JPS6123728A - Method for controlling composition of alloy containing al and ti - Google Patents

Method for controlling composition of alloy containing al and ti

Info

Publication number
JPS6123728A
JPS6123728A JP14148084A JP14148084A JPS6123728A JP S6123728 A JPS6123728 A JP S6123728A JP 14148084 A JP14148084 A JP 14148084A JP 14148084 A JP14148084 A JP 14148084A JP S6123728 A JPS6123728 A JP S6123728A
Authority
JP
Japan
Prior art keywords
slag
amount
loss
alloy
amounts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14148084A
Other languages
Japanese (ja)
Inventor
Tomio Inukai
犬飼 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP14148084A priority Critical patent/JPS6123728A/en
Publication of JPS6123728A publication Critical patent/JPS6123728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To control the composition of an alloy contg. Al and Ti with high reproducibility by calculating the amounts of Al and Ti lost from the amounts of Al and Ti in the alloy and the amount of reactive oxygen in electro-slag remelting. CONSTITUTION:When an alloy contg. Al and Ti is obtd. by electro-slag remelting, the ratio in loss between Al and Ti is calculated from the amounts of Al and Ti in steel, the amount of reactive oxygen is calculated from the melting rates of Al and Ti in the alloy, the reaction interface and the composition of slag, and the total amount of Al and Ti lost are further calculated. The amounts of Al and Ti lost are calculated from said ratio in loss and the total amount of Al and Ti lost, and electro-slag remelting is carried out after adding said calculated amounts of Al and Ti preliminarily to a consumable electrode to obtain an alloy having a prescribed composition contg. Al and Ti.

Description

【発明の詳細な説明】 本発明は、エレクトロスラグ再溶解により、Al及びT
iを含有する合金を製造する際に、そのコントロールが
極めて難しいとされた、当該Al及びTi成分の好適な
コントロール方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for remelting Al and T by electroslag remelting.
The present invention relates to a suitable method for controlling Al and Ti components, which are considered to be extremely difficult to control when producing alloys containing i.

エレクトロスラグ再溶解(Electro SlagR
emQlting、以下ESRという)法は、一般に、
溶融スラグの電気抵抗熱によって消耗電極(以下単に電
極という)を溶解し、スラグ中を滴下沈降した溶鋼を水
冷鋳型内で連続的に凝固させていく方法で、この方法に
よれば、脱硫脱酸効果などにより介在物の少ない清浄な
鋼が得られること、積層凝固により組織が系¥l密で偏
析が少ない鋼が得られること等の利点があり、同様に再
溶解により鋼を得るV A R(Vacuum Arc
 Remelting )法に比較して、鋼塊肌がスラ
グにより覆れて造塊されるため、なめらかで、表面皮削
りなどの手入れが不要である等の利点がある。
Electro Slag remelting (Electro SlagR)
The emQlting (hereinafter referred to as ESR) method generally
A method in which a consumable electrode (hereinafter simply referred to as an electrode) is melted by the electrical resistance heat of the molten slag, and the molten steel that drips and settles in the slag is continuously solidified in a water-cooled mold. There are advantages such as the ability to obtain clean steel with few inclusions, and the ability to obtain steel with a dense structure and little segregation due to layered solidification.Similarly, steel can be obtained by remelting. (Vacuum Arc
Compared to the remelting method, since the surface of the steel ingot is covered with slag and formed into an ingot, it has the advantage of being smooth and requiring no care such as surface scraping.

従来、/j tar及びTiを含有する合金(以下含A
l、Ti合金という)特に高いパーセンテージでAl及
びTiを含有する含All、Ti超合金は真空中で行う
VAR法で溶製されてきた。
Conventionally, /j tar and Ti-containing alloys (hereinafter referred to as A-containing alloys)
Al, Ti superalloys containing particularly high percentages of Al and Ti (referred to as 1, Ti alloys) have been produced by the VAR process in vacuum.

これは、大気中で行うESR法(以下単にESRという
)では、AJJ、Ti成分の変動バラツキが大きく、な
かなか所望の含有量の含Al、Ti超合金を得ることが
できず、Al及びTi成分のコントロールが難しいこと
に基因していた。
This is because the ESR method (hereinafter simply referred to as ESR) performed in the atmosphere has large fluctuations in AJJ and Ti components, making it difficult to obtain an Al and Ti superalloy with the desired content. This was due to the fact that it was difficult to control.

Al、Ti成分の変動バラツキは主にこれら成分のロス
であり、従って、従来、これら成分のロス量を目分量で
以って、予じめ、消耗電極中に添加しておくことも考え
られ、実施されたが、成分変動をコン)・ロールするこ
とはできず、たまたまうま(いったとしても再現性ある
コントロール方法とはいえなかった。
Fluctuations in the Al and Ti components are mainly due to the loss of these components, so conventionally it has been considered to add eye-measured amounts of these components to the consumable electrode in advance. , but it was not possible to control component fluctuations, and even if it happened to be a good method, it was not a reproducible control method.

L記の如く、含AA、、Ti合金のESRにおいて、A
M及びTiがスラグと反応し、Al及びTi成分が変動
する即ち、減少したり、あるいは増加したりする。
As shown in L, in the ESR of AA-containing, Ti alloys, A
M and Ti react with the slag, and the Al and Ti components vary, ie, decrease or increase.

本発明者等は、Nimonic 80A (+9 Cr
 −L、SA l −2,5Ti −Ni) 、 In
conel 718 (20cr −18Fe−0,6
A l −ITi −3No −5Nb −U i )
等の含Al、Ti超合金について、各種スラグにより、
Al、Ti元素の挙動を解析し、又、スラグ−メタル反
応の解析を行ったところ、メタル中の[AM]、[Ti
l とスラグ中の(AちO,)  、(T I OJ)
との平衡については第1図に示すような関係にあること
が判り、そして、この第1図に示す関係については、ノ
ミタル中の[Al1 、[Tilとスラグ中の(A見L
Oρ 、 (T i OL)との平衡に関する次の式(
1) %式%] 並びに次のような実験式(2)からもその正しさか裏伺
られた。
The inventors have developed Nimonic 80A (+9 Cr
-L, SA l -2,5Ti -Ni), In
conel 718 (20cr-18Fe-0,6
A l -ITi -3No -5Nb -U i )
Regarding Al-containing, Ti-containing superalloys such as
When we analyzed the behavior of Al and Ti elements and also analyzed the slag-metal reaction, we found that [AM] and [Ti
l and (AchiO,) in the slag, (T I OJ)
It turns out that there is a relationship as shown in Figure 1 regarding the equilibrium with
The following equation for equilibrium with Oρ, (T i OL) (
1) % formula %] and the following experimental formula (2) also confirmed its correctness.

[%Al] [%T i]  II・・・メタル中の濃
度(wt% ) NAAlO,、NTi0よ・11番−スラグ中のモル分
率 そして、」−記スングーメタル反応との関係に基づき、
メタル中のA l / T iのロスの割合△Ti/Δ
AMと電極中の[%T i ] /[%Al1 耕蜀比
率との関係を、゛ロットしたところ、第2図に示すよう
な関係にあることをつきとめた。第2図から、電極中の
TiとAlの含有比率を求めることにより、゛これら成
分のロス比率を知ることができる。
[%Al] [%Ti] II... Concentration in metal (wt%) NAAlO,, NTi0, No. 11 - Mole fraction in slag And, based on the relationship with the Sungu metal reaction,
Loss ratio of A l / Ti in metal △Ti/Δ
When the relationship between AM and the [%T i ]/[%Al1 cultivation ratio in the electrode was plotted, it was found that the relationship was as shown in FIG. 2. By determining the content ratio of Ti and Al in the electrode from FIG. 2, it is possible to know the loss ratio of these components.

更に、Al及びTiの成分変動について解析していった
ところ、AIL及びTiのロス要因は、大気(0)→ス
ラグ→メタルの反応による酸化ロスによるものであるこ
とをつきとめた。
Furthermore, by analyzing the fluctuations in Al and Ti components, it was found that the cause of loss of AIL and Ti was due to oxidation loss due to the reaction of atmosphere (0) → slag → metal.

ソシテ、ESRについてのA l 及tJ’ T iの
ロスに関して、更に追究していたったところ、1の溶解
速度のダウンはロスを増大させること、又、スラグ−大
気との反応界面面積(スラグが大気と接触する面積)の
大きい程つまり大型塊程酸化ロスが大であること、スラ
グ中の塩基度の低下は酸化ロスを少なくすること、スラ
グ−大気の(0)反応量と溶解速度/反応界面面積(K
g/ )Ir/ crn’ )との関係について、スラ
グの種類を変えて1両者の関係をプロットしたところ、
第3図に示すような関係が認められたこと、又、AIL
及びTiのロス[大気中の(0)との灰地、]はAl及
びTiがどの程度の酸素と結びつくかであり、溶解速度
、反応界面面積とのファクターに関係し、Al、Tiの
(0)反応量(%)を溶解速度(Kg/)lr) 、反
応界面面ta (Cm’ )で除した値である反応酸素
量(%/ Kg/Hr、  cm’)に重要な関係があ
ること、そしてこの反応酸素量とスラグとの関係をプロ
ア 1−とじたところ第4図に示すような関係にあるこ
とが判った。尚第3図ではスラグについて、CaF 、
 20CaF −80CaO及び40CaF、 −30
Ca−30Ca −30A見、O5組成の三種を例にと
って両者の関係を調べた。又第4図は、Ca0−CaF
As a result of further investigation into the loss of A l and tJ' Ti for ESR, we found that decreasing the dissolution rate of 1 increases the loss, and that the area of the slag-atmosphere reaction interface (where slag is The larger the contact area (area in contact with the slag), the larger the oxidation loss, the lower the basicity of the slag, the less the oxidation loss, and the (0) reaction amount and dissolution rate/reaction interface between slag and atmosphere. Area (K
g/)Ir/crn') When we plotted the relationship between the two by changing the type of slag, we found that
The relationship shown in Figure 3 was observed, and the AIL
The loss of Al and Ti [ashy ground with (0) in the atmosphere] is the degree to which Al and Ti combine with oxygen, and is related to factors such as dissolution rate and reaction interface area. 0) There is an important relationship between the amount of reaction oxygen (%/Kg/Hr, cm'), which is the value obtained by dividing the reaction amount (%) by the dissolution rate (Kg/) lr) and the reaction interface surface ta (Cm'). When the relationship between the amount of reacted oxygen and the slag was plotted using Proa 1, it was found that the relationship was as shown in Figure 4. In addition, in Fig. 3, regarding slag, CaF,
20CaF -80CaO and 40CaF, -30
The relationship between Ca-30Ca-30A and O5 composition was investigated using three examples. Also, Fig. 4 shows Ca0-CaF
.

−AlOよりなるスラグ組成を例にとって、両者の関係
を調べたものである。
The relationship between the two was investigated using the slag composition consisting of -AlO as an example.

J二記から、本発明者等は、含AM、Ti合金における
AI、Ti成分の変動ロスについては1反応酸素量(%
/Kg /Hr 、  crn’)なる概念を用いるこ
とにより律することができ、そして、この反応酸素量に
よりAl、Tiの含有量をコントロールし得ることを見
い出した。
From J2, the present inventors determined that the amount of oxygen per reaction (%
/Kg/Hr, crn'), and found that the content of Al and Ti can be controlled by the amount of reaction oxygen.

即ち、鋼種のAl、Ti量により、そのロス比率が第2
図により決定され、更に、第4図に示す反応酸素量によ
り、Al+Tiのトータルロス量を把握することで、A
JJ及びTiのロス量を算出することができる。
In other words, depending on the Al and Ti contents of the steel type, the loss ratio
In addition, by understanding the total loss amount of Al + Ti from the amount of reaction oxygen shown in Figure 4, A
The amount of loss of JJ and Ti can be calculated.

そこで、このロス量を予じめ、電極(ポール)中に添加
しておくことにより、目標とする含有量のAl及びTi
を含む含Al、Ti鋼を得ることができる。
Therefore, by adding this amount of loss into the electrode (pole) in advance, it is possible to achieve the target content of Al and Ti.
It is possible to obtain Al-containing, Ti-containing steel.

本発明は上記知見に基づくもので、Al及びTiを含有
する合金をエレクトロスラグ再溶解により得るに際し、
反応酸素量により当該Al及び/又はTiの含有量をコ
ントロールすることを特徴とするAl及びTiを金石す
る合金における当該成分のコントロール方法に存する。
The present invention is based on the above findings, and when obtaining an alloy containing Al and Ti by electroslag remelting,
The present invention relates to a method for controlling the content of Al and/or Ti in an alloy containing Al and Ti, which comprises controlling the content of Al and/or Ti by the amount of reactive oxygen.

本発明の方法は各種の含Al、Ti合金に適用すること
ができるが、特に、Afl成分及びTi成分をそれぞれ
2−3%含有するような含Al、Ti超合金のESHに
ついて適用して有効である。
Although the method of the present invention can be applied to various Al-containing and Ti-containing alloys, it is particularly effective when applied to ESH of Al-containing and Ti-containing superalloys containing 2-3% of Afl and Ti components, respectively. It is.

合金の例としては、前記した旧monic 80A。An example of the alloy is the old monic 80A mentioned above.

Inconel 7+8の他、A288 (25Ni 
−+5cr −lMo−0,3A n−2,27i −
F e)があげられる本発明に使用されるスラグについ
ては各種のちのを使用するこ七ができるが、前述のごと
くAl、Tiの(0)との反応昂(酸化量)lオ塩基度
の低下(スラグ中の例えばSiq%Al、03、TiO
よの増加)に伴広い少なくなり、Al、Tiのロスを減
少させるという観点からはスラグ中のS i OLは低
くおさえる必要がある。
Inconel 7+8, A288 (25Ni
−+5cr −lMo−0,3A n−2,27i −
Various materials can be used for the slag used in the present invention, including Fe), but as mentioned above, the reaction rate (oxidation amount) with (0) of Al and Ti, the basicity of decrease (e.g. Siq% Al, 03, TiO in slag)
The S i OL in the slag must be kept low from the viewpoint of reducing the loss of Al and Ti.

CaOの操力■はスラグの塩基度を上げ、ロス駿を大き
くする。
CaO's manipulation power ■ increases the basicity of the slag and increases the loss.

スラクトシテハ、80% CaF、 −20% Cao
Ml 成tのものを使用することが好ましい。
Sluctosite, 80% CaF, -20% Cao
It is preferable to use one containing Ml.

本発明の方法において、Al、Tiのロスを抑える上か
らは、不活性ガス例えばアルゴン(Ar)を吹付け、あ
るいは装置を密閉して行うArシールを施すことが好ま
しい。
In the method of the present invention, in order to suppress the loss of Al and Ti, it is preferable to spray an inert gas such as argon (Ar) or to perform Ar sealing by sealing the apparatus.

吹に、本発明を実施例により説明する。First, the present invention will be explained by way of examples.

実施例 Nimonic80A(190r −1,EI A l
 −2,57i −Ni) についてESRを行ない、A1.Ti成分のコントロー
ルを実施した。当該鋼種のA立置は1.6%であり、T
i量は2.5%であり、これらが目欅値となる。
Example Nimonic 80A (190r -1, EI A l
-2,57i -Ni) and performed ESR on A1. Control of Ti component was carried out. The A vertical position of the steel type is 1.6%, and the T
The amount of i is 2.5%, and these are the target values.

第2図に従い、当該電極中妃$Ti] / [zAU]
からロス比率△T i /ΔAlを求めてお≦。スラグ
組成については80%CaF2−20%Canとし、又
、装置についてArシールを実施した。装置の反応界面
面積700crn’であり、溶解速度は370 k g
’/ Hrであった。
According to Fig. 2, the electrode middle part $Ti] / [zAU]
Find the loss ratio △T i /ΔAl from ≦. The slag composition was 80% CaF2-20% Can, and the apparatus was sealed with Ar. The reaction interface area of the device is 700 crn', and the dissolution rate is 370 kg
'/Hr.

当該合金のA見、・Tiについての溶解速度や反応界面
面積及びスラグ組成から、第4図に従い、反応酸素量(
%/Kg/Hr/ crn’)を計算により求めた。反
応酸素量は約0.5%/kg/Hr、  cm’であっ
た。
According to Figure 4, the amount of reactive oxygen (
%/Kg/Hr/crn') was determined by calculation. The amount of reactive oxygen was approximately 0.5%/kg/Hr, cm'.

この反応1M素量及びスラグ組成からAl+Tiのト−
タロス量を計算し、ボール成分を設定すると600gの
ロス量が見込まれ。
From this reaction 1M elementary amount and slag composition, the tortoise of Al+Ti was determined.
Calculating the amount of talos and setting the ball components, it is expected that 600g will be lost.

AMについて600gのロス部を予じめ添加しておいて
ESRを実施した。
ESR was performed by adding 600 g of loss to AM in advance.

結果を第5図に示すが、初装600gのA交添含絃のN
imonic 80Aが得られた。
The results are shown in Figure 5.
imonic 80A was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第11Δはスラグ−、メタルの関係を示すグラフ、 第2図は゛電極中の[%Ti]/[%Aljとの関係を
示すグラフ、第3図は溶解速度/係を示すグラフ、第5
図は本発明の作用効果を説明するグラフである◎ 第3図中、BはBottomを、TはTopを示す。 第1図 第2図 第3図 第弘図 第S図
11th Δ is a graph showing the relationship between slag and metal; Figure 2 is a graph showing the relationship between [%Ti]/[%Alj in the electrode; Figure 3 is a graph showing the dissolution rate/relationship;
The figure is a graph explaining the effects of the present invention.◎ In Figure 3, B indicates Bottom and T indicates Top. Figure 1 Figure 2 Figure 3 Figure S

Claims (1)

【特許請求の範囲】 Al及びTiを含有する合金をエレクトロ スラグ再溶解により得るに際し、当該合金製造の際の反
応酸素量により、当該Al及び、/又はTiの含有量を
コントロールすることを特徴とするAl及びTiを含有
する合金における当該成分のコントロール方法。
[Claims] When an alloy containing Al and Ti is obtained by electroslag remelting, the content of Al and/or Ti is controlled by the amount of reactive oxygen during production of the alloy. A method for controlling the components in an alloy containing Al and Ti.
JP14148084A 1984-07-10 1984-07-10 Method for controlling composition of alloy containing al and ti Pending JPS6123728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14148084A JPS6123728A (en) 1984-07-10 1984-07-10 Method for controlling composition of alloy containing al and ti

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14148084A JPS6123728A (en) 1984-07-10 1984-07-10 Method for controlling composition of alloy containing al and ti

Publications (1)

Publication Number Publication Date
JPS6123728A true JPS6123728A (en) 1986-02-01

Family

ID=15292871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14148084A Pending JPS6123728A (en) 1984-07-10 1984-07-10 Method for controlling composition of alloy containing al and ti

Country Status (1)

Country Link
JP (1) JPS6123728A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907661B1 (en) 2007-06-30 2009-07-14 두산중공업(주) Electro-slag remelting method to prevent soft arcing
CN101914687A (en) * 2010-08-31 2010-12-15 攀钢集团钢铁钒钛股份有限公司 Electro-slag re-melting method for steel for aluminum-controlled seamless steel pipes
CN104232916A (en) * 2014-08-18 2014-12-24 江阴南工锻造有限公司 Electroslag remelting process for GH901 alloys
CN111549296A (en) * 2020-04-02 2020-08-18 苏州双金实业有限公司 Heat-resistant steel for automobile fastener and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907661B1 (en) 2007-06-30 2009-07-14 두산중공업(주) Electro-slag remelting method to prevent soft arcing
CN101914687A (en) * 2010-08-31 2010-12-15 攀钢集团钢铁钒钛股份有限公司 Electro-slag re-melting method for steel for aluminum-controlled seamless steel pipes
CN104232916A (en) * 2014-08-18 2014-12-24 江阴南工锻造有限公司 Electroslag remelting process for GH901 alloys
CN111549296A (en) * 2020-04-02 2020-08-18 苏州双金实业有限公司 Heat-resistant steel for automobile fastener and production method thereof

Similar Documents

Publication Publication Date Title
KR900004975B1 (en) Weld bead electrode for producing same and method of use
US5102450A (en) Method for melting titanium aluminide alloys in ceramic crucible
JPS6123728A (en) Method for controlling composition of alloy containing al and ti
CN112458326B (en) Zr-Ce-containing wrought high-temperature alloy and preparation method thereof
JPS63100150A (en) Master alloy for producing titanium alloy and its production
US4198229A (en) Method of dephosphorization of metal or alloy
JPH09194962A (en) Slag for electroslag remelting for ni base superalloy material and method for electroslag remelting for the same superalloy material
EP0249050B1 (en) Process for the electroslag refining of metals, especially of such metals containing components with a high oxygen affinity
US4184869A (en) Method for using flux and slag deoxidizer in ESR process
JPH0225526A (en) Production of metal or metal alloy lower in oxygen affinity than alkaline earth metal
JPS6244535A (en) Flux for electroslag remelting method
JPS6159386B2 (en)
JPH0364423A (en) Method for melting intermetallic compound ti-al-base alloy
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
DE2531034C2 (en) Process for decarburizing high-carbon ferro-manganese or high-carbon ferrochrome
GB2157712A (en) Process for production of titanium-containing hydrogen storage alloy
JPH03197624A (en) Vacuum esr method for component control
US2497538A (en) Fluxes for use in the treatment of light metals
JP2002275551A (en) Method for manufacturing vanadium alloy
JPH04120225A (en) Manufacture of ti-al series alloy
Spiess et al. Experimental Research on the Absorption of Fluorine in gamma-TiAl during Electroslag Remelting
JPS6011099B2 (en) Production method of low phosphorus manganese ferroalloy
JPH07238344A (en) High cleanliness steel and production thereof
JPS6034614B2 (en) Electroslag remelting method
JPS61210141A (en) Ni-ti alloy having superior shock resistance and its manufacture