JP2016014328A - Compression device, compression device mode switching method, and compression device assembly method - Google Patents

Compression device, compression device mode switching method, and compression device assembly method Download PDF

Info

Publication number
JP2016014328A
JP2016014328A JP2014135618A JP2014135618A JP2016014328A JP 2016014328 A JP2016014328 A JP 2016014328A JP 2014135618 A JP2014135618 A JP 2014135618A JP 2014135618 A JP2014135618 A JP 2014135618A JP 2016014328 A JP2016014328 A JP 2016014328A
Authority
JP
Japan
Prior art keywords
flow path
working medium
heat exchanger
connection end
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014135618A
Other languages
Japanese (ja)
Other versions
JP6371139B2 (en
Inventor
宏一郎 橋本
Koichiro Hashimoto
宏一郎 橋本
和真 西村
Kazuma Nishimura
和真 西村
足立 成人
Shigeto Adachi
成人 足立
裕 成川
Yutaka Narukawa
成川  裕
治幸 松田
Haruyuki Matsuda
治幸 松田
哲也 垣内
Tetsuya Kakiuchi
哲也 垣内
昇 壷井
Noboru Tsuboi
昇 壷井
一徳 福原
Kazunori Fukuhara
一徳 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014135618A priority Critical patent/JP6371139B2/en
Priority to KR1020150086757A priority patent/KR101660173B1/en
Priority to CN201510384796.XA priority patent/CN105317488B/en
Publication of JP2016014328A publication Critical patent/JP2016014328A/en
Application granted granted Critical
Publication of JP6371139B2 publication Critical patent/JP6371139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To easily install a heat exchanger to which a working medium flow passage in which a working medium for driving an expander flows while suppressing increase in flow passage resistance in a compressed gas flow passage is attached, in a compression device.SOLUTION: A compression device comprises: a compressor (10) compressing gas; and a heat exchanger (20) recovering heat of the compressed gas discharged from the compressor (10), the heat exchanger (20) including a gas flow passage (22) through which the compressed gas passes; a first flow passage (24) including connection end portions (24a, 24b) on both ends, respectively and contacting the gas flow passage (22); a second flow passage (26) including connection end portions (26a, 26b) on both ends, respectively and contacting the gas flow passage (22); and a third flow passage (30) detachably connectable to one connection end portion (24a) of the first flow passage (24) and one connection end portion (26a) of the second flow passage (26), and having a shape for communicating the first flow passage (24) with the second flow passage (26) in a state of being connected to these connection end portions (24a, 26a).

Description

本発明は、圧縮装置、圧縮装置の態様の切替方法及び圧縮装置の組立方法に関するものである。   The present invention relates to a compression apparatus, a method for switching modes of the compression apparatus, and a method for assembling the compression apparatus.

近年、特許文献1に開示されるように、圧縮ガスの熱エネルギーを回収して発電を行う技術が提案されている。特許文献1には、圧縮機と、圧縮機から吐出された圧縮ガスと液相作動媒体とを熱交換させる蒸発器と、蒸発器から流出したガスを冷却する冷却器と、蒸発器から流出した気相作動媒体が流入するタービンと、タービンに接続された交流発電機と、タービンから流出した作動媒体を凝縮させる凝縮器と、凝縮器から流出した液相作動媒体を蒸発器へ圧送する循環ポンプと、蒸発器、タービン、凝縮器及び循環ポンプを接続する作動媒体流路と、を備える圧縮機のエネルギー回収システムが開示されている。冷却器には、冷却流体供給流路を通じて冷却流体(例えば冷却水)が供給されている。このシステムでは、圧縮ガスが有するエネルギーが蒸発器で回収され、そのエネルギーによって交流発電機での発電が行われている。   In recent years, as disclosed in Patent Document 1, a technique for recovering heat energy of compressed gas and generating electric power has been proposed. In Patent Document 1, the compressor, the evaporator that exchanges heat between the compressed gas discharged from the compressor and the liquid phase working medium, the cooler that cools the gas that flows out of the evaporator, and the evaporator that flows out of the evaporator Turbine into which the gas phase working medium flows, an AC generator connected to the turbine, a condenser for condensing the working medium flowing out from the turbine, and a circulation pump for pumping the liquid phase working medium flowing out from the condenser to the evaporator And an energy recovery system for a compressor comprising a working medium flow path connecting an evaporator, a turbine, a condenser, and a circulation pump. A cooling fluid (for example, cooling water) is supplied to the cooler through a cooling fluid supply channel. In this system, the energy of the compressed gas is recovered by an evaporator, and electricity is generated by an AC generator using the energy.

特開2013−057256号公報JP 2013-057256 A

ところで、特許文献1では、蒸発器および冷却器、すなわち、互いに独立した2つの熱交換器が圧縮ガスの流路上に設けられるため当該流路における流路抵抗が増大し、圧縮ガスの吐出圧が低下してしまう。さらに、圧縮機や冷却器などの機器が1つの収容部内に収容される圧縮装置の場合、収容部内に蒸発器を設置するスペースを確保することが困難である。   By the way, in Patent Document 1, since an evaporator and a cooler, that is, two heat exchangers independent of each other are provided on the flow path of the compressed gas, the flow path resistance in the flow path is increased, and the discharge pressure of the compressed gas is increased. It will decline. Furthermore, in the case of a compression device in which devices such as a compressor and a cooler are accommodated in one accommodating part, it is difficult to secure a space for installing the evaporator in the accommodating part.

本発明は上記課題に鑑みなされたものであり、圧縮ガスの流路における流路抵抗の増大を抑えつつ膨張機を駆動する作動媒体が流れる作動媒体流路が取り付けられた熱交換器を圧縮装置に容易に設けることを目的としている。   The present invention has been made in view of the above problems, and a compression apparatus includes a heat exchanger having a working medium flow path through which a working medium that drives an expander flows while suppressing an increase in flow path resistance in the compressed gas flow path. It is intended to be easily provided.

前記課題を解決するための手段として、本発明は、ガスを圧縮する圧縮機と、前記圧縮機から吐出された圧縮ガスの熱を回収する熱交換器と、を備え、前記熱交換器が、圧縮ガスが通過するガス流路と、両端に接続端部を有する第1流路と、両端に接続端部を有する第2流路と、前記第1流路の一方の接続端部及び前記第2流路の一方の接続端部に対して着脱自在に接続可能で前記第1流路と前記第2流路とを連通させる形状を有する第3流路と、を備え、冷却流体が流れる冷却流路に前記第1流路、前記第2流路及び前記第3流路が接続される第1態様と、前記第3流路が取り外された状態において、圧縮ガスの熱を回収して膨張機を駆動する作動媒体が流れる作動媒体流路に前記第1流路が接続され、かつ、前記冷却流路に前記第2流路が接続される第2態様と、の間を切り替え可能である、圧縮装置を提供する。   As means for solving the above problems, the present invention comprises a compressor that compresses gas, and a heat exchanger that recovers heat of the compressed gas discharged from the compressor, and the heat exchanger comprises: A gas channel through which the compressed gas passes, a first channel having connection ends at both ends, a second channel having connection ends at both ends, one connection end of the first channel, and the first channel A third flow path that is detachably connectable to one connection end of the two flow paths and has a shape that allows the first flow path and the second flow path to communicate with each other. In a first mode in which the first flow path, the second flow path, and the third flow path are connected to the flow path, and in a state where the third flow path is removed, the heat of the compressed gas is recovered and expanded. The first flow path is connected to a working medium flow path through which a working medium that drives the machine flows, and the second flow path is connected to the cooling flow path. A second aspect to be connected, is switchable between, to provide a compression device.

本発明では、第1流路の一方の接続端部及び第2流路の一方の接続端部に第3流路を接続することにより、第1態様として第1流路及び第2流路に共通の媒体(例えば冷却水)を流すことによって圧縮ガスを冷却することが可能となる。一方、第1流路及び第2流路から第3流路を取り外すことにより、第2態様として第1流路及び第2流路に互いに異なる媒体を流すことによって圧縮ガスを冷却することが可能となる。圧縮装置では、大掛かりな変更を加えることなく、第1態様から第2態様へ容易に切り替えることができる。また、圧縮ガスの流路上に冷却流体が流れる熱交換器、及び、作動媒体が流れる熱交換器を別体として設ける場合に比べて圧縮ガスの流路抵抗の増大を抑えることができ、圧縮ガスの圧力を確保することができる。   In the present invention, by connecting the third flow path to one connection end of the first flow path and one connection end of the second flow path, the first flow path and the second flow path are connected as the first mode. It is possible to cool the compressed gas by flowing a common medium (for example, cooling water). On the other hand, by removing the third flow path from the first flow path and the second flow path, the compressed gas can be cooled by flowing different media through the first flow path and the second flow path as the second mode. It becomes. In the compression device, it is possible to easily switch from the first mode to the second mode without making a major change. Further, compared to the case where a heat exchanger in which the cooling fluid flows on the flow path of the compressed gas and a heat exchanger in which the working medium flows are provided separately, an increase in the flow resistance of the compressed gas can be suppressed. The pressure can be secured.

この場合において、前記第3流路が、前記ガス流路、前記第1流路及び前記第2流路を収容する前記熱交換器の筐体の外部に位置することが好ましい。   In this case, it is preferable that the third flow path is located outside the housing of the heat exchanger that houses the gas flow path, the first flow path, and the second flow path.

このようにすれば、第3流路を容易に取り外すことができる。   If it does in this way, the 3rd channel can be removed easily.

また、本発明は、ガスを圧縮する圧縮機と、前記圧縮機から吐出された圧縮ガスの熱を回収する熱交換器と、を備え、前記熱交換器が、圧縮ガスが通過するガス流路と、両端に接続端部を有し、圧縮ガスの熱を回収して膨張機を駆動する作動媒体が流れる作動媒体流路に接続可能である第1流路と、冷却流体が流れる冷却流路に接続される第2流路と、前記第1流路が前記作動媒体流路に接続される前の状態において、前記第1流路の両端の接続端部に対して着脱自在に接続され、前記第1流路を閉塞する閉塞部材と、を備える、圧縮装置を提供する。   The present invention also includes a compressor that compresses gas and a heat exchanger that recovers heat of the compressed gas discharged from the compressor, wherein the heat exchanger has a gas flow path through which the compressed gas passes. A first flow path that has connection ends at both ends, and that can be connected to a working medium flow path through which a working medium that recovers heat of the compressed gas and drives the expander flows, and a cooling flow path through which the cooling fluid flows In a state before the first flow path is connected to the working medium flow path, and the second flow path connected to the connection end portions at both ends of the first flow path. And a closing member that closes the first flow path.

本発明では、予め、熱交換器内の流路に閉塞部材にて閉塞された部位を設けることにより、作動媒体にて圧縮ガスの熱を回収する際に圧縮装置に大掛かりな変更を加えることなく、容易に作動媒体流路を圧縮装置に取り付けることができる。また、圧縮ガスの流路上に冷却流体が流れる熱交換器、及び、作動媒体が流れる熱交換器を別体として設ける場合に比べて圧縮ガスの流路抵抗の増大を抑えることができ、圧縮ガスの圧力を確保することができる。また、閉塞部材により閉塞されている流路内は、クリーンな状態に維持される。   In the present invention, by providing a portion blocked in advance by a blocking member in the flow path in the heat exchanger, when the heat of the compressed gas is recovered by the working medium, no major change is made to the compression device. The working medium flow path can be easily attached to the compression device. Further, compared to the case where a heat exchanger in which the cooling fluid flows on the flow path of the compressed gas and a heat exchanger in which the working medium flows are provided separately, an increase in the flow resistance of the compressed gas can be suppressed. The pressure can be secured. Further, the inside of the flow path closed by the closing member is maintained in a clean state.

また、本発明において、前記作動媒体流路と、前記膨張機と、前記膨張機に接続された動力回収部と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器にて凝縮した作動媒体を前記熱交換器へ作動媒体を送るポンプと、を備え、前記ポンプ、前記熱交換器、前記膨張機及び前記凝縮器が前記作動媒体流路に接続される熱エネルギー回収ユニットをさらに備えることが好ましい。   In the present invention, the working medium flow path, the expander, a power recovery unit connected to the expander, a condenser for condensing the working medium flowing out from the expander, and the condenser And a pump that sends the condensed working medium to the heat exchanger, and a heat energy recovery unit in which the pump, the heat exchanger, the expander, and the condenser are connected to the working medium flow path. It is preferable to further provide.

このようにすれば、作動媒体によるランキンサイクルを利用して熱交換器において圧縮ガスを作動媒体で冷却するとともにそのときに作動媒体が圧縮ガスから受け取った熱エネルギーを動力回収部で回収することが可能となる。   In this way, the compressed gas is cooled by the working medium in the heat exchanger using the Rankine cycle by the working medium, and the thermal energy received from the compressed gas by the working medium at that time can be recovered by the power recovery unit. It becomes possible.

また、本発明において、前記第1流路は、前記熱交換器内において前記第2流路よりも上流側に配置されていることが好ましい。   Moreover, in this invention, it is preferable that the said 1st flow path is arrange | positioned in the said heat exchanger upstream from the said 2nd flow path.

この態様では、第2流路を流れる冷却流体で圧縮ガスが冷却される前に当該圧縮ガスの有する熱エネルギーが作動媒体により有効に回収されるので、作動媒体が圧縮ガスからより多くのエネルギーを回収することが可能となる。   In this aspect, since the thermal energy of the compressed gas is effectively recovered by the working medium before the compressed gas is cooled by the cooling fluid flowing through the second flow path, the working medium receives more energy from the compressed gas. It becomes possible to collect.

また、本発明において、前記ガス流路が前記熱交換器の筐体の内部空間であり、前記第1流路及び前記第2流路が、前記内部空間にて蛇行しつつ延びるチューブであることが好ましい。   Further, in the present invention, the gas flow path is an internal space of the housing of the heat exchanger, and the first flow path and the second flow path are tubes that extend while meandering in the internal space. Is preferred.

この態様では、熱交換器がいわゆるシェル&チューブ式であり、圧縮ガスが筐体の内部空間を通るため、圧縮ガスを配管に通す場合に比べて圧縮ガスに生じる圧力損失を低減することができる。さらに、第1流路及び第2流路が蛇行して延びるチューブであることから、圧縮ガスからの熱回収を効率よく行うことができる。   In this aspect, since the heat exchanger is a so-called shell and tube type, and the compressed gas passes through the internal space of the housing, the pressure loss generated in the compressed gas can be reduced as compared with the case where the compressed gas is passed through the pipe. . Furthermore, since the first flow path and the second flow path are meandering tubes, heat recovery from the compressed gas can be performed efficiently.

この場合において、前記第1流路の外面及び前記第2流路の外面には、複数のフィンが形成されていることが好ましい。   In this case, it is preferable that a plurality of fins are formed on the outer surface of the first channel and the outer surface of the second channel.

このようにすれば、圧縮ガスと第1流路との接触面積及び圧縮ガスと第2流路との接触面積がそれぞれ大きくなるので、圧縮ガスの冷却効率が向上する。   In this way, the contact area between the compressed gas and the first flow path and the contact area between the compressed gas and the second flow path are increased, so that the cooling efficiency of the compressed gas is improved.

また、本発明は、圧縮装置の態様の切替方法であって、前記第1態様から前記第2態様へと切り替える際に、前記膨張機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器にて凝縮した作動媒体を前記熱交換器へ送るポンプと、前記ポンプ、前記膨張機及び前記凝縮器が接続される前記作動媒体流路と、を有する組立体を準備する準備工程と、前記第1流路及び前記第2流路から前記第3流路を取り外す取外工程と、前記作動媒体流路の両端の接続端部を前記第1流路の両端の接続端部にそれぞれ接続し、かつ、前記冷却流路の両端の接続端部を前記第2流路の両端の接続端部にそれぞれ接続する接続工程と、を備える、切替方法を提供する。   Moreover, this invention is a switching method of the aspect of a compression apparatus, Comprising: When switching from the said 1st aspect to the said 2nd aspect, the condenser which condenses the said expander and the working medium which flowed out of the said expander And a preparation for preparing an assembly comprising: a pump for sending the working medium condensed in the condenser to the heat exchanger; and the working medium flow path to which the pump, the expander, and the condenser are connected A step of removing the third flow path from the first flow path and the second flow path, and connecting end portions at both ends of the working medium flow path as connection end portions at both ends of the first flow path. And a connecting step of connecting the connection end portions at both ends of the cooling flow path to the connection end portions at both ends of the second flow path, respectively.

この方法では、第3流路を通じて第1流路及び第2流路を流れる1種類の媒体により圧縮ガスを冷却する第1態様から、第1流路を流れる作動媒体及び第2流路を流れる冷却流体の2種類の媒体により圧縮ガスを冷却しつつ、第1流路で作動媒体が圧縮ガスから受け取った熱エネルギーを熱エネルギー回収ユニットの動力回収部で回収する第2態様に、簡単に切り替えることができる。   In this method, the compressed gas is cooled by one type of medium flowing through the first flow path and the second flow path through the third flow path, and then the working medium flowing through the first flow path and the second flow path are flowed. While the compressed gas is cooled by the two types of mediums of the cooling fluid, the working medium is simply switched to the second mode in which the thermal energy received from the compressed gas in the first flow path is recovered by the power recovery unit of the thermal energy recovery unit be able to.

この場合において、前記取外工程と前記接続工程との間に前記第1流路内を流れていた冷却流体を除去する除去工程をさらに備えることが好ましい。   In this case, it is preferable to further include a removing step of removing the cooling fluid flowing in the first flow path between the removing step and the connecting step.

このようにすれば、第1態様から第2態様に切り替えられる前に、第1態様において第1流路を流れていた流体が除去されるため、第2態様において第1流路を流れる作動媒体との混合が抑制される。   In this way, the fluid that has flowed through the first flow path in the first aspect is removed before switching from the first aspect to the second aspect, so the working medium that flows through the first flow path in the second aspect. Mixing with is suppressed.

また、本発明は、圧縮装置の組立方法であって、前記膨張機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器にて凝縮した作動媒体を前記熱交換器へ送るポンプと、前記ポンプ、前記膨張機及び前記凝縮器が接続される前記作動媒体流路と、を有する組立体を準備する第1準備工程と、前記第1流路から前記閉塞部材を取り外す取外工程と、前記作動媒体流路の両端の接続端部を前記第1流路の両端の接続端部にそれぞれ接続し、かつ、前記冷却流路の両端の接続端部を前記第2流路の両端の接続端部にそれぞれ接続する接続工程と、を備える、組立方法を提供する。   The present invention also relates to a method for assembling the compression apparatus, the expander, a condenser for condensing the working medium flowing out from the expander, and the working medium condensed in the condenser to the heat exchanger. A first preparation step of preparing an assembly having a pump to be fed, and the working medium flow path to which the pump, the expander and the condenser are connected; and removing the blocking member from the first flow path And connecting the connection end portions at both ends of the working medium flow path to the connection end portions at both ends of the first flow path, and connecting the connection end portions at both ends of the cooling flow path to the second flow path. And a connecting step of connecting to the connecting end portions at both ends of the assembly.

この方法では、作動媒体にて圧縮ガスの熱を回収する際に圧縮装置に大掛かりな変更を加えることなく、容易に作動媒体流路を圧縮装置に取り付けることができる。   In this method, when recovering the heat of the compressed gas by the working medium, the working medium flow path can be easily attached to the compressing apparatus without making a major change in the compressing apparatus.

この場合において、前記圧縮機と前記熱交換器とを組み立て、前記閉塞部材により前記熱交換器の前記第1流路を閉塞する第2準備工程をさらに備え、前記第1準備工程及び前記第2準備工程を組立施設にて行い、前記取外工程及び前記接続工程を前記圧縮装置の据え付け地にて行うことが好ましい。   In this case, the compressor and the heat exchanger are assembled, further comprising a second preparation step of closing the first flow path of the heat exchanger by the closing member, and the first preparation step and the second preparation step It is preferable that a preparation process is performed at an assembly facility, and the removal process and the connection process are performed at a place where the compression apparatus is installed.

熱エネルギー回収ユニットを組立施設内にて行い、熱エネルギー回収ユニットの圧縮機及び熱交換器への取り付けを据え付け地にて行うことにより、熱エネルギー回収ユニットと圧縮機及び熱交換器とが組立施設内にて組み立てられた状態で据え付け地に搬送される場合に比べて搬送作業や搬送コストを低減することが可能となる。   The thermal energy recovery unit is installed in the assembly facility, and the thermal energy recovery unit, the compressor and the heat exchanger are installed in the assembly facility by attaching the thermal energy recovery unit to the compressor and the heat exchanger at the installation site. It is possible to reduce the transport work and the transport cost as compared with the case of being transported to the installation place in the assembled state.

以上のように、本発明によれば、圧縮ガスの流路における流路抵抗の増大を抑えつつ膨張機を駆動する作動媒体が流れる作動媒体流路が取り付けられた熱交換器を圧縮装置に容易に設けることができる。   As described above, according to the present invention, it is easy to provide a compressor with a heat exchanger to which a working medium flow path through which a working medium that drives an expander flows is attached while suppressing an increase in flow resistance in the compressed gas flow path. Can be provided.

本発明の第1実施形態の圧縮装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the compression apparatus of 1st Embodiment of this invention. 図1の圧縮装置に対して排熱回収ユニットが接続された状態の図である。It is a figure of the state by which the waste heat recovery unit was connected with respect to the compression apparatus of FIG. 本発明の第2実施形態の圧縮装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the compression apparatus of 2nd Embodiment of this invention.

本発明の好ましい実施形態について、以下、図面を参照しながら説明する。   Preferred embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
本発明の第1実施形態の圧縮装置について、図1を参照しながら説明する。
(First embodiment)
A compression apparatus according to a first embodiment of the present invention will be described with reference to FIG.

図1に示されるように、本圧縮装置は、空気等のガスを圧縮する第1圧縮機10と、第1熱交換器20と、第1熱交換器20から流出した圧縮ガスをさらに圧縮する第2圧縮機110と、第2熱交換器120と、冷却流路50と、後述の熱エネルギー回収ユニット40(図2参照)とを備えている。以下の説明では、第1圧縮機10、第1熱交換器20、第2圧縮機110及び第2熱交換器120をまとめて圧縮装置の「本体部」という。本実施形態では、本体部が1つの収容部(図示省略)内に収容される。   As shown in FIG. 1, the compression apparatus further compresses a first compressor 10 that compresses a gas such as air, a first heat exchanger 20, and a compressed gas that has flowed out of the first heat exchanger 20. The second compressor 110, the second heat exchanger 120, the cooling flow path 50, and a thermal energy recovery unit 40 (see FIG. 2) described later are provided. In the following description, the first compressor 10, the first heat exchanger 20, the second compressor 110, and the second heat exchanger 120 are collectively referred to as a “main part” of the compression device. In the present embodiment, the main body is accommodated in one accommodating portion (not shown).

第1熱交換器20は、シェル&チューブ式であり、圧縮ガスが通過するガス流路22と、第1流路24と、第2流路26と、第3流路30と、を備えている。第1熱交換器20の筐体29内にガス流路22、第1流路24及び第2流路26が収容される。接続端部30aを含む第3流路30全体は筐体29の外部に位置する。ガス流路22は筐体29に形成された内部空間であり、第1流路24及び第2流路26は当該内部空間にて蛇行しつつ延びるチューブである。第1流路24は一方側の端部に形成された接続端部24aと、他方側の端部に形成された接続端部24bと、を有している。第1流路24の外面には、複数のフィン25が形成されている。   The first heat exchanger 20 is of a shell and tube type, and includes a gas flow path 22 through which compressed gas passes, a first flow path 24, a second flow path 26, and a third flow path 30. Yes. The gas flow path 22, the first flow path 24, and the second flow path 26 are accommodated in the housing 29 of the first heat exchanger 20. The entire third flow path 30 including the connection end 30 a is located outside the housing 29. The gas flow path 22 is an internal space formed in the housing 29, and the first flow path 24 and the second flow path 26 are tubes that meander in the internal space. The first flow path 24 has a connection end 24a formed at one end and a connection end 24b formed at the other end. A plurality of fins 25 are formed on the outer surface of the first flow path 24.

第2流路26は一方側の端部に形成された接続端部26aと、他方側の端部に形成された接続端部26bと、を有している。第2流路26の外面には、複数のフィン27が形成されている。第2流路26は、ガス流路22中の圧縮ガスの流れ方向において第1流路24よりも下流側に配置されている。   The second flow path 26 has a connection end portion 26a formed at one end portion and a connection end portion 26b formed at the other end portion. A plurality of fins 27 are formed on the outer surface of the second flow path 26. The second flow path 26 is disposed downstream of the first flow path 24 in the compressed gas flow direction in the gas flow path 22.

第3流路30は、その接続端部30aが第1流路24の接続端部24a及び第2流路26の接続端部26aに接続され、第1流路24と第2流路26とを連通させる。第3流路30の接続端部30aは、第1流路24の接続端部24a及び第2流路26の接続端部26aに対して着脱自在である。   The third channel 30 has a connection end 30 a connected to the connection end 24 a of the first channel 24 and the connection end 26 a of the second channel 26, and the first channel 24, the second channel 26, To communicate. The connection end 30 a of the third flow path 30 is detachable from the connection end 24 a of the first flow path 24 and the connection end 26 a of the second flow path 26.

第2圧縮機110は、第1熱交換器20の下流側に配置されている。第2圧縮機110の構造は、第1圧縮機のそれと同じである。   The second compressor 110 is disposed on the downstream side of the first heat exchanger 20. The structure of the second compressor 110 is the same as that of the first compressor.

第2熱交換器120は、第2圧縮機110の下流側に配置されている。第2熱交換器120の構造は、第1熱交換器20のそれと同じであるので説明を簡略化する。すなわち、第2熱交換器120は、ガス流路122、第1流路124、第2流路126及び第3流路130を有している。ガス流路122、第1流路124、第2流路126は筐体129内に収容され、第3流路130は筐体129の外部に位置する。第1流路124の外面及び第2流路126の外面には複数のフィン125,127が形成されている。第1流路124の接続端部124a、及び、第2流路126の接続端部126aがそれぞれ第3流路130の接続端部に着脱自在に接続され、第3流路130により第1流路124及び第2流路126が連通される。   The second heat exchanger 120 is disposed on the downstream side of the second compressor 110. Since the structure of the 2nd heat exchanger 120 is the same as that of the 1st heat exchanger 20, description is simplified. That is, the second heat exchanger 120 has a gas flow path 122, a first flow path 124, a second flow path 126, and a third flow path 130. The gas flow path 122, the first flow path 124, and the second flow path 126 are accommodated in the housing 129, and the third flow path 130 is located outside the housing 129. A plurality of fins 125 and 127 are formed on the outer surface of the first channel 124 and the outer surface of the second channel 126. The connection end 124a of the first flow path 124 and the connection end 126a of the second flow path 126 are detachably connected to the connection end of the third flow path 130, respectively. The path 124 and the second flow path 126 are communicated.

冷却流路50には圧縮ガスを冷却するための冷却流体が流れる。冷却流体として例えば、水が利用される。冷却流体は水以外の液体であってもよい。冷却流路50は分岐流路51を有する。第1熱交換器20では、第1流路24の第3流路30が接続される接続端部24aとは反対側の接続端部24bが冷却流路50の接続端部50aに着脱自在に接続される。また、第2流路26の第3流路30が接続される接続端部26aとは反対側の接続端部26bが冷却流路50の接続端部50aに着脱自在に接続される。これにより、第1熱交換器20には、冷却流路50を介して第1流路24、第2流路26及び第3流路30に冷却流体が流れる。   A cooling fluid for cooling the compressed gas flows through the cooling flow path 50. For example, water is used as the cooling fluid. The cooling fluid may be a liquid other than water. The cooling channel 50 has a branch channel 51. In the first heat exchanger 20, the connection end 24 b opposite to the connection end 24 a to which the third flow path 30 of the first flow path 24 is connected is detachable from the connection end 50 a of the cooling flow path 50. Connected. In addition, the connection end 26 b opposite to the connection end 26 a to which the third flow path 30 of the second flow path 26 is connected is detachably connected to the connection end 50 a of the cooling flow path 50. As a result, the cooling fluid flows through the first heat exchanger 20 through the cooling flow path 50 to the first flow path 24, the second flow path 26, and the third flow path 30.

第2熱交換器120では、第1流路124の第3流路130が接続される接続端部124aとは反対側の接続端部124bが分岐流路51の接続端部51aに着脱自在に接続される。第2流路126の第3流路130が接続される接続端部126aとは反対側の接続端部126bが分岐流路51の接続端部51aに着脱自在に接続される。これにより、第2熱交換器120には、分岐流路51を介して第1流路124、第2流路126及び第3流路130に冷却流体が流れる。   In the second heat exchanger 120, the connection end 124b opposite to the connection end 124a to which the third flow path 130 of the first flow path 124 is connected is detachable from the connection end 51a of the branch flow path 51. Connected. A connection end 126 b opposite to the connection end 126 a to which the third flow path 130 of the second flow path 126 is connected is detachably connected to the connection end 51 a of the branch flow path 51. As a result, the cooling fluid flows through the second heat exchanger 120 to the first flow path 124, the second flow path 126, and the third flow path 130 via the branch flow path 51.

以下の説明では、冷却流路50及び分岐流路51に第1流路24,124、第2流路26,126及び第3流路30,130が接続される圧縮装置の態様を「第1態様」と呼ぶ。第1態様では、第1熱交換器20において、第1流路24及び第2流路26を流れる冷却流体がガス流路22を通過する圧縮ガスと熱交換し、圧縮ガスが冷却される。これにより、高温の圧縮ガスが第2圧縮機110に流入することによる第2圧縮機110の不具合の発生を防止することができる。第2熱交換器120においても、第1流路124及び第2流路126を流れる冷却流体がガス流路122を通過する圧縮ガスと熱交換し、圧縮ガスが冷却される。なお、第1熱交換器20から流出した冷却流体は第2熱交換器120から流出した冷却流体と合流する。   In the following description, the aspect of the compression device in which the first flow paths 24 and 124, the second flow paths 26 and 126, and the third flow paths 30 and 130 are connected to the cooling flow path 50 and the branch flow path 51 is referred to as “first. Referred to as “aspect”. In the first aspect, in the first heat exchanger 20, the cooling fluid flowing through the first flow path 24 and the second flow path 26 exchanges heat with the compressed gas passing through the gas flow path 22, and the compressed gas is cooled. Thereby, generation | occurrence | production of the malfunction of the 2nd compressor 110 by high temperature compressed gas flowing in into the 2nd compressor 110 can be prevented. Also in the second heat exchanger 120, the cooling fluid flowing through the first flow path 124 and the second flow path 126 exchanges heat with the compressed gas passing through the gas flow path 122, and the compressed gas is cooled. Note that the cooling fluid flowing out from the first heat exchanger 20 joins the cooling fluid flowing out from the second heat exchanger 120.

次に、図2を参照しながら、熱エネルギー回収ユニット40について説明する。   Next, the thermal energy recovery unit 40 will be described with reference to FIG.

熱エネルギー回収ユニット40は、いわゆるランキンサイクル装置であり、ポンプ42と、膨張機44と、動力回収部45と、凝縮器46と、作動媒体が循環する循環流路である作動媒体流路48とを備える。作動媒体流路48は分岐流路49を備える。後述するように第1熱交換器20及び第2熱交換器120は、熱エネルギー回収ユニット40の一部として液状の作動媒体を蒸発する蒸発器としての役割も果たす。本実施形態では、作動媒体としてR245fa等の水よりも低沸点の有機流体が利用される。   The thermal energy recovery unit 40 is a so-called Rankine cycle device, and includes a pump 42, an expander 44, a power recovery unit 45, a condenser 46, and a working medium flow path 48 that is a circulation flow path through which the working medium circulates. Is provided. The working medium channel 48 includes a branch channel 49. As will be described later, the first heat exchanger 20 and the second heat exchanger 120 also serve as an evaporator that evaporates the liquid working medium as part of the thermal energy recovery unit 40. In the present embodiment, an organic fluid having a boiling point lower than that of water such as R245fa is used as the working medium.

作動媒体流路48は、膨張機44、凝縮器46、ポンプ42並びに第1熱交換器20及び第2熱交換器120をこの順に接続している。作動媒体流路48は、第1熱交換器20の第1流路24の各接続端部24a,24bに対して着脱自在に接続可能な接続端部48aを有している。この接続端部48aは、作動媒体流路48のうち当該作動媒体流路48とポンプ42との接続部よりも下流側でかつ当該作動媒体流路48と膨張機44との接続部よりも上流側の部位に形成されている。   The working medium flow path 48 connects the expander 44, the condenser 46, the pump 42, the first heat exchanger 20 and the second heat exchanger 120 in this order. The working medium flow path 48 has a connection end 48 a that can be detachably connected to the connection ends 24 a and 24 b of the first flow path 24 of the first heat exchanger 20. The connection end 48 a is downstream of the working medium channel 48 and the pump 42 in the working medium channel 48, and upstream of the working medium channel 48 and the expander 44. It is formed in the side part.

分岐流路49は、作動媒体流路48のうちポンプ42と膨張機44との間の部位に対して並列に接続されている。換言すれば、分岐流路49は、ポンプ42から流出した液状の作動媒体の一部を分岐させ、作動媒体流路48のうち膨張機44の上流側の部位に合流させる。分岐流路49は、第2熱交換器120の第1流路124の接続端部124a,124bに対して着脱自在に接続可能な接続端部49aを有している。   The branch channel 49 is connected in parallel to a portion of the working medium channel 48 between the pump 42 and the expander 44. In other words, the branch flow path 49 branches a part of the liquid working medium that has flowed out of the pump 42 and joins the upstream part of the expander 44 in the working medium flow path 48. The branch flow path 49 has a connection end portion 49 a that can be detachably connected to the connection end portions 124 a and 124 b of the first flow path 124 of the second heat exchanger 120.

作動媒体流路48及び分岐流路49の第1流路24,124への接続は図1の第3流路30,130が取り外された状態で行われる。   The working medium flow path 48 and the branch flow path 49 are connected to the first flow paths 24 and 124 with the third flow paths 30 and 130 in FIG. 1 removed.

ポンプ42は、液状の作動媒体を所定の圧力まで加圧して第1熱交換器20及び第2熱交換器120へと送り出す。ポンプ42としては、インペラをロータとして備える遠心ポンプや、ロータが一対のギアからなるギアポンプ等が用いられる。   The pump 42 pressurizes the liquid working medium to a predetermined pressure and sends it to the first heat exchanger 20 and the second heat exchanger 120. As the pump 42, a centrifugal pump having an impeller as a rotor, a gear pump in which the rotor includes a pair of gears, or the like is used.

膨張機44は、作動媒体流路48において第1熱交換器20及び第2熱交換器120よりも下流に位置する。膨張機44として容積式のスクリュー膨張機が用いられている。この膨張機44は、内部にロータ室が形成されたケーシングと、ロータ室内に回転自在に支持された雌雄一対のスクリュロータとを有している。ロータ室に流入した気相の作動媒体が膨張することにより前記スクリュロータが回転される。なお、膨張機44としてはスクリュー膨張機に限らず、遠心式のものやスクロールタイプのものが用いられてもよい。   The expander 44 is located downstream of the first heat exchanger 20 and the second heat exchanger 120 in the working medium flow path 48. As the expander 44, a positive displacement screw expander is used. The expander 44 includes a casing having a rotor chamber formed therein, and a pair of male and female screw rotors rotatably supported in the rotor chamber. The screw rotor is rotated by the expansion of the gas phase working medium flowing into the rotor chamber. The expander 44 is not limited to a screw expander, and a centrifugal type or a scroll type may be used.

動力回収部45は、膨張機44に接続されている。本実施形態では、動力回収部45として発電機が用いられている。この動力回収部45は、膨張機44の一対のスクリュロータのうちの一方に接続された回転軸を有している。動力回収部45は、前記回転軸が前記スクリュロータの回転に伴って回転することにより電力を発生させる。   The power recovery unit 45 is connected to the expander 44. In the present embodiment, a power generator is used as the power recovery unit 45. The power recovery unit 45 has a rotating shaft connected to one of the pair of screw rotors of the expander 44. The power recovery unit 45 generates electric power when the rotating shaft rotates with the rotation of the screw rotor.

凝縮器46は、作動媒体流路48のうち膨張機44の下流側の部位(作動媒体流路48における膨張機44とポンプ42との間の部位)に設けられている。凝縮器46は、作動媒体を冷却流体(冷却水等)で冷却することにより凝縮(液化)させる。本実施形態では、凝縮器46において作動媒体と熱交換する流体として第1熱交換器20及び第2熱交換器120にて使用される冷却流体が用いられる。凝縮器46と第1熱交換器20及び第2熱交換器120との間にて冷却流体を共有することにより、圧縮装置を小型化することができる。   The condenser 46 is provided in a portion of the working medium channel 48 on the downstream side of the expander 44 (a portion between the expander 44 and the pump 42 in the working medium channel 48). The condenser 46 condenses (liquefies) the working medium by cooling it with a cooling fluid (cooling water or the like). In the present embodiment, the cooling fluid used in the first heat exchanger 20 and the second heat exchanger 120 is used as a fluid that exchanges heat with the working medium in the condenser 46. By sharing the cooling fluid between the condenser 46 and the first heat exchanger 20 and the second heat exchanger 120, the compression device can be downsized.

以上に説明した熱エネルギー回収ユニット40が駆動される際には、蒸発器として機能する第1熱交換器20及び第2熱交換器120にて作動媒体が圧縮ガスの熱を回収して蒸発し、膨張機44に流入して膨張することにより、膨張機44及び動力回収部45が駆動される。膨張機44から吐出された作動媒体は凝縮器46にて凝縮され、凝縮した液状の作動媒体はポンプ42により再び第1熱交換器20及び第2熱交換器120へと送出される。このように、作動媒体が作動媒体流路48内を循環することにより、動力回収部45にて電力が生成される。   When the thermal energy recovery unit 40 described above is driven, the working medium recovers and evaporates the heat of the compressed gas in the first heat exchanger 20 and the second heat exchanger 120 functioning as an evaporator. The expander 44 and the power recovery unit 45 are driven by flowing into the expander 44 and expanding. The working medium discharged from the expander 44 is condensed by the condenser 46, and the condensed liquid working medium is sent again to the first heat exchanger 20 and the second heat exchanger 120 by the pump 42. As described above, the working medium circulates in the working medium flow path 48, whereby electric power is generated in the power recovery unit 45.

第1熱交換器20では、第1流路24に作動媒体流路48が接続される場合、冷却流路50の接続端部50aが第2流路26の接続端部26a,26bに接続される。第2熱交換器120においても、第1流路124に作動媒体流路48の分岐流路49が接続される場合、冷却流路50の分岐流路51の接続端部51aは、第2熱交換器120の第2流路126の接続端部126a,126bに接続される。以下の説明では、第3流路30,130が取り外された状態において、作動媒体流路48及びその分岐流路49に第1流路24,124が接続され、かつ、冷却流路50及びその分岐流路51に第2流路26,126が接続される圧縮装置の態様を「第2態様」と呼ぶ。   In the first heat exchanger 20, when the working medium channel 48 is connected to the first channel 24, the connection end 50 a of the cooling channel 50 is connected to the connection ends 26 a and 26 b of the second channel 26. The Also in the second heat exchanger 120, when the branch channel 49 of the working medium channel 48 is connected to the first channel 124, the connection end portion 51a of the branch channel 51 of the cooling channel 50 has the second heat. It is connected to the connection end portions 126 a and 126 b of the second flow path 126 of the exchanger 120. In the following description, in a state where the third flow paths 30 and 130 are removed, the first flow paths 24 and 124 are connected to the working medium flow path 48 and the branch flow path 49, and the cooling flow path 50 and An aspect of the compression device in which the second flow paths 26 and 126 are connected to the branch flow path 51 is referred to as a “second aspect”.

続いて、圧縮装置が第1態様から第2態様に切り替える際の流れについて説明する。まず、図2に示す膨張機44、凝縮器46及びポンプ42が作動媒体流路48に接続され、膨張機44に動力回収部45が接続される(準備工程)。以下、第1及び第2熱交換器20,120に接続される前の膨張機44、動力回収部45、凝縮器46、ポンプ42及び作動媒体流路48を纏めて「組立体」という。組立体が準備されると、図1に示す第1熱交換器20から冷却流路50が取り外されるとともに、第2熱交換器120から分岐流路51が取り外される。そして、第1熱交換器20の第3流路30及び第2熱交換器120の第3流路130が取り外される(取外工程)。第1熱交換器20では第3流路30が筐体29の外部に位置するため、取り外しが容易に行われる。第2熱交換器120においても同様である。   Then, the flow at the time of a compression apparatus switching from a 1st aspect to a 2nd aspect is demonstrated. First, the expander 44, the condenser 46, and the pump 42 shown in FIG. 2 are connected to the working medium flow path 48, and the power recovery unit 45 is connected to the expander 44 (preparation process). Hereinafter, the expander 44, the power recovery unit 45, the condenser 46, the pump 42, and the working medium channel 48 before being connected to the first and second heat exchangers 20 and 120 are collectively referred to as an “assembly”. When the assembly is prepared, the cooling flow path 50 is removed from the first heat exchanger 20 shown in FIG. 1 and the branch flow path 51 is removed from the second heat exchanger 120. And the 3rd flow path 30 of the 1st heat exchanger 20 and the 3rd flow path 130 of the 2nd heat exchanger 120 are removed (removal process). In the 1st heat exchanger 20, since the 3rd flow path 30 is located in the exterior of the housing | casing 29, removal is performed easily. The same applies to the second heat exchanger 120.

第1熱交換器20の第1流路24内及び第2熱交換器120の第1流路124内に乾燥した温風を吹き込むことにより、各第1流路24,124内を乾燥させ、冷却流体が除去される(除去工程)。   By blowing dry hot air into the first flow path 24 of the first heat exchanger 20 and the first flow path 124 of the second heat exchanger 120, the inside of each first flow path 24, 124 is dried, The cooling fluid is removed (removal step).

次に、図2に示すように、第1熱交換器20の第1流路24の接続端部24a,24bに作動媒体流路48の接続端部48aを接続するとともに、第2熱交換器120の第1流路124の接続端部124a,124bに分岐流路49の接続端部49aを接続する。さらに、第1熱交換器20の第2流路26の接続端部26a,26bに冷却流路50の接続端部50aを接続するとともに、第2熱交換器120の第2流路126の接続端部126a,126bに分岐流路51の接続端部51aを接続する(接続工程)。   Next, as shown in FIG. 2, the connection end 48 a of the working medium channel 48 is connected to the connection ends 24 a and 24 b of the first channel 24 of the first heat exchanger 20, and the second heat exchanger is connected. The connection end portion 49 a of the branch flow channel 49 is connected to the connection end portions 124 a and 124 b of the 120 first flow channel 124. Further, the connection end 50a of the cooling flow path 50 is connected to the connection ends 26a and 26b of the second flow path 26 of the first heat exchanger 20, and the connection of the second flow path 126 of the second heat exchanger 120 is connected. The connection end 51a of the branch channel 51 is connected to the ends 126a and 126b (connection process).

以上の流れにより、本体部への熱エネルギー回収ユニット40の取り付けが完了し、圧縮装置の態様が第1態様から第2態様となる。第2態様では、各ガス流路22,122を通る圧縮ガスは、第1流路24,124を流れる作動媒体によって冷却された後、第2流路26,126を流れる冷却流体によって冷却される。よって、第2態様では、作動媒体及び冷却流体によって圧縮ガスを効果的に冷却することができ、かつ、作動媒体を介して圧縮ガスの有する熱エネルギーを動力回収部45において有効に回収することができる。なお、冷却流体は圧縮ガスの冷却の前に凝縮器46にて作動媒体の凝縮に利用されることから、作動媒体を十分に冷却することができ、発電効率を向上することができる。   With the above flow, the attachment of the thermal energy recovery unit 40 to the main body is completed, and the aspect of the compression device is changed from the first aspect to the second aspect. In the second aspect, the compressed gas passing through the gas flow paths 22 and 122 is cooled by the working medium flowing through the first flow paths 24 and 124 and then cooled by the cooling fluid flowing through the second flow paths 26 and 126. . Therefore, in the second aspect, the compressed gas can be effectively cooled by the working medium and the cooling fluid, and the thermal energy of the compressed gas can be effectively recovered by the power recovery unit 45 via the working medium. it can. Since the cooling fluid is used for condensing the working medium in the condenser 46 before cooling the compressed gas, the working medium can be sufficiently cooled, and the power generation efficiency can be improved.

以上説明したように、本実施形態の圧縮装置では、第3流路30,130を取り外すことにより、本体部に熱エネルギー回収ユニット40を容易に取り付けることができる。特に、1つの収容部内に本体部が収容される場合であっても、熱エネルギー回収ユニット40の取付作業が煩雑となることが防止される。また、圧縮装置では、第1熱交換器20及び第2熱交換器120において冷却流体が流れる流路の一部を作動媒体の流路に利用することから、作動媒体と圧縮ガスとの熱交換のために第1熱交換器20及び第2熱交換器120とは別に新たな熱交換器を設ける必要がなく、圧縮ガスが流れる流路上における流路抵抗の増大を防止することができる。圧縮装置の製造コストも抑えることができる。   As described above, in the compression device of this embodiment, the thermal energy recovery unit 40 can be easily attached to the main body by removing the third flow paths 30 and 130. In particular, even when the main body is accommodated in one accommodating portion, the installation work of the thermal energy recovery unit 40 is prevented from becoming complicated. Further, in the compression device, since a part of the flow path through which the cooling fluid flows in the first heat exchanger 20 and the second heat exchanger 120 is used as the flow path of the working medium, heat exchange between the working medium and the compressed gas is performed. Therefore, it is not necessary to provide a new heat exchanger separately from the first heat exchanger 20 and the second heat exchanger 120, and an increase in flow path resistance on the flow path through which the compressed gas flows can be prevented. The manufacturing cost of the compression device can also be suppressed.

第1熱交換器20では、圧縮ガスが流れるガス流路22が第1熱交換器20の筐体29の内部空間であることから、圧縮ガスに生じる流路抵抗をより低減させることができる。第2熱交換器120においても同様である。   In the first heat exchanger 20, since the gas flow path 22 through which the compressed gas flows is an internal space of the housing 29 of the first heat exchanger 20, the flow path resistance generated in the compressed gas can be further reduced. The same applies to the second heat exchanger 120.

さらに、本実施形態では、各第3流路30,130を取り外した後、作動媒体流路48及び分岐流路49を接続する前に各第1流路24,124内を乾燥させる。よって、第1態様において第1流路24,124を流れていた冷却流体と第2態様において第1流路24,124を流れる作動媒体との混合が抑制される。なお、冷却流体を除去することができるのであれば、必ずしも乾燥させる必要はなく、例えば、第1流路24,124に作動媒体や膨張機44内の機器の潤滑に利用する潤滑油などの流体を流し込み、冷却流体が押し流されてもよい。   Furthermore, in this embodiment, after removing each 3rd flow path 30 and 130, before connecting the working-medium flow path 48 and the branch flow path 49, the inside of each 1st flow path 24 and 124 is dried. Therefore, mixing of the cooling fluid flowing through the first flow paths 24 and 124 in the first mode and the working medium flowing through the first flow paths 24 and 124 in the second mode is suppressed. It is not always necessary to dry the cooling fluid as long as the cooling fluid can be removed. For example, fluid such as lubricating oil used for lubricating the working medium and the equipment in the expander 44 in the first flow paths 24 and 124. The cooling fluid may be washed away.

上記実施形態では、作動媒体流路48は、第2流路26よりも圧縮ガスの流れ方向における上流側に配置された第1熱交換器20の第1流路24に対して着脱自在に接続可能となっている。同様に、分岐流路49は、第2熱交換器120の第1流路124に対して着脱自在に接続可能となっている。よって、第2態様では、第2流路26,126を流れる冷却流体で圧縮ガスが冷却される前に当該圧縮ガスの有する熱エネルギーが作動媒体により有効に回収されるので、作動媒体が圧縮ガスからより多くのエネルギーを回収することが可能となる。   In the above embodiment, the working medium flow path 48 is detachably connected to the first flow path 24 of the first heat exchanger 20 disposed on the upstream side in the flow direction of the compressed gas with respect to the second flow path 26. It is possible. Similarly, the branch flow path 49 can be detachably connected to the first flow path 124 of the second heat exchanger 120. Therefore, in the second aspect, since the thermal energy of the compressed gas is effectively recovered by the working medium before the compressed gas is cooled by the cooling fluid flowing through the second flow paths 26 and 126, the working medium is compressed gas. It becomes possible to recover more energy from.

上記実施形態では、第1流路24,124の外面及び第2流路26,126の外面には、複数のフィン25,27,125,127が形成されている。よって、圧縮ガスと第1流路24,124との接触面積及び圧縮ガスと第2流路26,126との接触面積がそれぞれ大きくなるので、熱交換の効率が向上する。   In the above embodiment, a plurality of fins 25, 27, 125, and 127 are formed on the outer surfaces of the first flow paths 24 and 124 and the outer surfaces of the second flow paths 26 and 126. Therefore, since the contact area between the compressed gas and the first flow paths 24 and 124 and the contact area between the compressed gas and the second flow paths 26 and 126 are increased, the efficiency of heat exchange is improved.

第1実施形態では、組立体の準備工程が、第3流路30,130の取外工程及び冷却流体の除去工程の後に行われてもよく、並行して行われてもよい。   In the first embodiment, the assembly preparation process may be performed after the removal process of the third flow paths 30 and 130 and the cooling fluid removal process, or may be performed in parallel.

(第2実施形態)
本発明の第2実施形態の圧縮装置について、図3を参照しながら説明する。なお、第2実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
(Second Embodiment)
A compression apparatus according to a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, only parts different from the first embodiment will be described, and the description of the same structure, operation, and effect as in the first embodiment will be omitted.

本実施形態では、第1熱交換器20は、第3流路30ではなく閉塞部材32を備えている。なお、第1熱交換器20が、ガス流路22、第1流路24及び第2流路26を備えていることは、第1実施形態と同じである。第2熱交換器120は、第1熱交換器20と同様に、ガス流路122、第1流路124、第2流路126及び閉塞部材132を備えている。   In the present embodiment, the first heat exchanger 20 includes a closing member 32 instead of the third flow path 30. In addition, it is the same as 1st Embodiment that the 1st heat exchanger 20 is provided with the gas flow path 22, the 1st flow path 24, and the 2nd flow path 26. FIG. Similar to the first heat exchanger 20, the second heat exchanger 120 includes a gas flow path 122, a first flow path 124, a second flow path 126, and a closing member 132.

第1熱交換器20では、第1流路24の両端の接続端部24a,24bに閉塞部材32が着脱自在に接続され、第1流路24が閉塞される。同様に、第2熱交換器120においても、第1流路124の両端の接続端部124a,124bに閉塞部材132が着脱自在に接続され、第1流路124が閉塞される。以下、第1流路24,124に閉塞部材32,132が取り付けられる圧縮装置の態様を「第3態様」という。   In the first heat exchanger 20, the closing member 32 is detachably connected to the connection end portions 24 a and 24 b at both ends of the first flow path 24, and the first flow path 24 is closed. Similarly, also in the 2nd heat exchanger 120, the closure member 132 is detachably connected to the connection end parts 124a and 124b of the both ends of the 1st flow path 124, and the 1st flow path 124 is obstruct | occluded. Hereinafter, the aspect of the compression device in which the closing members 32 and 132 are attached to the first flow paths 24 and 124 is referred to as “third aspect”.

次に、圧縮装置の本体部と熱エネルギー回収ユニット40との組み立ての流れについて説明する。まず、工場等の組立施設内にて本体部である第1圧縮機10、第1熱交換器20、第2圧縮機110及び第2熱交換器120が組み立てられ、第1熱交換器20及び第2熱交換器120の第1流路24,124に閉塞部材32,132が取り付けられて上述の第3態様とされる(第2準備工程)。また、図2と同様に、膨張機44、凝縮器46、ポンプ42、作動媒体流路48及び動力回収部45の組立体が準備される(第1準備工程)。第1準備工程及び第2準備工程は同時に行われてもよく、一方が他方に先行していてもよい。また、必ずしも、第1準備工程と第2準備工程とが同じ組立施設内にて行われる必要はない。   Next, an assembly flow between the main body of the compression device and the thermal energy recovery unit 40 will be described. First, in an assembly facility such as a factory, the first compressor 10, the first heat exchanger 20, the second compressor 110, and the second heat exchanger 120 as the main body are assembled, and the first heat exchanger 20 and The closing members 32 and 132 are attached to the first flow paths 24 and 124 of the second heat exchanger 120 to form the third mode described above (second preparation step). Similarly to FIG. 2, an assembly of the expander 44, the condenser 46, the pump 42, the working medium flow path 48, and the power recovery unit 45 is prepared (first preparation step). The first preparation step and the second preparation step may be performed simultaneously, and one may precede the other. In addition, the first preparation process and the second preparation process are not necessarily performed in the same assembly facility.

第1準備工程と第2準備工程が完了すると、本体部及び組立体が圧縮装置の据え付け地に搬送される。   When the first preparation process and the second preparation process are completed, the main body and the assembly are transferred to the installation site of the compression device.

据え付け地にて、図3に示す本体部の第1熱交換器20から閉塞部材32が取り外されるとともに、第2熱交換器120から閉塞部材132が取り外される(取外工程)。そして、図2と同様に、第1熱交換器20の第1流路24の両端の接続端部24a,24bに作動媒体流路48の接続端部48aが接続される。第2熱交換器120の第1流路124の両端の接続端部124a,124bに作動媒体流路48の分岐流路49の接続端部49aが接続される。また、第1熱交換器20の第2流路26の両端の接続端部26a,26bには、冷却流路50の接続端部50aが接続され、第2熱交換器120の第2流路126の両端の接続端部126a,126bには、冷却流路50の分岐流路51の接続端部51aが接続される(接続工程)。なお、凝縮器46も冷却流路50に接続される。   At the installation site, the closing member 32 is removed from the first heat exchanger 20 of the main body shown in FIG. 3, and the closing member 132 is removed from the second heat exchanger 120 (removal step). As in FIG. 2, the connection ends 48 a of the working medium flow channel 48 are connected to the connection ends 24 a and 24 b at both ends of the first flow channel 24 of the first heat exchanger 20. The connection end portions 49 a of the branch flow channel 49 of the working medium flow channel 48 are connected to the connection end portions 124 a and 124 b at both ends of the first flow channel 124 of the second heat exchanger 120. In addition, the connection end portions 50a of the cooling channel 50 are connected to the connection ends 26a and 26b at both ends of the second channel 26 of the first heat exchanger 20, and the second channel of the second heat exchanger 120 is connected. The connection end portions 51a of the branch flow channel 51 of the cooling flow channel 50 are connected to the connection end portions 126a and 126b at both ends of the 126 (connection process). The condenser 46 is also connected to the cooling channel 50.

以上の流れにより、圧縮装置の組み立てが完了する。   The assembly of the compression device is completed by the above flow.

第2実施形態では、第1熱交換器20及び第2熱交換器120から閉塞部材32,132を取り外することにより本体部に熱エネルギー回収ユニット40を容易に取り付けることができる。熱エネルギー回収ユニット40及び本体部が組立施設にて組み立てられた後、据え付け地にて一体とされることから、これらの部材が一体とされた状態で据え付け地に搬送される場合に比べて搬送作業の負荷や搬送コストを低減することが可能となる。圧縮装置の組み立ての自由度も向上する。   In the second embodiment, the thermal energy recovery unit 40 can be easily attached to the main body by removing the blocking members 32 and 132 from the first heat exchanger 20 and the second heat exchanger 120. After the thermal energy recovery unit 40 and the main body are assembled at the assembly facility, they are integrated at the installation site, so that these members are transported as compared to the case of being transported to the installation site in an integrated state. It is possible to reduce work load and transport cost. The degree of freedom in assembling the compression device is also improved.

第1実施形態と同様に、作動媒体と圧縮ガスとの熱交換のための専用の熱交換器を設ける場合に比べて、圧縮ガスが流れる流路上における流路抵抗の増大を防止することができる。   Similar to the first embodiment, it is possible to prevent an increase in flow path resistance on the flow path through which the compressed gas flows, compared to the case where a dedicated heat exchanger for heat exchange between the working medium and the compressed gas is provided. .

第1流路24,124が作動媒体流路48に接続される前の状態において、閉塞部材32,132が第1流路24,124に接続されることにより、第1流路24,124がクリーンな状態に維持される。   In a state before the first flow paths 24 and 124 are connected to the working medium flow path 48, the closing members 32 and 132 are connected to the first flow paths 24 and 124, whereby the first flow paths 24 and 124 are connected. It is kept clean.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、上記実施形態の熱エネルギー回収ユニット40では、第1熱交換器20または第2熱交換器120の一方のみを圧縮ガスからの熱を回収する蒸発器として利用してもよい。熱エネルギー回収ユニット40を用いて圧縮ガスから熱を回収する手法は、単段式の圧縮装置に適用されてもよく、3以上の圧縮機を有する圧縮装置に適用されてもよい。   For example, in the thermal energy recovery unit 40 of the above embodiment, only one of the first heat exchanger 20 or the second heat exchanger 120 may be used as an evaporator that recovers heat from the compressed gas. The method of recovering heat from the compressed gas using the thermal energy recovery unit 40 may be applied to a single-stage compression apparatus or may be applied to a compression apparatus having three or more compressors.

第1実施形態では、第3流路30,130がそれぞれ第1熱交換器20及び第2熱交換器120の内部に配置されてもよい。   In 1st Embodiment, the 3rd flow paths 30 and 130 may be arrange | positioned inside the 1st heat exchanger 20 and the 2nd heat exchanger 120, respectively.

上記実施形態では、膨張機44がカップリングを介して第1圧縮機10や第2圧縮機110に直接接続されてもよい。すなわち、第1圧縮機10又は第2圧縮機110が動力回収部45とされてもよい。上記実施形態では、冷却流体が圧縮ガスの熱を回収した後に凝縮器46に流入してもよい。凝縮器46では、第1及び第2熱交換器20,120とは異なる経路を流れる冷却流体が利用されてもよい。第1熱交換器20及び第2熱交換器120においても、互いに異なる経路を流れる冷却流体が利用されてよい。   In the above embodiment, the expander 44 may be directly connected to the first compressor 10 or the second compressor 110 via a coupling. That is, the first compressor 10 or the second compressor 110 may be the power recovery unit 45. In the above embodiment, the cooling fluid may flow into the condenser 46 after recovering the heat of the compressed gas. In the condenser 46, a cooling fluid flowing through a different path from the first and second heat exchangers 20 and 120 may be used. Also in the 1st heat exchanger 20 and the 2nd heat exchanger 120, the cooling fluid which flows through a mutually different path | route may be utilized.

10 第1圧縮機
20 第1熱交換器
22 ガス流路
24 第1流路
24a,24b 接続端部
25 フィン
26 第2流路
26a,26b 接続端部
27 フィン
30 第3流路
32 閉塞部材
40 熱エネルギー回収ユニット
42 ポンプ
44 膨張機
45 動力回収部(発電機)
46 凝縮器
48 作動媒体流路
48a 接続端部
49 分岐流路
49a 接続端部
50 冷却流路
50a 接続端部
51 分岐流路
51a 接続端部
110 第2圧縮機
120 第2熱交換器
122 ガス流路
124 第1流路
124a,124b 接続端部
126 第2流路
126a,126b 接続端部
130 第3流路
DESCRIPTION OF SYMBOLS 10 1st compressor 20 1st heat exchanger 22 Gas flow path 24 1st flow path 24a, 24b Connection end part 25 Fin 26 2nd flow path 26a, 26b Connection end part 27 Fin 30 3rd flow path 32 Closure member 40 Thermal energy recovery unit 42 Pump 44 Expander 45 Power recovery unit (generator)
46 condenser 48 working medium flow path 48a connection end 49 branch flow path 49a connection end 50 cooling flow path 50a connection end 51 branch flow path 51a connection end 110 second compressor 120 second heat exchanger 122 gas flow Path 124 First flow path 124a, 124b Connection end 126 Second flow path 126a, 126b Connection end 130 Third flow path

Claims (11)

ガスを圧縮する圧縮機と、
前記圧縮機から吐出された圧縮ガスの熱を回収する熱交換器と、
を備え、
前記熱交換器が、
圧縮ガスが通過するガス流路と、
両端に接続端部を有する第1流路と、
両端に接続端部を有する第2流路と、
前記第1流路の一方の接続端部及び前記第2流路の一方の接続端部に対して着脱自在に接続可能で前記第1流路と前記第2流路とを連通させる形状を有する第3流路と、
を備え、
冷却流体が流れる冷却流路に前記第1流路、前記第2流路及び前記第3流路が接続される第1態様と、
前記第3流路が取り外された状態において、圧縮ガスの熱を回収して膨張機を駆動する作動媒体が流れる作動媒体流路に前記第1流路が接続され、かつ、前記冷却流路に前記第2流路が接続される第2態様と、
の間を切り替え可能である、圧縮装置。
A compressor for compressing the gas;
A heat exchanger that recovers the heat of the compressed gas discharged from the compressor;
With
The heat exchanger is
A gas flow path through which the compressed gas passes;
A first flow path having connecting ends at both ends;
A second flow path having connecting ends at both ends;
It has a shape that can be detachably connected to one connection end of the first flow path and one connection end of the second flow path so that the first flow path and the second flow path communicate with each other. A third flow path;
With
A first mode in which the first flow path, the second flow path, and the third flow path are connected to a cooling flow path through which a cooling fluid flows;
In a state where the third flow path is removed, the first flow path is connected to the working medium flow path through which the working medium that recovers the heat of the compressed gas and drives the expander flows, and is connected to the cooling flow path. A second mode in which the second flow path is connected;
A compression device that can be switched between.
請求項1に記載の圧縮装置において、
前記第3流路が、前記ガス流路、前記第1流路及び前記第2流路を収容する前記熱交換器の筐体の外部に位置する、圧縮装置。
The compression device according to claim 1.
The compression device, wherein the third flow path is located outside a housing of the heat exchanger that houses the gas flow path, the first flow path, and the second flow path.
ガスを圧縮する圧縮機と、
前記圧縮機から吐出された圧縮ガスの熱を回収する熱交換器と、
を備え、
前記熱交換器が、
圧縮ガスが通過するガス流路と、
両端に接続端部を有し、圧縮ガスの熱を回収して膨張機を駆動する作動媒体が流れる作動媒体流路に接続可能である第1流路と、
冷却流体が流れる冷却流路に接続される第2流路と、
前記第1流路が前記作動媒体流路に接続される前の状態において、前記第1流路の両端の接続端部に対して着脱自在に接続され、前記第1流路を閉塞する閉塞部材と、
を備える、圧縮装置。
A compressor for compressing the gas;
A heat exchanger that recovers the heat of the compressed gas discharged from the compressor;
With
The heat exchanger is
A gas flow path through which the compressed gas passes;
A first flow path having connection ends at both ends and connectable to a working medium flow path through which a working medium that recovers heat of the compressed gas and drives the expander flows;
A second flow path connected to the cooling flow path through which the cooling fluid flows;
A closing member that is detachably connected to the connection end portions at both ends of the first flow path and closes the first flow path before the first flow path is connected to the working medium flow path. When,
A compression device.
請求項1ないし3のいずれかに記載の圧縮装置において、
前記作動媒体流路と、前記膨張機と、前記膨張機に接続された動力回収部と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器にて凝縮した作動媒体を前記熱交換器へ作動媒体を送るポンプと、を備え、前記ポンプ、前記熱交換器、前記膨張機及び前記凝縮器が前記作動媒体流路に接続される熱エネルギー回収ユニットをさらに備える、圧縮装置。
The compression apparatus according to any one of claims 1 to 3,
The working medium flow path, the expander, a power recovery unit connected to the expander, a condenser for condensing the working medium flowing out from the expander, and the working medium condensed in the condenser And a pump that sends a working medium to a heat exchanger, and further comprising a thermal energy recovery unit in which the pump, the heat exchanger, the expander, and the condenser are connected to the working medium flow path.
請求項1ないし4のいずれかに記載の圧縮装置において、
前記第1流路は、前記熱交換器内において前記第2流路よりも上流側に配置されている、圧縮装置。
The compression apparatus according to any one of claims 1 to 4,
The first flow path is a compression device that is disposed upstream of the second flow path in the heat exchanger.
請求項1ないし5のいずれかに記載の圧縮装置において、
前記ガス流路が前記熱交換器の筐体の内部空間であり、
前記第1流路及び前記第2流路が、前記内部空間にて蛇行しつつ延びるチューブである、圧縮装置。
The compression apparatus according to any one of claims 1 to 5,
The gas flow path is an internal space of the housing of the heat exchanger;
The compression device, wherein the first flow path and the second flow path are tubes extending while meandering in the internal space.
請求項6に記載の圧縮装置において、
前記第1流路の外面及び前記第2流路の外面には、複数のフィンが形成されている、圧縮装置。
The compression apparatus according to claim 6, wherein
A compression device, wherein a plurality of fins are formed on an outer surface of the first channel and an outer surface of the second channel.
請求項1または2に記載の圧縮装置の態様の切替方法であって、
前記第1態様から前記第2態様へと切り替える際に、
前記膨張機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器にて凝縮した作動媒体を前記熱交換器へ送るポンプと、前記ポンプ、前記膨張機及び前記凝縮器が接続される前記作動媒体流路と、を有する組立体を準備する準備工程と、
前記第1流路及び前記第2流路から前記第3流路を取り外す取外工程と、
前記作動媒体流路の両端の接続端部を前記第1流路の両端の接続端部にそれぞれ接続し、かつ、前記冷却流路の両端の接続端部を前記第2流路の両端の接続端部にそれぞれ接続する接続工程と、
を備える、切替方法。
It is the switching method of the aspect of the compression apparatus of Claim 1 or 2, Comprising:
When switching from the first aspect to the second aspect,
The expander, a condenser that condenses the working medium flowing out of the expander, a pump that sends the working medium condensed in the condenser to the heat exchanger, the pump, the expander, and the condenser A preparation step of preparing an assembly having the working medium flow path to be connected;
A removal step of removing the third flow path from the first flow path and the second flow path;
Connection end portions at both ends of the working medium flow path are respectively connected to connection end portions at both ends of the first flow path, and connection end portions at both ends of the cooling flow path are connected to both ends of the second flow path. A connecting step for connecting to each end;
A switching method comprising:
請求項8に記載の切替方法において、
前記取外工程と前記接続工程との間に前記第1流路内を流れていた冷却流体を除去する除去工程をさらに備える、切替方法。
The switching method according to claim 8,
The switching method further comprising a removing step of removing the cooling fluid that has flowed in the first flow path between the removing step and the connecting step.
請求項3に記載の圧縮装置の組立方法であって、
前記膨張機と、前記膨張機から流出した作動媒体を凝縮させる凝縮器と、前記凝縮器にて凝縮した作動媒体を前記熱交換器へ送るポンプと、前記ポンプ、前記膨張機及び前記凝縮器が接続される前記作動媒体流路と、を有する組立体を準備する第1準備工程と、
前記第1流路から前記閉塞部材を取り外す取外工程と、
前記作動媒体流路の両端の接続端部を前記第1流路の両端の接続端部にそれぞれ接続し、かつ、前記冷却流路の両端の接続端部を前記第2流路の両端の接続端部にそれぞれ接続する接続工程と、
を備える、組立方法。
A method of assembling the compression device according to claim 3,
The expander, a condenser that condenses the working medium flowing out of the expander, a pump that sends the working medium condensed in the condenser to the heat exchanger, the pump, the expander, and the condenser A first preparation step of preparing an assembly having the working medium flow path to be connected;
A removal step of removing the blocking member from the first flow path;
Connection end portions at both ends of the working medium flow path are respectively connected to connection end portions at both ends of the first flow path, and connection end portions at both ends of the cooling flow path are connected to both ends of the second flow path. A connecting step for connecting to each end;
An assembly method comprising:
請求項10に記載の組立方法において、
前記圧縮機と前記熱交換器とを組み立て、前記閉塞部材により前記熱交換器の前記第1流路を閉塞する第2準備工程をさらに備え、
前記第1準備工程及び前記第2準備工程を組立施設にて行い、前記取外工程及び前記接続工程を前記圧縮装置の据え付け地にて行う、組立方法。
The assembly method according to claim 10, wherein
Assembling the compressor and the heat exchanger, further comprising a second preparation step of closing the first flow path of the heat exchanger by the closing member,
An assembly method, wherein the first preparation step and the second preparation step are performed at an assembly facility, and the removal step and the connection step are performed at an installation site of the compression device.
JP2014135618A 2014-07-01 2014-07-01 Switching method Expired - Fee Related JP6371139B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014135618A JP6371139B2 (en) 2014-07-01 2014-07-01 Switching method
KR1020150086757A KR101660173B1 (en) 2014-07-01 2015-06-18 Compression apparatus, method for switching configuration of compression apparatus, and method of assembling compression apparatus
CN201510384796.XA CN105317488B (en) 2014-07-01 2015-06-30 The form changing method and assemble method of compression set, compression set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135618A JP6371139B2 (en) 2014-07-01 2014-07-01 Switching method

Publications (2)

Publication Number Publication Date
JP2016014328A true JP2016014328A (en) 2016-01-28
JP6371139B2 JP6371139B2 (en) 2018-08-08

Family

ID=55170146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135618A Expired - Fee Related JP6371139B2 (en) 2014-07-01 2014-07-01 Switching method

Country Status (3)

Country Link
JP (1) JP6371139B2 (en)
KR (1) KR101660173B1 (en)
CN (1) CN105317488B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020133405A (en) * 2019-02-12 2020-08-31 ナブテスコ株式会社 Air compression apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147245U (en) * 1974-05-22 1975-12-06
JPS58200993A (en) * 1982-05-19 1983-11-22 Sanyo Electric Co Ltd Heat exchanger
JPS61237804A (en) * 1985-04-16 1986-10-23 Kawasaki Heavy Ind Ltd Power system
JPS6390761U (en) * 1986-12-01 1988-06-13
JPH11325753A (en) * 1998-05-08 1999-11-26 Sakae Sangyo Kk Heat exchanger
JP2013057256A (en) * 2011-09-07 2013-03-28 Ihi Corp Energy recovery system for compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719309B2 (en) * 1994-07-27 1998-02-25 株式会社クボタ Garbage incineration plant
JP2000027658A (en) * 1998-07-14 2000-01-25 Japan Science & Technology Corp Gas turbine device and method of burning fuel gas
DE10056150A1 (en) * 2000-10-12 2002-04-18 Frank Eckert The heat transfer assembly has a series of hollow channels to give structured fluid flows, surrounded by a mantle channel for a gas flow
US7870733B2 (en) * 2005-12-21 2011-01-18 Denso Corporation Fluid machine for rankine cycle
JP5495293B2 (en) * 2009-07-06 2014-05-21 株式会社日立産機システム Compressor
JP5247734B2 (en) 2010-01-27 2013-07-24 三菱電機株式会社 Waste heat regeneration system
KR101356005B1 (en) * 2012-03-09 2014-01-29 대우조선해양 주식회사 Energy saving system of ship by using waste heat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147245U (en) * 1974-05-22 1975-12-06
JPS58200993A (en) * 1982-05-19 1983-11-22 Sanyo Electric Co Ltd Heat exchanger
JPS61237804A (en) * 1985-04-16 1986-10-23 Kawasaki Heavy Ind Ltd Power system
JPS6390761U (en) * 1986-12-01 1988-06-13
JPH11325753A (en) * 1998-05-08 1999-11-26 Sakae Sangyo Kk Heat exchanger
JP2013057256A (en) * 2011-09-07 2013-03-28 Ihi Corp Energy recovery system for compressor

Also Published As

Publication number Publication date
CN105317488B (en) 2017-06-23
KR101660173B1 (en) 2016-09-26
JP6371139B2 (en) 2018-08-08
KR20160004191A (en) 2016-01-12
CN105317488A (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US8739538B2 (en) Generating energy from fluid expansion
US10519815B2 (en) Compact energy cycle construction utilizing some combination of a scroll type expander, pump, and compressor for operating according to a rankine, an organic rankine, heat pump or combined organic rankine and heat pump cycle
JP5885439B2 (en) Waste heat utilization equipment for air compressor
US8400005B2 (en) Generating energy from fluid expansion
JP5599275B2 (en) Apparatus and method for removing heat from a gas turbine
JP7266707B2 (en) Power generation system and method of generating power by operation of such power generation system
JP2018514686A (en) Hybrid power generation system using supercritical carbon dioxide cycle
JP2014185609A (en) Power generation device and power generation system
JP6371139B2 (en) Switching method
JP6607960B2 (en) Gas compressor
US10408092B2 (en) Heat exchanger, energy recovery system, and vessel
US10626754B2 (en) Compression device
JP2010077827A (en) Fluid machine
JP2006009592A (en) Generating set and its operating method
KR20150017610A (en) Compressor system
JP6674796B2 (en) Exhaust heat recovery device
JP5471676B2 (en) Waste heat regeneration system
US9574446B2 (en) Expander for recovery of thermal energy from a fluid
JP6576106B2 (en) Heat utilization device
CN213711133U (en) Back pressure type ORC combined heat and power generation system
CN112096471A (en) Back pressure type ORC combined heat and power generation system
WO2014175928A2 (en) Compact energy cycle construction utilizing some combination of a scroll type expander, pump, and compressor for operating according to a rankine, an organic rankine, heat pump, or combined organic rankine and heat pump cycle
TW201432140A (en) An electricity generation generated power directly from screw expander
KR20150075805A (en) Expander system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180712

R150 Certificate of patent or registration of utility model

Ref document number: 6371139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees