JPH0366640B2 - - Google Patents

Info

Publication number
JPH0366640B2
JPH0366640B2 JP60268099A JP26809985A JPH0366640B2 JP H0366640 B2 JPH0366640 B2 JP H0366640B2 JP 60268099 A JP60268099 A JP 60268099A JP 26809985 A JP26809985 A JP 26809985A JP H0366640 B2 JPH0366640 B2 JP H0366640B2
Authority
JP
Japan
Prior art keywords
tube
reactor
reactor vessel
header
plenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60268099A
Other languages
Japanese (ja)
Other versions
JPS62127699A (en
Inventor
Sadao Hatsutori
Akio Shiga
Hiroshi Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denryoku Chuo Kenkyusho
Mitsubishi Heavy Industries Ltd
Original Assignee
Denryoku Chuo Kenkyusho
Mitsubishi Atomic Power Industries Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho, Mitsubishi Atomic Power Industries Inc, Mitsubishi Heavy Industries Ltd filed Critical Denryoku Chuo Kenkyusho
Priority to JP60268099A priority Critical patent/JPS62127699A/en
Publication of JPS62127699A publication Critical patent/JPS62127699A/en
Publication of JPH0366640B2 publication Critical patent/JPH0366640B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はタンク型高速増殖炉の原子炉容器内円
環状蒸気発生器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an annular steam generator in a reactor vessel of a tank-type fast breeder reactor.

<従来の技術> 高速増殖炉では、軽水炉と比べ熱効率を上げる
為、冷却材にナトリウムを使用するが、その冷却
材ナトリウムが高温であることに依り、冷却材に
接する機器の材料強度上の問題としてクリープ効
果を顕著となる。
<Conventional technology> Fast breeder reactors use sodium as a coolant to increase thermal efficiency compared to light water reactors, but the high temperature of the sodium coolant causes problems in the material strength of equipment that comes into contact with the coolant. As a result, the creep effect becomes noticeable.

又、構造材に急激な温度勾配が分布する事に依
り熱応力が過大となる。
Furthermore, thermal stress becomes excessive due to the sudden temperature gradient distributed in the structural material.

原子炉構造を構成する1つの機器として原子炉
容器があるが、原子炉容器は、冷却材バウンダリ
として最も重要な機器であり上述の熱応力上の強
度的問題に対して十分な対策を講じる必要があ
る。
The reactor vessel is one of the devices that make up the reactor structure, and the reactor vessel is the most important device as a coolant boundary, and it is necessary to take sufficient measures to deal with the above-mentioned strength problems due to thermal stress. There is.

しかして、上記原子炉容器では特に上部プレナ
ム(高温プレナム)に接する部分の温度変化が大
きいので問題があつた。
However, the above-mentioned reactor vessel had a problem because the temperature change was particularly large in the portion in contact with the upper plenum (high-temperature plenum).

そのため、従来原子炉容器内のナトリウム(冷
却材)の流れは、第6図a,bに矢印で示すよう
になつている。即ち、炉心1を出たナトリウムは
上部プレナム(高温プレナム)7から蒸気発生器
3に入り、熱交換して冷却されたナトリウムとな
つて下部プレナム(低温プレナム)8にもどる。
下部プレナム8のナトリウムは主循環ポンプ2の
下端から吸い込まれて、高圧のナトリウムとなつ
て炉心1に送り込まれる。この炉心1の入口でナ
トリウムの一部は炉壁冷却シエル6により原子炉
容器5に沿つて上昇し、上部プレナム7に到る。
原子炉容器5は、その内面を流れる炉壁冷却ナト
リウムにより冷却される。4は安全容器である。
炉壁冷却シエル6は、原子炉の運転に伴い急激に
温度変化する上部プレナム7のナトリウムが原子
炉容器5に当つて、該原子炉容器5に板厚方向の
温度勾配を生じさせ、熱応力が発生するのを抑制
する機能即ち、熱衝撃の加わることを防止する役
割も果している。
Therefore, the flow of sodium (coolant) in the conventional nuclear reactor vessel is as shown by the arrows in FIGS. 6a and 6b. That is, the sodium leaving the core 1 enters the steam generator 3 from the upper plenum (high temperature plenum) 7 and returns to the lower plenum (low temperature plenum) 8 as cooled sodium through heat exchange.
Sodium in the lower plenum 8 is sucked in from the lower end of the main circulation pump 2 and sent into the reactor core 1 as high-pressure sodium. At the inlet of the reactor core 1, a portion of the sodium rises along the reactor vessel 5 by the reactor wall cooling shell 6 and reaches the upper plenum 7.
The reactor vessel 5 is cooled by reactor wall cooling sodium flowing through its inner surface. 4 is a safety container.
In the reactor wall cooling shell 6, sodium in the upper plenum 7, whose temperature changes rapidly as the reactor operates, hits the reactor vessel 5, causing a temperature gradient in the plate thickness direction in the reactor vessel 5, and reducing thermal stress. It also has the function of suppressing the occurrence of thermal shock, that is, the role of preventing the application of thermal shock.

原子炉容器5の温度を例えばクリープが構造強
度上問題とならなくなる温度領域まで下げる手段
として炉壁冷却流量を十分にとる、または、上部
プレナム7に接する炉壁冷却シエル6に例えばサ
ーマルライナ9等の断熱対策を施すとか、もしく
はガス断熱層を設けるなどして、炉壁冷却能を維
持する方法が提案されている。
As a means of lowering the temperature of the reactor vessel 5 to a temperature range where creep is no longer a problem in terms of structural strength, for example, a sufficient reactor wall cooling flow rate is provided, or a thermal liner 9 or the like is installed in the reactor wall cooling shell 6 in contact with the upper plenum 7. Methods have been proposed to maintain the cooling capacity of the furnace wall, such as by taking heat insulation measures or by providing a gas insulation layer.

また、第7図に示すように、原子炉容器11内
側に直接蒸気発生用伝熱管13を配設した原子炉
が軽水炉用として特開昭58−187894号で開示され
ている。蒸気伝熱管13は原子炉容器11の温度
を下げる機能を有している。図において12は炉
心、→印は1次冷却材の流れを示し印は2次冷
却材の流れを示している。
Furthermore, as shown in FIG. 7, a nuclear reactor for use in a light water reactor in which a heat transfer tube 13 for steam generation is directly disposed inside a reactor vessel 11 is disclosed in Japanese Patent Application Laid-Open No. 187894/1983. The steam heat transfer tube 13 has a function of lowering the temperature of the reactor vessel 11. In the figure, 12 indicates the core, → marks indicate the flow of primary coolant, and marks indicate the flow of secondary coolant.

<発明が解決しようとする問題点> 上記第6図に示す構造の場合、炉壁冷却流量自
体は原子炉として、熱効率上無効流量となるた
め、プラント効率を低下させる原因となる。従つ
てプラント効率を高く維持する観点から、過大な
炉壁冷却流量をとることには制約がある。このた
め、少量の炉壁冷却流量で原子炉容器5を必要な
だけ低い温度に維持するために、上部プレナム7
に接する炉壁冷却シエル6に十分な断熱対策が要
求されることになるが、これは、物量の増大もし
くは炉壁冷却シエル6の構造の複雑化の問題につ
ながる結果となる。
<Problems to be Solved by the Invention> In the case of the structure shown in FIG. 6 above, the reactor wall cooling flow rate itself becomes an ineffective flow rate in terms of thermal efficiency as a nuclear reactor, which causes a reduction in plant efficiency. Therefore, from the viewpoint of maintaining high plant efficiency, there are restrictions on taking an excessively large furnace wall cooling flow rate. Therefore, in order to maintain the temperature of the reactor vessel 5 as low as necessary with a small amount of flow rate for cooling the reactor wall, the upper plenum 7
Sufficient heat insulation measures are required for the furnace wall cooling shell 6 that is in contact with the furnace wall, but this results in the problem of increasing the amount of material or complicating the structure of the furnace wall cooling shell 6.

また、上記第7図に示す構造は熱供給炉、小型
発電炉、舶用炉等の小型軽水炉に適し、1次冷却
材はポンプによらず自然循環によつて2次冷却材
との熱交換を図ることにより熱交換器系の合理化
を目的としたものであり、伝熱管13の配置は1
次冷却材の温度が軽水炉より高い高速増殖炉に対
して不適当である。
In addition, the structure shown in Figure 7 above is suitable for small light water reactors such as heat supply reactors, small power reactors, and marine reactors, and the primary coolant exchanges heat with the secondary coolant through natural circulation without using a pump. The purpose of this is to rationalize the heat exchanger system by
It is unsuitable for fast breeder reactors where the temperature of the secondary coolant is higher than that of light water reactors.

本発明は上述した事情に鑑みてなされたもの
で、熱交換器系の合理化は勿論のこと、原子炉容
器の防護を目的とした容器の低温化及び熱遮蔽体
機能を積極適に採用した原子炉容器内円環状蒸気
発生器を提供せんとするものである。
The present invention was made in view of the above-mentioned circumstances, and it not only streamlines the heat exchanger system, but also actively adopts a nuclear reactor vessel's temperature reduction and heat shield function for the purpose of protecting the reactor vessel. It is an object of the present invention to provide an annular steam generator within a furnace vessel.

<問題点を解決するための手段> そのため、本発明の原子炉容器内円環状蒸気発
生器はその構成を、原子炉上部プレナムの原子炉
容器内側に配設した2重の同心円筒シエル間に外
側管及び内側管で構成した少なくとも2組の円弧
状伝熱管を収納し、該伝熱管はルーフスラブに設
置した給水ヘツダから中間ヘツダに連通する多数
の管で形成した外側管と、概外側管の内側に収納
すると共に、上記中間ヘツダから上記給水ヘツダ
内側に設けた蒸気ヘツダに連通する多数の管で形
成した内側管よりなり、上部プレナムの冷却材が
上記2重の同心円筒シエル上方より下方の下部プ
レナムへ上気伝熱管を経て流通するようにした。
<Means for Solving the Problems> Therefore, the in-vessel annular steam generator of the present invention is constructed between two concentric cylindrical shells arranged inside the reactor vessel in the upper reactor plenum. At least two sets of arc-shaped heat exchanger tubes each consisting of an outer tube and an inner tube are housed. The coolant in the upper plenum is stored below the upper part of the double concentric cylindrical shell. The air flows through the upper air heat transfer tube to the lower plenum.

<作用> 原子炉容器内の内側全周に円環状蒸気発生器の
外側管と内側管よりなる伝熱管を円弧状に配設す
るにあたり、原子炉容器側に給水管である外側管
を配し、その内側に蒸気管である内側管を配置し
たので円環状蒸気発生器の伝熱管の除熱により原
子炉容器側を特に低温にすることができる。さら
に、上記伝熱管を円周方向に分割することによ
り、一層の低温化を図ることができる。
<Function> When arranging heat transfer tubes consisting of an outer tube and an inner tube of an annular steam generator in an arc shape around the entire inner circumference of the reactor vessel, an outer tube serving as a water supply pipe is placed on the reactor vessel side. Since the inner tube, which is a steam tube, is disposed inside the reactor vessel, the temperature on the reactor vessel side can be particularly reduced by removing heat from the heat transfer tube of the annular steam generator. Furthermore, by dividing the heat exchanger tube in the circumferential direction, the temperature can be further reduced.

<実施例> 第1図aは本発明の原子炉容器内円環状蒸気発
生器の一実施例を示す原子炉の2分の1を断面し
た平面図、第1図bは同図のA−A線断面図、第
2図は本発明の一実施例の原子炉の縦断面図、第
3図は第1図bのB−B線断面図、第4図は伝熱
管に使用する2重管の縦断面図、第5図aは伝熱
管に使用する3重管の縦断面図、第5図bは同横
断面図である。
<Example> Fig. 1a is a plan view showing an embodiment of the in-vessel annular steam generator of the present invention, with one-half of the reactor sectioned away, and Fig. 1b is a cross-sectional view of A--A in the same figure. 2 is a longitudinal sectional view of a nuclear reactor according to an embodiment of the present invention, FIG. 3 is a sectional view taken along line B-B of FIG. FIG. 5a is a vertical cross-sectional view of a triple tube used as a heat exchanger tube, and FIG. 5b is a cross-sectional view of the same.

原子炉容器22の中には炉心24、循環ポンプ
27及び円環状蒸気発生器(以下、円環状SGと
称す)35が納められている。
The reactor vessel 22 houses a reactor core 24, a circulation pump 27, and an annular steam generator (hereinafter referred to as an annular SG) 35.

炉心支持構造物25は炉心24、循環ポンプ2
7及び円環状SG35を鉛直、水平支持する。
The core support structure 25 includes the core 24 and the circulation pump 2.
7 and annular SG35 are vertically and horizontally supported.

ルーフスラブ32は、水系ヘツダ(給水ヘツダ
33、蒸気ヘツダ34、中間ヘツダ40)炉心上
部機構38及び循環ポンプ27を支持し、各種遮
蔽の役目をする。
The roof slab 32 supports the water system headers (water supply header 33, steam header 34, intermediate header 40), core upper mechanism 38, and circulation pump 27, and serves as various shields.

円環状SG35は、伝熱管39の破損の有無を
検出する機能を有する設備に接続されたもので、
ヘリウムガスの入口ライン36a、出口ライン3
6bを持ち水系ヘツダ内にヘリウムガスプレナム
36を設ける。
The annular SG 35 is connected to equipment that has a function of detecting whether or not the heat exchanger tube 39 is damaged.
Helium gas inlet line 36a, outlet line 3
6b, and a helium gas plenum 36 is provided in the water system header.

原子炉容器22内の円環状SG35は、円筒形
内側シエル28と円筒形外側シエル30、伝熱管
39、給水ヘツダ33、蒸気ヘツダ34及び中間
ヘツダ40で構成される。この実施例の場合、第
1図に示すように4組の伝熱管39を有し、該伝
熱管39は外側管39a及び内側管39bで構成
され、上記外側管39aはルーフスラブ32に設
置した給水ヘツダ33から中間ヘツダ40に連通
して多数の多重管が配管され、上記内側管39b
は上記外側管39aの内側に上記中間ヘツダ40
から蒸気ヘツダ34に連通して多数の多重管が配
管されている。伝熱管39は、伝熱管サポート2
9に固定され、水平周上に引き回すよう配設する
もので円弧状SG35の有効伝熱面積を最もスペ
ース的に効率良く配置するとともに、外側の原子
炉容器22の防護を目的として、原子炉容器22
の低温維持ならびに熱衝撃の緩和のための熱遮蔽
体の2つの機能を有する。
The annular SG 35 inside the reactor vessel 22 is composed of a cylindrical inner shell 28, a cylindrical outer shell 30, a heat transfer tube 39, a water supply header 33, a steam header 34, and an intermediate header 40. In the case of this embodiment, as shown in FIG. A large number of multiple pipes are connected from the water supply header 33 to the intermediate header 40, and the inner pipe 39b
The intermediate header 40 is installed inside the outer tube 39a.
A large number of multiple pipes are connected from the steam header 34 to the steam header 34. The heat exchanger tube 39 is connected to the heat exchanger tube support 2
9, and arranged so as to be routed horizontally around the arcuate SG 35. In addition to arranging the effective heat transfer area of the arcuate SG 35 in the most efficient manner in terms of space, the reactor vessel 22 is 22
It has two functions: as a heat shield to maintain low temperatures and to alleviate thermal shock.

なお、用いる伝熱管39は、ナトリウム−水反
応事故予防のため、公知の高信頼度(多重管)を
使用するものでプラント寿命中の伝熱管の交換は
考慮しない。
Note that the heat exchanger tubes 39 used are of known high reliability (multilayer tubes) in order to prevent sodium-water reaction accidents, and replacement of the heat exchanger tubes during the life of the plant is not considered.

次に系統面から説明する。 Next, I will explain from the systematic aspect.

ナトリウム冷却系の循環径路は炉心24を出た
上部プレナム23bのナトリウムが円筒形内側シ
エル28上部のフロー堰を通り伝熱管サポート2
9によつて水平周上に引き回された伝熱管39の
管束を下降し、その下端部から下部プレナム23
aに出て循環ポンプ27に入り炉心入口配管37
を経て再び炉心24へ戻る。
The circulation path of the sodium cooling system is such that the sodium in the upper plenum 23b that has exited the core 24 passes through the flow weir at the upper part of the cylindrical inner shell 28 and passes through the heat exchanger tube support 2.
9, the tube bundle of heat exchanger tubes 39 routed horizontally is lowered, and the lower plenum 23 is lowered from its lower end.
a, enters the circulation pump 27, and enters the core inlet piping 37.
After that, it returns to the core 24 again.

一方、水系は給水ライン33aより給水ヘツダ
33に入つた水が原子炉容器22側に配設した伝
熱管39の外側管39aを通り、中間ヘツダ40
に一度入り、再度炉心24側に配設した伝熱管3
9の内側管39bを通つて加熱された蒸気となつ
て蒸気ヘツダ34、蒸気ライン34aを経てター
ビンに送り込まれる。
On the other hand, in the water system, water enters the water supply header 33 from the water supply line 33a, passes through the outer pipe 39a of the heat transfer tube 39 disposed on the reactor vessel 22 side, and passes through the intermediate header 40.
The heat exchanger tubes 3 that entered the reactor core 24 side once again
The heated steam passes through the inner pipe 39b of No. 9 and is sent to the turbine via the steam header 34 and the steam line 34a.

しかして、上記多重管は第4図に示す2重管又
は、第5図a,bに示す如き3重管がある。
The multiple pipes mentioned above may be a double pipe as shown in FIG. 4 or a triple pipe as shown in FIGS. 5a and 5b.

第4図に示す2重管は外側にナトリウムを流す
外管51、内側に水あるいは蒸気を流す内管52
を組込んだ2重構造で、上記内・外管の隙間53
に高伝導性のナトリウムを充填すると共に、該隙
間53の末端を薄いカバー54でシールしたもの
である。尚、該隙間53にはヘリウムガスを漏洩
検出のために流す事も考えられる。第5図a,b
に示す3重管は外側にナトリウムを流す外管5
5、内側に水あるいは蒸気を流す内管56と上記
内・外管を相互に接合する中央管57よりなり、
内管56と中央管57の間には流体通路となる溝
58を管の長手方向に複数本設けたものである。
The double tube shown in Fig. 4 has an outer tube 51 for flowing sodium to the outside, and an inner tube 52 for flowing water or steam to the inside.
The gap 53 between the inner and outer tubes is
The gap 53 is filled with highly conductive sodium, and the end of the gap 53 is sealed with a thin cover 54. Note that it is also conceivable to flow helium gas into the gap 53 for leak detection. Figure 5 a, b
The triple tube shown in Figure 5 is an outer tube through which sodium flows outside.
5. Consisting of an inner pipe 56 through which water or steam flows inside, and a central pipe 57 that interconnects the inner and outer pipes,
A plurality of grooves 58 serving as fluid passages are provided between the inner tube 56 and the central tube 57 in the longitudinal direction of the tubes.

上記2重管又は3重管の空間36は第1図bの
ヘリウムガスプレナム36に相当し、ヘリウムガ
ス入口ライン36aからヘリウムガスを供給し、
ヘリウムガス出口ライン36bから取り出すよう
になつている。内管52,56又は外管51,5
5にクラツク等の異常が発生すると、第4図のナ
トリウム封入の2重管の場合は薄いカバー54が
破れるのでヘリウムガスプレナム36のガスをサ
ンプリングすることにより異常を検出でき、ある
いは、ナトリウム封入で無い場合には隙間53と
連通したヘリウムガスプレナム36のガスをサン
プリングする事により、異常を検出できる。第5
図a,bの3重管の場合も溝58に連通した空間
であるヘリウムガスプレナ36のガスをサンプリ
ングすることにより内・外管に発生したクラツク
等の異常の有無を検出できる。
The double-pipe or triple-pipe space 36 corresponds to the helium gas plenum 36 in FIG. 1b, and supplies helium gas from the helium gas inlet line 36a.
The helium gas is taken out from the helium gas outlet line 36b. Inner tube 52, 56 or outer tube 51, 5
If an abnormality such as a crack occurs in the double tube filled with sodium as shown in Fig. 4, the thin cover 54 will break, so the abnormality can be detected by sampling the gas from the helium gas plenum 36, or if the double tube is filled with sodium, the thin cover 54 will break. If there is no such gap, an abnormality can be detected by sampling the gas in the helium gas plenum 36 communicating with the gap 53. Fifth
In the case of the triple tube shown in FIGS. a and b, the presence or absence of abnormalities such as cracks in the inner and outer tubes can be detected by sampling the gas in the helium gas planer 36, which is a space communicating with the groove 58.

<発明の効果> 以上詳細に説明した本発明の原子炉容器内円環
状蒸気発生器によれば下記の如き効果を奏する。
<Effects of the Invention> According to the annular steam generator in a reactor vessel of the present invention described in detail above, the following effects are achieved.

円環状SGの伝熱管を原子炉容器内に収納し、
上気伝熱管を水平周上に引き回すことにより、
従来のシエルアンドチユーブ型のSG(蒸気発生
器)に比べ、有効伝熱面積の確保が著しく容易
になる。
The annular SG heat transfer tube is housed inside the reactor vessel,
By routing the upper air heat exchanger tubes horizontally,
Compared to the conventional shell-and-tube type SG (steam generator), it is much easier to secure an effective heat transfer area.

円筒型内側シエル、伝熱管及び円筒形外側シ
エルからなる構造体により、原子炉容器の防護
のための低温維持及び熱遮蔽体機能が発揮さ
れ、これにより原子炉容器自体の構造強度上の
信頼性が著しく向上する。
The structure consisting of a cylindrical inner shell, a heat transfer tube, and a cylindrical outer shell performs low temperature maintenance and heat shield functions to protect the reactor vessel, thereby increasing the reliability of the structural strength of the reactor vessel itself. is significantly improved.

低コストプラント設計の面からは、ルーフス
ラブ上面配置の簡素化、炉容器の縮小合理化等
原子炉構造における必要スペースの最小化が図
られ、格納容器の縮小を含め低コスト化が可能
となる。
From the perspective of low-cost plant design, the required space in the reactor structure can be minimized by simplifying the arrangement of the top surface of the roof slab and rationalizing the reduction of the reactor vessel, making it possible to reduce costs including the reduction of the containment vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明の原子炉容器内円環状蒸気発
生器の一実施例を示す原子炉の2分の1を断面し
た平面図、第1図bは同図A−A線断面図、第2
図は本発明の一実施例の原子炉の縦断面図、第3
図は第1図bのB−B線断面図、第4図は伝熱管
に使用する2重管の縦断面図、第5図aは伝熱管
に使用する3重管の縦断面図、第5図bは同横断
面図、第6図aは従来の蒸気発生器を内蔵する原
子炉で第6図bのC−C線断面図、第6図bは従
来の蒸気発生器を内蔵する原子炉容器の縦断面
図、第7図は従来の蒸気発生器を内蔵した軽水炉
用小型原子炉の縦断面図である。 4,21……安全容器、5,11,22……原
子炉容器、7,23b……上部プレナム、8,2
3a……下部プレナム、1,12,24……炉
心、28……円筒形内側シエル、29……伝熱管
サポート、30……円筒形外側シエル、32……
ルーフスラブ、33……給水ヘツダ、34……蒸
気ヘツダ、35……円環状蒸気発生器、39……
伝熱管、39a……外側管、39b……内側管、
40……中間ヘツダ。
FIG. 1a is a plan view showing one embodiment of the in-vessel annular steam generator of the present invention, with a half of the reactor cut away; FIG. 1b is a sectional view taken along the line A-A in the same figure; Second
The figure is a longitudinal cross-sectional view of a nuclear reactor according to an embodiment of the present invention.
The figures are a cross-sectional view taken along line B-B in Figure 1b, Figure 4 is a vertical cross-sectional view of a double tube used as a heat exchanger tube, Figure 5a is a vertical cross-section of a triple tube used as a heat exchanger tube, Figure 5b is a cross-sectional view of the same, Figure 6a is a nuclear reactor with a built-in conventional steam generator, and Figure 6b is a cross-sectional view taken along line CC in Figure 6b, and Figure 6b is a nuclear reactor with a built-in conventional steam generator. FIG. 7 is a vertical cross-sectional view of a nuclear reactor vessel, and FIG. 7 is a vertical cross-sectional view of a small nuclear reactor for a light water reactor incorporating a conventional steam generator. 4,21...Safety vessel, 5,11,22...Reactor vessel, 7,23b...Upper plenum, 8,2
3a... lower plenum, 1, 12, 24... core, 28... cylindrical inner shell, 29... heat exchanger tube support, 30... cylindrical outer shell, 32...
Roof slab, 33... Water supply header, 34... Steam header, 35... Annular steam generator, 39...
Heat exchanger tube, 39a... outer tube, 39b... inner tube,
40...Middle header.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉上部プレナムの原子炉容器内側に配設
した2重の同心円筒シエル間に外側管及び内側管
で構成した少なくとも2組の円弧状伝熱管を収納
し、該伝熱管はルーフスラブに設置した給水ヘツ
ダから中間ヘツダに連通する多数の管で形成した
外側管と、該外側管の内側に収納すると共に、上
記中間ヘツダから上記給水ヘツダ内側に設けた蒸
気ヘツダに連通する多数の管で形成した内側管よ
り成り、上部プレナムの冷却材が上記2重の同心
円筒シエル上方より下方の下部プレナムへ上記伝
熱管を経て流通することを特徴とする原子炉容器
内円環状蒸気発生器。
1 At least two sets of arc-shaped heat transfer tubes consisting of an outer tube and an inner tube are housed between double concentric cylindrical shells arranged inside the reactor vessel in the upper reactor plenum, and the heat transfer tubes are installed on the roof slab. an outer pipe formed of a large number of pipes communicating from the water supply header to the intermediate header, and a large number of pipes stored inside the outer pipe and communicating from the intermediate header to a steam header provided inside the water supply header. An annular steam generator in a nuclear reactor vessel, characterized in that the coolant in the upper plenum flows from above the double concentric cylindrical shell to the lower plenum below the double concentric cylindrical shell through the heat transfer tube.
JP60268099A 1985-11-28 1985-11-28 Annular ring-shaped steam generator in nuclear reactor vessel Granted JPS62127699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60268099A JPS62127699A (en) 1985-11-28 1985-11-28 Annular ring-shaped steam generator in nuclear reactor vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60268099A JPS62127699A (en) 1985-11-28 1985-11-28 Annular ring-shaped steam generator in nuclear reactor vessel

Publications (2)

Publication Number Publication Date
JPS62127699A JPS62127699A (en) 1987-06-09
JPH0366640B2 true JPH0366640B2 (en) 1991-10-18

Family

ID=17453878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60268099A Granted JPS62127699A (en) 1985-11-28 1985-11-28 Annular ring-shaped steam generator in nuclear reactor vessel

Country Status (1)

Country Link
JP (1) JPS62127699A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028975A (en) * 2001-07-10 2003-01-29 Central Res Inst Of Electric Power Ind Reactor

Also Published As

Publication number Publication date
JPS62127699A (en) 1987-06-09

Similar Documents

Publication Publication Date Title
US5043136A (en) Passive cooling safety system for liquid metal cooled nuclear reactors
US4115192A (en) Fast neutron nuclear reactor
EP2366184B1 (en) Reactor vessel coolant deflector shield
US3962032A (en) Fast nuclear reactor
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
US4224983A (en) Heat exchange apparatus for a reactor
US6519308B1 (en) Corrosion mitigation system for liquid metal nuclear reactors with passive decay heat removal systems
EP0533351B1 (en) Passive cooling system for loop-type top entry liquid metal cooled reactors
US4101377A (en) Fast neutron reactor
US4705662A (en) Fast neutron nuclear reactor with a steam generator integrated into the vessel
US4324617A (en) Intermediate heat exchanger for a liquid metal cooled nuclear reactor and method
US4302296A (en) Apparatus for insulating hot sodium in pool-type nuclear reactors
US4671922A (en) Nuclear reactor cooled by a liquid metal
US4909981A (en) Nuclear reactor
JPH0366640B2 (en)
US4761261A (en) Nuclear reactor
US4585058A (en) Heat exchanger having a bundle of straight tubes
EP0119845B1 (en) Fast breeder reactor
US4357297A (en) Apparatus for thermally insulating nuclear reactor primary vessels
JPS61791A (en) Fast neutron reactor
WO2023090744A1 (en) Double-walled single-pass steam generator
JPS6330079Y2 (en)
JPS63309894A (en) Pressure tube reactor
JPS61268994A (en) Intermediate heat exchanger
JPS6080788A (en) Fbr nuclear reactor structure