JPS61237804A - Power system - Google Patents

Power system

Info

Publication number
JPS61237804A
JPS61237804A JP7926185A JP7926185A JPS61237804A JP S61237804 A JPS61237804 A JP S61237804A JP 7926185 A JP7926185 A JP 7926185A JP 7926185 A JP7926185 A JP 7926185A JP S61237804 A JPS61237804 A JP S61237804A
Authority
JP
Japan
Prior art keywords
cycle
fluid
temperature
rankine cycle
rankine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7926185A
Other languages
Japanese (ja)
Other versions
JPH0340208B2 (en
Inventor
Tsutomu Tomita
冨田 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7926185A priority Critical patent/JPS61237804A/en
Publication of JPS61237804A publication Critical patent/JPS61237804A/en
Publication of JPH0340208B2 publication Critical patent/JPH0340208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/005Using steam or condensate extracted or exhausted from steam engine plant by means of a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To raise the energy efficiency, by combining plural Rankine cycles which are different from each other their actuation enthalpy ranges, with a single reverse Rankine cycle, and taking outward the energy at the polytropic expansion process of each of the Rankine cycles. CONSTITUTION:A reverse Rankine cycle in which a fluid A circulates through a compressor 3, a high temperature side heat exchanger 1, an expansion valve 4, a low temperature side heat exchanger 2 and a super-heater 9, and plural Rankine cycles in which fluids B, C circulate, are combined with each other. The temperature of the fluid in the heating process of each Rankine cycle is kept lower than the temperature of the fluid in the cooling process of the reverse Rankine cycle, and that in the cooling process of each RAnkine cycle is kept higher than that in the heating process of the reverse Rankine cycle. The end temperature of the heating process of the RAnkine cycle whose actuation enthalpy range is the lowest, is kept lower than the end temperature of the cooling process of the reverse Rankine cycle. Then, power is taken out from an expansion turbine 8 of each Rankine cycle.

Description

【発明の詳細な説明】 産業上の利用ノ 本発明は、外部より熱エネルギーを供給して、動力の形
でエネルギーを回収する動力システム、特に省エネルギ
ーと環境保全に役立つ動力システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power system that supplies thermal energy from the outside and recovers energy in the form of power, and particularly to a power system that is useful for energy saving and environmental protection.

炙米勿技亙 石油、石炭、核等の燃料を燃焼させて得られる熱エネル
ギーから動力を取出す発電システム等の動力システムに
おいては、従来、タービンを装備するランキンサイクル
のボイラで燃焼され、あるいはガスタービンとランキン
サイクルの複合サイクル中のガスタービンで燃焼され1
発生した熱工ネルギーは、蒸気等により回転される膨張
タービンにより動力として取出され1発電システムでは
この動力は発電機により電気エネルギーに転換される。
Traditionally, power systems such as power generation systems that generate power from thermal energy obtained by burning fuels such as oil, coal, and nuclear have been burned in Rankine cycle boilers equipped with turbines, or gas It is burned in a gas turbine in a combined cycle of turbine and Rankine cycle.
The generated thermal energy is extracted as power by an expansion turbine rotated by steam or the like, and in one power generation system, this power is converted into electrical energy by a generator.

膨張により温度、圧力の低下した蒸気は復水器で冷却さ
れて水にされ循環使用されるが、冷却工程で蒸気から放
出された熱は海水、大気中に放出され利用されることな
く海や空中に捨てられる。
The steam, whose temperature and pressure have decreased due to expansion, is cooled in a condenser and turned into water, which is then used for circulation. However, the heat released from the steam during the cooling process is released into the seawater and the atmosphere without being used. thrown into the air.

その結果、動力システムのエネルギー効率は低下し、装
置の機械効率や配管の摩擦損失等を含めて。
As a result, the energy efficiency of the power system decreases, including the mechanical efficiency of the equipment and friction losses of the piping.

40乃至42%程度にしかならない。一方、海中、大気
中に放棄された熱は自然環境のエネルギーを増加させ、
環境の変化をもたらす結果となる。
It becomes only about 40 to 42%. On the other hand, the heat abandoned in the ocean and the atmosphere increases the energy in the natural environment,
This results in changes in the environment.

本発明者は、従来のランキンサイクルによる発電システ
ム等の動力システムの上述の問題点にかんがみ、エネル
ギー効率が高く、かつ、従来利用されていなかった海水
の顕熱や、発電所、工場等の廃熱を利用し、有価燃料の
消費を減少させるとともに、自然環境の保全に役立つ動
力システムを提供することを目的として、さきに、単一
のランキクサイクルと、1−のカスケードサイクルとを
組合せ、ランキンサイクルの冷却工程で放出した熱を、
カスケードサイクルの昇温工程の流体に供給し、ランキ
ンサイクルの昇温工程で外部熱源からの入熱に加えて、
カスケードサイクルの流体から、先に与えられた熱を戻
して貰うようにし、エネルギー効率を向上するようにし
た動力システムを提案した。
In view of the above-mentioned problems of power systems such as conventional Rankine cycle power generation systems, the present inventor has developed a system that has high energy efficiency and that utilizes the sensible heat of seawater, which has not been used in the past, and wastewater from power plants, factories, etc. For the purpose of providing a power system that utilizes heat, reduces the consumption of valuable fuel, and is useful for preserving the natural environment, we first combined a single rank cycle and a 1-cascade cycle, The heat released during the Rankine cycle cooling process is
It is supplied to the fluid in the temperature raising process of the cascade cycle, and in addition to the heat input from an external heat source in the temperature raising process of the Rankine cycle.
We proposed a power system that improves energy efficiency by returning the heat previously given to the fluid in the cascade cycle.

その構成と作用を図面により説明する。Its structure and operation will be explained with reference to the drawings.

第3図及び第4図は夫々、単一のランキンサイクルと単
一のカスケードサイクルとを組合せて構成した動力シス
テムの一例のモリエル線図及び系統図である。
3 and 4 are a Mollier diagram and a system diagram, respectively, of an example of a power system configured by combining a single Rankine cycle and a single cascade cycle.

第3図の横軸はエンタルピで縦軸は圧力である。The horizontal axis in FIG. 3 is enthalpy and the vertical axis is pressure.

図中にの→の→O→■で示すサイクルはランキンサイク
ルで■→■→■→■で示すサイクルはカスケードサイク
ルである6第4図の系統図で左側のループはカスケード
サイクルの経路を示し、右側のループはランキンサイク
ルの経路を示す。経路の傍に示した符号■、■、・・・
・・・、■、■、・・・・・・は第3図のモリエル線図
の各状態に対応した位置を示す。ランキンサイクルとカ
スケードサイクルとに夫々使用される流体は同一のもの
でも異るものでもよい。
The cycle indicated by →→O→■ in the figure is a Rankine cycle, and the cycle indicated by ■→■→■→■ is a cascade cycle.6 In the system diagram in Figure 4, the loop on the left shows the path of a cascade cycle. , the loop on the right shows the path of the Rankine cycle. Symbols shown next to the route ■, ■,...
. . , ■, ■, . . . indicate positions corresponding to each state in the Mollier diagram of FIG. The fluids used in the Rankine cycle and the cascade cycle may be the same or different.

第3図、第4図を参照して各サイクルを説明する。ラン
キンサイクルのO→■は冷却工程、■→Qは昇圧工程、
■→◎は昇温工程、0→のは膨張工程であり、カスケー
ドサイクルの■→■は圧縮工程、■→■は冷却工程、■
→■は膨張工程、■→■は昇温工程である。第3図中に
実線で示す気液平衡曲線はランキンサイクルを流れる流
体のもので、破線で示す気液平衡曲線はカスケードサイ
クルを流れる流体のものである。
Each cycle will be explained with reference to FIGS. 3 and 4. In the Rankine cycle, O→■ is the cooling process, ■→Q is the pressure increase process,
■→◎ is the temperature raising process, 0→ is the expansion process, ■→■ of the cascade cycle is the compression process, ■→■ is the cooling process,
→■ is an expansion process, and ■→■ is a temperature raising process. The vapor-liquid equilibrium curve shown by a solid line in FIG. 3 is for a fluid flowing through a Rankine cycle, and the vapor-liquid equilibrium curve shown by a broken line is for a fluid flowing through a cascade cycle.

第3図に示す如く、カスケードサイクルの冷却工程の流
体の温度T2はランキンサイクルの昇温工程の流体の温
度THより高く、ランキンサイクルの冷却工程での流体
の温度TL はカスケードサイクルの昇温工程での流体
の温度T□より高く、かつ、ランキンサイクルの昇温工
程0→Oの始点温度TMはカスケードサイクルの冷却工
程■→■の終点温度T、より低くされている。又、第4
図に示す如く、カスケードサイクルの冷却工程■→■の
流路と、ランキンサイクルの昇温工程0→■の流路との
間には高温側熱交換器1が、ランキンサイクルの冷却工
程■→■の流路とカスケードサイクルの昇温工程■→■
の流路との間には低温側熱交換器2が設けられている。
As shown in FIG. 3, the temperature T2 of the fluid in the cooling step of the cascade cycle is higher than the temperature TH of the fluid in the temperature raising step of the Rankine cycle, and the temperature TL of the fluid in the cooling step of the Rankine cycle is higher than that in the temperature raising step of the cascade cycle. The starting point temperature TM of the temperature raising step 0→O of the Rankine cycle is higher than the fluid temperature T□ at , and lower than the ending point temperature T of the cooling step ■→■ of the cascade cycle. Also, the fourth
As shown in the figure, a high-temperature side heat exchanger 1 is installed between the flow path for the cooling process ■→■ of the cascade cycle and the flow path for the temperature increase process 0→■ of the Rankine cycle. ■Flow path and cascade cycle heating process■→■
A low temperature side heat exchanger 2 is provided between the flow path and the flow path.

カスケードサイクルの圧縮工程■→■には圧縮機3が設
けられており、エネルギーE1をモータにインプットし
て圧縮機を駆動すると、このサイクルを流れる流体のガ
スの状態は■(エンタルピ、圧力、温度が夫々i■、P
■、T■;以下の各状態も同様)から■に変化する。■
の状態のガスは高温側熱交換器1によりランキンサイク
ル側に熱を奪われて冷却し、温度T2に至り、更に冷却
すると温度T2を維持したま\で液化を始め、エンタル
ピはi■からi■に変化する。この場合、必らずしも全
量液化する必要はないが、第3図に示す如く飽和液線を
越えて全量液化する場合は温度はT、になる。膨張工程
■→■の経路には膨張弁4が設けられており、■の状態
の液体は等エンタルピ膨張をして低圧の状態■になる。
A compressor 3 is installed in the compression step ■→■ of the cascade cycle, and when energy E1 is input to the motor to drive the compressor, the gas state of the fluid flowing through this cycle changes to ■ (enthalpy, pressure, temperature). are respectively i■, P
■, T■; The following states also change from ■ to ■. ■
The gas in the state loses heat to the Rankine cycle side by the high temperature side heat exchanger 1 and is cooled down to a temperature T2.When it is further cooled, it starts to liquefy while maintaining the temperature T2, and the enthalpy changes from i to i ■Changes to. In this case, it is not necessarily necessary to liquefy the entire amount, but as shown in FIG. 3, when the entire amount is liquefied beyond the saturated liquid line, the temperature becomes T. An expansion valve 4 is provided in the path from expansion step ■ to ■, and the liquid in state (2) undergoes isenthalpic expansion and becomes a low pressure state (2).

この状態の液体に低温側熱交換器2を介してランキンサ
イクル側より熱を与えて昇温すると、液はガス化を伴い
ながらエンタルピを高めつ2■のガス状態に至る。
When heat is applied to the liquid in this state from the Rankine cycle side via the low-temperature side heat exchanger 2 to raise the temperature, the liquid becomes gaseous, increasing its enthalpy, and reaches a gas state of 2.

一方、ランキンサイクルでは、■の状態にある流体の低
温ガスは冷却工程で低温側交換器2を介してカスケード
サイクル側に放熱することにより液化し、飽和液線を越
えた■において完全液化し、レシーバ5に貯溜され、昇
圧ポンプ6により昇圧され■の高圧状態になり1次いで
高温側熱交換器1を介してカスケードサイクルより熱を
受は取り、さらに熱交換器7により外部熱源より熱を供
給され昇温する。昇温工程では、流体は当初は液状であ
り、温度はTMからTHに上昇し、気液混合域では等温
THでガス化し、全量ガス化した後再度昇温してT■の
温度に達する。高温、高圧ガスは膨張工程で膨張タービ
ン8によりエネルギーE2を外部に出し、■の状態の低
温、低圧ガスとなり。
On the other hand, in the Rankine cycle, the low-temperature gas in the fluid in state (■) is liquefied by dissipating heat to the cascade cycle side via the low-temperature side exchanger 2 in the cooling process, and is completely liquefied in (2) when it exceeds the saturated liquid line. It is stored in the receiver 5 and is boosted by the boost pump 6 to reach the high pressure state (1).Then, heat is received from the cascade cycle via the high temperature side heat exchanger 1, and heat is further supplied from an external heat source by the heat exchanger 7. The temperature rises. In the temperature raising process, the fluid is initially in a liquid state, and the temperature rises from TM to TH. In the gas-liquid mixing zone, it is gasified at isothermal TH, and after the entire amount is gasified, the temperature is raised again to reach the temperature of T. The high-temperature, high-pressure gas outputs energy E2 to the outside through the expansion turbine 8 during the expansion process, and becomes the low-temperature, low-pressure gas in the state of ■.

このサイクルを繰返す。Repeat this cycle.

以上の如く、この動力システムでは、ランキンサイクル
の冷却工程の→■で、このサイクルの流体から放出され
たエネルギーは海水中や大気中に捨てられることなく、
カスケードサイクルの流体に与えられてこれを昇温させ
、ランキンサイクルの昇温工程O→◎でカスケードサイ
クルの流体から戻されるので、従来の冷却工程で海水中
又は大気中に放熱していた動力システムに比較してエネ
ルギー効率は向上し、自然環境の温度上昇防止効果も向
上する。
As described above, in this power system, the energy released from the fluid in the Rankine cycle during the cooling process is not discarded into the seawater or the atmosphere.
Heat is given to the fluid in the cascade cycle to raise its temperature, and it is returned from the fluid in the Rankine cycle in the heating process O → ◎, so heat is radiated into the seawater or the atmosphere in the conventional cooling process. Energy efficiency will be improved compared to the previous model, and the effect of preventing temperature rise in the natural environment will also be improved.

このシステムではカスケードサイクルの圧縮工程でイン
プットされるエネルギーE□は、ランキンサイクルの膨
張工程での出力エネルギーE2の一部を消費するので、
差引出力エネルギーはE2−Elとなりエネルギー効率
ηは、次の如くなる。
In this system, the energy E□ input in the compression process of the cascade cycle consumes a part of the output energy E2 in the expansion process of the Rankine cycle, so
The subtracted output energy is E2-El, and the energy efficiency η is as follows.

しかし、装置の機械効率、摩擦損失を考えると、システ
ム全体の効率はこれより低下するので、従来のシステム
より多少は改善されるものの、実用には今一つである。
However, considering the mechanical efficiency and friction loss of the device, the efficiency of the entire system will be lower than this, so although this is somewhat improved over conventional systems, it is still inadequate for practical use.

木見匪立且血 本発明は、上記の実情にかんがみ、さらにエネルギー効
率の優れた動力システムを提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, it is an object of the present invention to provide a power system with further excellent energy efficiency.

パ のための 本発明は、上記の目的を達成させるため、ランキンサイ
クルにカスケードサイクルとを組合せ、カスケードサイ
クルの冷却工程の流体の熱を熱交換器を介してランキン
サイクルの昇温工程の流体に与え、ランキンサイクルの
冷却工程の流体の熱を熱交換器を介してカスケードサイ
クルの昇温工程の流体に与えるとともに、ランキンサイ
クルの昇温工程の流体に外部より熱を与え、ランキンサ
イクルの昇温工程の流体に外部より熱を与え、ランキン
サイクルのポリトロープ膨張工程で外部にエネルギーを
取出す動力システムにおいて1作動エンタルピ領域の異
る複数のランキンサイクルを単一のカスケードサイクル
と組合せ、夫々のランキンサイクルの昇温工程の流体温
度をカスケードサイクルの冷却工程の流体温度よりも低
く保ち、夫々のランキンサイクルの冷却工程の流体温度
をカスケードサイクルの昇温工程の流体温度よりも高く
保つとともに、作動エンタルピ領域が最も低いランキン
サイクルの昇温工程の始点温度をカスケードサイクルの
冷却工程の終点の温度よりも低く保つことを特徴とする
In order to achieve the above object, the present invention combines a Rankine cycle with a cascade cycle, and transfers the heat of the fluid in the cooling process of the cascade cycle to the fluid in the heating process of the Rankine cycle through a heat exchanger. The heat of the fluid in the cooling process of the Rankine cycle is given to the fluid in the heating process of the cascade cycle via a heat exchanger, and the heat of the fluid in the heating process of the Rankine cycle is given from the outside to raise the temperature of the Rankine cycle. In a power system that applies heat to the process fluid from the outside and extracts energy to the outside through the polytropic expansion process of the Rankine cycle, multiple Rankine cycles with different actuation enthalpy regions are combined with a single cascade cycle, and each Rankine cycle's The fluid temperature in the heating process is kept lower than the fluid temperature in the cooling process of the cascade cycle, and the fluid temperature in the cooling process of each Rankine cycle is kept higher than the fluid temperature in the heating process of the cascade cycle. It is characterized in that the temperature at the starting point of the temperature raising step of the lowest Rankine cycle is kept lower than the temperature at the end point of the cooling step of the cascade cycle.

走−肛 以下に本発明の作用を実施例を示す図面を用いて詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention will be explained in detail below using drawings showing embodiments.

第1図(a)は本発明の動力システムの実施例のモリエ
ル線図、第2図はその系統図である。
FIG. 1(a) is a Mollier diagram of an embodiment of the power system of the present invention, and FIG. 2 is a system diagram thereof.

第1図中の■′→■′→■′→■′→■′はカスケード
サイクルであり、の′→の′→■′→σ→の′及び■“
→@′→■1→◎′→の′は夫々互いに作動エンタルピ
領域の異なる2つのランキンサイクルである。
■'→■'→■'→■'→■' in Figure 1 is a cascade cycle, and ''→''→■'→σ→'' and ■''
→@'→■1→◎'→' are two Rankine cycles with different activation enthalpy regions.

これらのカスケードサイクルと2つのランキンサイクル
に用いられる流体A、B、Cの気液平衡曲線及びモリエ
ル線図は夫々第1図(b) (c) (d)に示されて
おり、第1図(a)はこれらの、カスケードサイクルと
2つのランキンサイクルのモリエル線図を同一の座標上
に重ねて画いたものである。
The vapor-liquid equilibrium curves and Mollier diagrams of fluids A, B, and C used in these cascade cycles and the two Rankine cycles are shown in Fig. 1(b), (c), and (d), respectively. (a) shows the Mollier diagrams of the cascade cycle and two Rankine cycles superimposed on the same coordinates.

カスケードサイクルの昇温サイクルは補足的に廃熱など
の温媒によりスーパーヒートしてもよい。
The temperature raising cycle of the cascade cycle may be supplemented by superheating using a heating medium such as waste heat.

2つのランキンサイクルの昇温工程の流体温度TH’及
びTHll及びはカスケードサイクルの冷却工程の流体
温度(気液混合状態ではT2′、ガス状態ではそれより
も小さい)よりも小さく、2つのランキンサイクルの冷
却工程の流体の温度TL〆及びT L sはカスケード
サイクルの昇温工程の流体の温度(気液混合状態ではT
i’、ガス状態ではそれより小さい)よりも高く保持さ
れ、作動エンタルピ領域が低い方のランキンサイクルの
昇温工程e′→◎′の始点0′の温度はカスケードサイ
クルの冷却工程■′→■′の始点■′の温度よりも低く
保たれている。
The fluid temperatures TH' and THll in the heating step of the two Rankine cycles are smaller than the fluid temperature in the cooling step of the cascade cycle (T2' in the gas-liquid mixed state, smaller than that in the gas state), and The fluid temperatures TL〆 and T L s in the cooling process are the fluid temperatures in the temperature raising process of the cascade cycle (T in the gas-liquid mixed state).
The temperature at the starting point 0' of the Rankine cycle's heating step e'→◎', which is held higher than i' (in the gas state, smaller than that) and has a lower operating enthalpy region, is the temperature at the starting point 0' of the cascade cycle's cooling step ■'→■ ′ is kept lower than the temperature at the starting point ■′.

第2図はこの動力システムの系統図であって、図の左側
の1本の実線で示すループは流体Aが流れるカスケード
サイクルであり、右側の内側に実線と破線の二重線で示
すループは流体Bが流れるランキンサイクルであり、外
側に2重の実線で示すループは流体Cが流れるランキン
サイクルである。これらの経路の傍に示す符号は第1図
の各サイクルの状態を示す符号と対応している。
Figure 2 is a system diagram of this power system, where the loop shown by a single solid line on the left side of the figure is a cascade cycle in which fluid A flows, and the loop shown inside the right side by a double line of solid and broken lines. This is a Rankine cycle in which fluid B flows, and the loop shown by a double solid line on the outside is a Rankine cycle in which fluid C flows. The symbols shown next to these paths correspond to the symbols showing the states of each cycle in FIG.

カスケードサイクルに配置された機器は第4図の例と同
じであるが、高温側熱交換器1ではランキンサイクル2
の流体C及びランキンサイクル1の流体Bと順次熱交換
を行ない、低温側熱交換器2ではランキンサイクル1の
流体B及びランキンサイクル2の流体Cと順次熱交換を
行なうように構成されている。なお、低温側熱交換器2
と圧縮機3との間には、工場廃熱等を入熱するスーパー
ヒーター9が設けられている。一方、2つのランキンサ
イクル1,2の夫々の機器の構成、配置は第4図のもの
のランキンサイクルと同じであるから説明を省略する。
The equipment arranged in the cascade cycle is the same as the example shown in Fig. 4, but the high temperature side heat exchanger 1 has a Rankine cycle 2
The low-temperature heat exchanger 2 is configured to sequentially exchange heat with the fluid C of the Rankine cycle 1 and the fluid B of the Rankine cycle 1, and the low temperature side heat exchanger 2 sequentially exchange heat with the fluid B of the Rankine cycle 1 and the fluid C of the Rankine cycle 2. In addition, the low temperature side heat exchanger 2
A super heater 9 is provided between the compressor 3 and the compressor 3 to input heat such as factory waste heat. On the other hand, the configuration and arrangement of the devices of the two Rankine cycles 1 and 2 are the same as those of the Rankine cycle shown in FIG. 4, so the explanation will be omitted.

流体Bのランキンサイクル1の膨張工程に設けられた膨
張タービン8によりE2のエネルギーが出力され、流体
Cの流れるランキンサイクル2の膨張工程に設けられた
タービン8によりE、のエネルギーが出力される。
The expansion turbine 8 provided in the expansion step of the Rankine cycle 1 of the fluid B outputs energy E2, and the turbine 8 provided in the expansion step of the Rankine cycle 2 in which the fluid C flows outputs the energy E.

したがって、このシステムのエネルギー効率ηは次の如
くなる。
Therefore, the energy efficiency η of this system is as follows.

(1)式と(2)式とを比較することにより、本発明の
システムの方が先に提案したシステムよりエネルギー効
率が向上したことが判る。
By comparing equations (1) and (2), it can be seen that the system of the present invention has improved energy efficiency than the previously proposed system.

上記実施例では1つのカスケードサイクルに対して、2
つのランキンサイクルを設けた例を示したが、1つのカ
スケードサイクルに対して3つ以上のランキンサイクル
を設けた場合は、さらにエネルギー効率は向上する。
In the above embodiment, for one cascade cycle, 2
Although an example in which one Rankine cycle is provided has been shown, energy efficiency is further improved when three or more Rankine cycles are provided for one cascade cycle.

なお、第5図(a) (b)に示す如くカスケードサイ
クルの冷却工程の圧力を中間で変化させ、あるいは第5
図(c)に示す如く、カスケードサイクルの昇温工程の
圧力を中間で変化させ、圧縮工程又は膨張工程を2段に
分け、ランキンサイクルの昇温工程又は冷却工程をこれ
に追随させるようにしても、冷却工程の放熱を昇温工程
で利用する目的は達成される。
In addition, as shown in FIGS. 5(a) and 5(b), the pressure in the cooling process of the cascade cycle is changed in the middle, or
As shown in Figure (c), the pressure in the temperature raising step of the cascade cycle is changed in the middle, the compression step or expansion step is divided into two stages, and the temperature raising step or cooling step of the Rankine cycle is made to follow this. In this case, the purpose of utilizing heat dissipation from the cooling process in the temperature raising process is achieved.

第5図(d) (e) (f)は、カスケードサイクル
の冷却工程又は昇温サイクルの圧力を中間で変化させた
場合に本発明により、作動エンタルピ領域の異る複数(
図の例では2箇)のランキンサイクルを設けた例のモリ
エル線図である。
FIGS. 5(d), (e), and (f) show that when the pressure of the cooling step or the heating cycle of the cascade cycle is changed in the middle, the present invention can create multiple (
It is a Mollier diagram of an example in which two Rankine cycles are provided in the illustrated example.

上記の各実施例は基本概念を示すものであり、各システ
ムに必要なバッファー設備、弁、計器等の付属設備は記
述を省略した。
Each of the above-mentioned embodiments shows the basic concept, and descriptions of auxiliary equipment such as buffer equipment, valves, and meters necessary for each system are omitted.

又、上述のシステムを複数組合せたシステムや他のエネ
ルギーシステムと組合せたシステム、あるいは各サイク
ルに使用する流体を混合液とすることも本発明の範勢に
属するものである。
Further, a system in which a plurality of the above-mentioned systems are combined, a system in combination with other energy systems, or a mixed liquid used in each cycle also belong to the scope of the present invention.

抜−米 以上の如く、本発明によれば、エネルギー効率の優れた
動力システムが得られ、自然環境の熱バランスの破壊防
止にも効果が得られる。
As described above, according to the present invention, a power system with excellent energy efficiency can be obtained, and it is also effective in preventing destruction of the heat balance of the natural environment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の実施例のシステムを構成するカ
スケードサイクルとランキンサイクルのモリエル線図、
 (b)、(C)、(d)は夫々その各ランキンサイク
ルの個々のモリエル線図及び使用流体の気液平衡曲線を
示す図、第2図はその実施例の系統図、第3図は本発明
者がさきに提案した動力システムのモリエル線図、第4
図はその系統図、第5図(a) 、 (b)、 (c)
はカスケードサイクルの冷却工程又は昇温工程の圧力を
中間で変える考え方を示すモリエル線図、第5図(d)
 、 (e) 、 (f)はその考え方に本発明を適用
した実施例のモリエル線図である。 ■′→■′→■′→■′→■′・・・カスケードサイク
ル ■′ →■′ →O′ →[F]′ →■′ 。 ■“→の′→0“→O′→■′・・・ランキンサイクル ■′ →■′ 、■′ →■′ 、■″→■″・・・冷
却工程 ■′→■′、C′→O′、0″→0″ ・・・昇温工程 1.2.7・・熱交換器 3−・・圧力機     4・・・膨張弁6・・・昇圧
ポンプ   8・・・膨張タービン弓        
    D ’J                Dエンタルピ 
   i 第5N (b)            (e)(c)    
         (f)エンタルピ  1     
    エンタルピ  1手続補正書 昭和61年 2月28日
FIG. 1(a) is a Mollier diagram of a cascade cycle and a Rankine cycle that constitute a system according to an embodiment of the present invention.
(b), (C), and (d) are diagrams showing individual Mollier diagrams and vapor-liquid equilibrium curves of the fluid used for each Rankine cycle, Figure 2 is a system diagram of the example, and Figure 3 is Mollier diagram of the power system proposed earlier by the inventor, No. 4
The figure shows the system diagram, Figure 5 (a), (b), (c)
Figure 5(d) is a Mollier diagram showing the idea of changing the pressure in the cooling process or heating process in the middle of the cascade cycle.
, (e) and (f) are Mollier diagrams of an embodiment in which the present invention is applied to this idea. ■′→■′→■′→■′→■′・・・Cascade cycle ■′ →■′ →O′ →[F]′ →■′. ■“→の′→0”→O′→■′・・・Rankin cycle ■′ →■′ , ■′ →■′ , ■″→■″・・・Cooling process ■′→■′, C′→ O', 0''→0''... Temperature raising process 1.2.7... Heat exchanger 3... Pressure machine 4... Expansion valve 6... Pressure boost pump 8... Expansion turbine bow
D'J D enthalpy
i 5th N (b) (e) (c)
(f) Enthalpy 1
Enthalpy 1 Procedural Amendment February 28, 1986

Claims (1)

【特許請求の範囲】 流体を圧縮、冷却、膨張、昇温する一連の工程を有する
カスケードサイクルと、流体を昇圧、昇温、ポリトロー
プ膨張、冷却する一連の工程を有するランキンサイクル
とを組合せ、カスケードサイクルの冷却工程の流体の熱
を熱交換器を介してランキンサイクルの昇温工程の流体
に与え、ランキンサイクルの冷却工程の流体の熱を熱交
換器を介してカスケードサイクルの昇温工程の流体に与
えるとともに、ランキンサイクルの昇温工程の流体に外
部より熱を与え、ランキンサイクルのポリトロープ膨張
工程で外部にエネルギーを取出す動力システムにおいて
、 作動エンタルピ領域の異る複数のランキンサイクルを単
一のカスケードサイクルと組合せ、夫々のランキンサイ
クルの昇温工程の流体温度をカスケードサイクルの冷却
工程の流体温度よりも低く保ち、夫々のランキンサイク
ルの冷却工程の流体温度をカスケードサイクルの昇温工
程の流体温度よりも高く保つとともに、作動エンタルピ
領域が最も低いランキンサイクルの昇温工程の始点温度
をカスケードサイクルの冷却工程の終点の温度よりも低
く保つことを特徴とする動力システム。
[Claims] A cascade cycle that combines a cascade cycle that has a series of steps of compressing, cooling, expanding, and increasing the temperature of a fluid, and a Rankine cycle that has a series of steps of increasing pressure, increasing temperature, polytropic expansion, and cooling a fluid. The heat of the fluid in the cooling process of the cycle is given to the fluid in the heating process of the Rankine cycle via a heat exchanger, and the heat of the fluid in the cooling process of the Rankine cycle is transferred to the fluid in the heating process of the cascade cycle via the heat exchanger. In a power system, heat is given externally to the fluid in the temperature raising process of the Rankine cycle, and energy is extracted externally in the polytropic expansion process of the Rankine cycle. Multiple Rankine cycles with different operating enthalpy regions are combined into a single cascade. In combination with the cycle, the fluid temperature in the heating step of each Rankine cycle is kept lower than the fluid temperature in the cooling step of the cascade cycle, and the fluid temperature in the cooling step of each Rankine cycle is kept lower than the fluid temperature in the heating step of the cascade cycle. The power system is characterized in that the temperature at the starting point of the heating step of the Rankine cycle, which has the lowest operating enthalpy region, is kept lower than the temperature at the end point of the cooling step of the cascade cycle.
JP7926185A 1985-04-16 1985-04-16 Power system Granted JPS61237804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7926185A JPS61237804A (en) 1985-04-16 1985-04-16 Power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7926185A JPS61237804A (en) 1985-04-16 1985-04-16 Power system

Publications (2)

Publication Number Publication Date
JPS61237804A true JPS61237804A (en) 1986-10-23
JPH0340208B2 JPH0340208B2 (en) 1991-06-18

Family

ID=13684910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7926185A Granted JPS61237804A (en) 1985-04-16 1985-04-16 Power system

Country Status (1)

Country Link
JP (1) JPS61237804A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510386A (en) * 2005-10-04 2009-03-12 アーセー−スン アンパーツゼルスカブ Air conditioning and heat pump cooling system
JP2011012659A (en) * 2009-07-06 2011-01-20 Hitachi Industrial Equipment Systems Co Ltd Compressor
CN102536363A (en) * 2010-11-19 2012-07-04 通用电气公司 Rankine cycle integrated with organic rankine cycle and absorption chiller cycle
EP2653670A1 (en) * 2012-04-17 2013-10-23 Siemens Aktiengesellschaft Assembly for storing and emitting thermal energy with a heat storage device and a cold air reservoir and method for its operation
KR20150115651A (en) * 2014-04-04 2015-10-14 가부시키가이샤 고베 세이코쇼 Waste heat recovery apparatus and waste heat recovery method
JP2016014328A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Compression device, compression device mode switching method, and compression device assembly method
WO2016128754A1 (en) * 2015-02-11 2016-08-18 Futurebay Limited Apparatus and method for energy storage
CN109519243A (en) * 2018-10-26 2019-03-26 中国科学院工程热物理研究所 Supercritical CO2With ammonium hydroxide combined cycle system and electricity generation system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510386A (en) * 2005-10-04 2009-03-12 アーセー−スン アンパーツゼルスカブ Air conditioning and heat pump cooling system
US8955323B2 (en) 2009-07-06 2015-02-17 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
JP2011012659A (en) * 2009-07-06 2011-01-20 Hitachi Industrial Equipment Systems Co Ltd Compressor
US9897103B2 (en) 2009-07-06 2018-02-20 Hitachi Industrial Equipment Systems Co., Ltd. Compressor
CN102536363A (en) * 2010-11-19 2012-07-04 通用电气公司 Rankine cycle integrated with organic rankine cycle and absorption chiller cycle
EP2455591A3 (en) * 2010-11-19 2014-02-19 General Electric Company Rankine cycle integrated with organic rankine cycle and absorption chiller cycle
US8904791B2 (en) 2010-11-19 2014-12-09 General Electric Company Rankine cycle integrated with organic rankine cycle and absorption chiller cycle
CN102536363B (en) * 2010-11-19 2015-05-20 通用电气公司 Rankine cycle integrated with organic rankine cycle and absorption chiller cycle
WO2013156284A1 (en) * 2012-04-17 2013-10-24 Siemens Aktiengesellschaft System for storing and outputting thermal energy having a heat accumulator and a cold accumulator and method for the operation thereof
CN104302876A (en) * 2012-04-17 2015-01-21 西门子公司 System for storing and outputting thermal energy having heat accumulator and cold accumulator and method for operation thereof
EP2653670A1 (en) * 2012-04-17 2013-10-23 Siemens Aktiengesellschaft Assembly for storing and emitting thermal energy with a heat storage device and a cold air reservoir and method for its operation
KR20150115651A (en) * 2014-04-04 2015-10-14 가부시키가이샤 고베 세이코쇼 Waste heat recovery apparatus and waste heat recovery method
JP2016014328A (en) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 Compression device, compression device mode switching method, and compression device assembly method
WO2016128754A1 (en) * 2015-02-11 2016-08-18 Futurebay Limited Apparatus and method for energy storage
CN107250492A (en) * 2015-02-11 2017-10-13 福彻尔贝有限公司 device and method for energy storage
CN107250492B (en) * 2015-02-11 2019-11-19 福彻尔贝有限公司 Device and method for energy storage
US10815835B2 (en) 2015-02-11 2020-10-27 Futurebay Limited Apparatus and method for energy storage
EA038955B1 (en) * 2015-02-11 2021-11-15 Фьючебэй Лимитед Method of operating an energy storage apparatus
CN109519243A (en) * 2018-10-26 2019-03-26 中国科学院工程热物理研究所 Supercritical CO2With ammonium hydroxide combined cycle system and electricity generation system

Also Published As

Publication number Publication date
JPH0340208B2 (en) 1991-06-18

Similar Documents

Publication Publication Date Title
Vundela Siva et al. An approach to analyse energy and exergy analysis of thermal power plants: a review
US8166761B2 (en) Method and system for generating power from a heat source
Alklaibi et al. Thermodynamic analysis of gas turbine with air bottoming cycle
US5813215A (en) Combined cycle waste heat recovery system
US20130087301A1 (en) Thermoelectric energy storage system and method for storing thermoelectric energy
Yari et al. A novel recompression S-CO2 Brayton cycle with pre-cooler exergy utilization
JP3230516U (en) Supercritical carbon dioxide Brayton cycle power generation system for waste heat recovery
US9038391B2 (en) System and method for recovery of waste heat from dual heat sources
JP2007146766A (en) Heat cycle device and compound heat cycle power generation device
CN107313819A (en) A kind of integrated heat pump and the thermal energy of generating function utilize system
JPS61237804A (en) Power system
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
Zheng et al. Chemical amplifier and energy utilization principles of heat conversion cycle systems
JPS60138214A (en) Gas turbine composite cycle power generating plant
Afif et al. Thermodynamic investigation of a solar energy cogeneration plant using an organic Rankine cycle in supercritical conditions
KR20070116106A (en) Cascaded organic rankine cycles for waste heat utilization
Madan et al. Second law-based assessment of combined cycle power plant
CN207018041U (en) A kind of integrated heat pump and the thermal energy of generating function utilize system
JPH0240007A (en) Power system
Chaudhary et al. Feasibility Study of Supercritical CO2 Rankine Cycle for Waste Heat Recovery
Yadav et al. Comparative thermodynamic analysis of combined and steam injected gas turbine cycles
CN114811990B (en) Co-production system and method combining carbon dioxide power cycle and heat pump cycle
JPS61258907A (en) Power system
CN111520202B (en) Combined cooling, heating and power system with condensation decoupling and cascade evaporation coupling
KR100658321B1 (en) Power generation system of heat-absorption type