における下端
部を拡大して示す部分断面図である。 1・・・・・・・・・原子炉容器 3・・・・・・・・・ルーフスラブ 19・・・・・・・・・外胴 20a・・・・・・上部管板 20b・・・・・・下部管板 21・・・・・・・・・伝熱管 33・・・・・・・・・内胴 34a・・・・・・外ベローズ 34b・・・・・・内ベローズ 37・・・・・・・・・端部金物 38・・・・・・・・・ガイドレール 第1図 第2図 第3図
FIG. 1 is an enlarged sectional view showing only the vicinity of the lower end of an intermediate heat exchanger in an embodiment of the present invention, FIG. 2 is a sectional view showing the entire reactor vessel, and FIG. 3 is an intermediate heat exchanger according to the present invention. A sectional view showing an exchanger. FIG. 4 is a partial sectional view showing an enlarged lower end portion of a conventional intermediate heat exchanger. 1...Reactor vessel 3...Roof slab 19...Outer shell 20a...Upper tube plate 20b... ...Lower tube plate 21 ...Heat transfer tube 33 ...Inner shell 34a ...Outer bellows 34b ...Inner bellows 37 ......End hardware 38...Guide rail Fig. 1 Fig. 2 Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)タンク型高速増殖炉の主容器を覆うルーフスラブ
を貫通して上記主容器内へ吊下げられ伝熱管外の二次冷
却材を主容器内の一次冷却材から隔てる外胴と一次冷却
材をその内部に含む下部プレナムを下部管板とともに形
成する内胴を有する中間熱交換器において、前記外胴と
内胴との間に多層から成るベローズを装着し、最外層の
ベローズの一方を外胴に、最内層のベローズの一方を内
胴に固定し、多層のベローズ相互間には円筒状の折り返
し筒を設置し、これにベローズを順次固定してなること
を特徴とする中間熱交換器。
(1) Outer shell and primary cooling that penetrate the roof slab that covers the main vessel of a tank-type fast breeder reactor and are suspended into the main vessel, separating the secondary coolant outside the heat transfer tubes from the primary coolant inside the main vessel. In an intermediate heat exchanger having an inner shell forming a lower plenum containing a material therein with a lower tube sheet, a multi-layered bellows is installed between the outer shell and the inner shell, and one of the outermost layer bellows is disposed between the outer shell and the inner shell. An intermediate heat exchanger characterized in that one of the innermost layer bellows is fixed to the inner shell on the outer shell, a cylindrical folded tube is installed between the multilayered bellows, and the bellows are sequentially fixed to this. vessel.
(2)外胴内には上部管板の上部空間に崩壊熱除去用伝
熱管コイルが設けられていることを特徴とする特許請求
の範囲第1項記載の中間熱交換器。
(2) The intermediate heat exchanger according to claim 1, wherein a heat exchanger tube coil for removing decay heat is provided in the upper space of the upper tube plate in the outer shell.
JP11512585A 1985-05-28 1985-05-28 Intermediate heat exchanger Pending JPS61272596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11512585A JPS61272596A (en) 1985-05-28 1985-05-28 Intermediate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11512585A JPS61272596A (en) 1985-05-28 1985-05-28 Intermediate heat exchanger

Publications (1)

Publication Number Publication Date
JPS61272596A true JPS61272596A (en) 1986-12-02

Family

ID=14654882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11512585A Pending JPS61272596A (en) 1985-05-28 1985-05-28 Intermediate heat exchanger

Country Status (1)

Country Link
JP (1) JPS61272596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863723B2 (en) 2011-08-25 2018-01-09 Silvio Giachetti Integrated pressure compensating heat exchanger and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863723B2 (en) 2011-08-25 2018-01-09 Silvio Giachetti Integrated pressure compensating heat exchanger and method

Similar Documents

Publication Publication Date Title
KR100594840B1 (en) Passive safety-grade decay-heat removal method and decay-heat removal system for lmr with pool direct heat cooling process
JPH0198996A (en) Liquid metal cooled reactor and preheating of closed bottom of sodium tank thereof
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
US5267281A (en) Heat exchanger and water tank arrangement for passive cooling system
JPH0326795B2 (en)
JPS62185192A (en) Nuclear reactor pressure vessel
JPS61272596A (en) Intermediate heat exchanger
US3367839A (en) Closed cycle nuclear reactor
JP2008122248A (en) Fast reactor
KR100286518B1 (en) Separate Perfusion Spiral Steam Generator
JPS62112094A (en) Liquid metal cooling type reactor structure
JPS61122597A (en) Intermediate heat exchanger
JPS61791A (en) Fast neutron reactor
JPS61268994A (en) Intermediate heat exchanger
JP2731158B2 (en) Fast breeder reactor
JPS62268997A (en) Intermediate heat exchanger
JPS62186101A (en) Steam generator
JPS6080788A (en) Fbr nuclear reactor structure
JPH0378692A (en) Fast breeder reactor
JPS60111189A (en) Supporter for circulating pump for fast breeder reactor
JPS59171895A (en) Intermediate heat exchanger for tank type fast breeder
JPS61140889A (en) Reactor structure of fast breeder reactor
JPH0366640B2 (en)
JPH01217192A (en) Intermediate heat exchanger
JPH0666991A (en) Intermediate heat exchanger for fast breeder