JPS61237091A - Corrosion preventive method and device for turbine in nuclear power generating plant - Google Patents

Corrosion preventive method and device for turbine in nuclear power generating plant

Info

Publication number
JPS61237091A
JPS61237091A JP60079759A JP7975985A JPS61237091A JP S61237091 A JPS61237091 A JP S61237091A JP 60079759 A JP60079759 A JP 60079759A JP 7975985 A JP7975985 A JP 7975985A JP S61237091 A JPS61237091 A JP S61237091A
Authority
JP
Japan
Prior art keywords
turbine
main steam
nuclear power
power plant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60079759A
Other languages
Japanese (ja)
Other versions
JPH0566558B2 (en
Inventor
菊池 英二
湊 昭
卓 本田
下村 純志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60079759A priority Critical patent/JPS61237091A/en
Publication of JPS61237091A publication Critical patent/JPS61237091A/en
Publication of JPH0566558B2 publication Critical patent/JPH0566558B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力発電プラントにおけるタービンの腐食
を防止する方法及び装置に関し、特に低圧タービンロー
タディスクの応力腐食割れを防止する方法及び装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for preventing corrosion of a turbine in a nuclear power plant, and more particularly to a method and apparatus for preventing stress corrosion cracking of a low pressure turbine rotor disk.

〔発明の背景〕[Background of the invention]

近時原子力発電プラントの特に低圧タービンにおいて、
該タービンロータディスク部に使用されている2 Ni
CrMoV鋼に応力腐食割れ(以下、SCCと略称する
)の発生が見出され、そのSCC防止対策が緊急の課題
となっている。
Especially in low pressure turbines of modern nuclear power plants,
2Ni used in the turbine rotor disk part
Stress corrosion cracking (hereinafter abbreviated as SCC) has been found to occur in CrMoV steel, and measures to prevent SCC have become an urgent issue.

従来、2 NICrMoV鋼を始めとする低合金鋼ある
いはステンレス鋼のSCC抑制剤としては、そリプデン
酸イオン、クロム酸イオン、タングステン酸イオン等の
酸化性イオンが知られている。これらの酸化剤はタービ
ンブレードの表面に薬剤の濃縮を生ずるので、このよう
な酸化剤を蒸気中に注入することは好ましく危い。とこ
ろで、蒸気中ではヒドラジン、モルホリン等の脱酸素剤
が濃縮を生ずることなく安定に存在することが知られて
いる。
Conventionally, oxidizing ions such as thribdate ions, chromate ions, and tungstate ions are known as SCC inhibitors for low alloy steels such as 2 NICrMoV steels or stainless steels. Injecting such oxidizers into the steam is undesirably dangerous, as these oxidizers cause a concentration of the agent on the surfaces of the turbine blades. By the way, it is known that oxygen scavengers such as hydrazine and morpholine exist stably in steam without concentrating.

そこで、これらの脱酸素剤を利用した火力発電プラント
構成材の全面腐食抑制方法が提案され、既に実用化され
ている。すなわち、−次系、給水系及び主蒸気系の鉄及
び鉄基合金の防食法としてヒドラジンを注入するいわゆ
るゲラタイル処理法がある。
Therefore, a method for suppressing general corrosion of thermal power plant components using these oxygen scavengers has been proposed and has already been put into practical use. That is, there is a so-called gelatile treatment method in which hydrazine is injected as a corrosion prevention method for iron and iron-based alloys in the secondary system, water supply system, and main steam system.

しかしながら、上記のゲラタイル処理法は、原子力発電
プラントの場合薬剤自身の放射線分解の問題があるため
、火力発電プラントには適合していても原子力発電プラ
ントへの適用は困難であった。
However, in the case of nuclear power plants, the above-mentioned gelatile treatment method has the problem of radiolysis of the drug itself, so even though it is suitable for thermal power plants, it has been difficult to apply to nuclear power plants.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、m発電プラントのタービンロータディ
スクで生ずるSCCを防止するため、主蒸気中の酸素ガ
スを水に還元して酸素濃度を可及的に低く抑えることに
よシディスク表面の不働態皮膜を強化させる方法及び装
置を提供するととKある。
The purpose of the present invention is to prevent SCC occurring in the turbine rotor disk of a power generation plant by reducing the oxygen gas in the main steam to water and keeping the oxygen concentration as low as possible. The purpose of the present invention is to provide a method and apparatus for strengthening the functional film.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本方法発明は、タービンに供
給されるべき主蒸気中に放射線分解生成物としての酸素
ガス及び水素ガスを含有する原子力発電プラントにおい
て、前記主蒸気中の酸素濃度を59P!!1以下に制御
することを特徴とするものであシ、同じく本装置発明は
、原子炉とタービンとの間の主蒸気配管中K、主蒸気中
の酸素濃度を5 ppm以下に制御する手段を設けたこ
とを特徴とするものである。
The present invention provides a method for achieving the above object in a nuclear power plant in which main steam to be supplied to a turbine contains oxygen gas and hydrogen gas as radiolysis products. ! ! Similarly, the present invention also provides means for controlling the oxygen concentration in the main steam piping between the reactor and the turbine to 5 ppm or less. It is characterized by the fact that it has been provided.

よシ具体的にいえば、本発明は、原子力発電プラントの
主蒸気中に含まれている酸素ガスと水素ガスとを撥水性
触媒を用いて水に還元させることくよって、有害な酸素
を除去することを特徴とするもので、原子力発電プラン
トのタービンディスクのSCC防止特に低圧タービンデ
ィスクのSCC防止に有効である。これらのうち、特K
 SCCを発生し易い部分を選んで本発明を適用しても
よいが、一般的にはタービン基金てに対して本発明を適
用するのが好ましい。
More specifically, the present invention removes harmful oxygen by reducing oxygen gas and hydrogen gas contained in the main steam of a nuclear power plant to water using a water-repellent catalyst. This feature is effective in preventing SCC of turbine disks in nuclear power plants, particularly in preventing SCC of low-pressure turbine disks. Among these, special K
Although the present invention may be applied to selected parts where SCC is likely to occur, it is generally preferable to apply the present invention to the entire turbine foundation.

〔発明の実施例〕[Embodiments of the invention]

本発明の詳細な説明するに先立って、原子力発電プラン
トにおける低圧タービンディスクのSCCについて、本
発明者らの研究結果を以下に説明する。
Prior to a detailed explanation of the present invention, the present inventors' research results regarding SCC of a low pressure turbine disk in a nuclear power plant will be explained below.

上記研究によれば、タービンディスクのSCCが主蒸気
中の酸素に起因していることが判明した。
According to the above study, it was found that SCC of the turbine disk is caused by oxygen in the main steam.

そして酸素のような酸化剤がSCCを発生させるのは次
のような理由によるものと考えられる。
It is believed that the reason why an oxidizing agent such as oxygen causes SCC is as follows.

すなわち、タービンディスクは高速回転し大きな応力を
受けているが、ここでSCCの発生はすベシ変形に伴う
新生面の生成速度と表面被膜の生成速度すなわち新生面
の再不働態化速度に依存するものである。上記新生面の
生成速度は動的歪に支配され、新生面の再不働態化速度
は環境の腐食作用の強さに支配される。酸素がSCCを
発生させるのは、酸素濃度の増加が腐食性を増し再不働
態化速度が遅くなるためと考えられる。
In other words, the turbine disk rotates at high speed and is subjected to large stress, and the occurrence of SCC here depends on the rate of formation of a new surface due to severe deformation and the rate of formation of a surface film, that is, the rate of repassivation of the new surface. . The rate of formation of the new surface is controlled by dynamic strain, and the rate of repassivation of the new surface is controlled by the strength of the corrosive action of the environment. It is believed that oxygen causes SCC because an increase in oxygen concentration increases corrosiveness and slows down the repassivation rate.

以上の考察から酸素濃度の低減がSCC防止に有効であ
るのは、低酸素環境下で不働態皮膜の補修能力が増加す
ること、によるものと考えられる。そして、このような
不働態皮膜の形成はSCCばかシでなく、孔食、隙間腐
食、全面腐食に対しても効果があることは勿論である。
From the above considerations, it is thought that the reason why reducing oxygen concentration is effective in preventing SCC is that the repair ability of the passive film increases in a low-oxygen environment. It goes without saying that the formation of such a passive film is effective not only against SCC, but also against pitting corrosion, crevice corrosion, and general corrosion.

本発明者らは、主蒸気中から酸素を除去する方法として
、撥水性触媒を用いて蒸気中の酸素を水に還元する方法
が最も効果的であることの知見を得て、原子力発電プラ
ントのタービン腐食を防止するため触媒による酸素低減
法を開発するに至りた。この触媒による酸素低減法は、
前述のような薬剤の放射線分解の問題がなく、原子力発
電プラントにおけるSCC防止法として極めて有効であ
る。
The present inventors have found that the most effective method for removing oxygen from main steam is to reduce the oxygen in the steam to water using a water-repellent catalyst. In order to prevent turbine corrosion, a method for reducing oxygen using a catalyst was developed. This catalyst-based oxygen reduction method is
This method is extremely effective as a method for preventing SCC in nuclear power plants since it does not have the problem of radiolysis of drugs as described above.

酸素低減によるSCCの抑制効果は60℃以上の温度域
で認められた。これは、酸化皮膜の形成が温度に支配さ
れるためと考えられる。また、SCCの抑制効果が現わ
れる酸素濃度は0〜5 ppmの範囲である。
The effect of suppressing SCC due to oxygen reduction was observed in the temperature range of 60°C or higher. This is considered to be because the formation of the oxide film is controlled by temperature. Further, the oxygen concentration at which the effect of suppressing SCC appears is in the range of 0 to 5 ppm.

以上の知見に基づいて本発明では、主蒸気中の酸素、濃
度を5 ppm以下に制御するようにしたものである。
Based on the above knowledge, the present invention is designed to control the oxygen concentration in the main steam to 5 ppm or less.

原子力発電プラン)においてタービンへ供給すれる主蒸
気中の酸素ガス及び水素ガスは炉水の放射線分解生成物
である。したがって、主蒸気中には水素ガス1モルに対
して酸素ガスが0.5モルの開傘で存在している。
Oxygen gas and hydrogen gas in the main steam supplied to the turbine in nuclear power generation plans are radiolysis products of reactor water. Therefore, in the main steam, oxygen gas is present in an amount of 0.5 mole per mole of hydrogen gas.

主蒸気中の酸素を低減させるには該酸素と水素を再結合
させればよく、これには撥水性触媒を用いるのが最も効
果的である。しかし、触媒表面が水分子で覆れると触媒
活性が低下して上記した再結合反応が停止する。そこで
、触媒表面の水を撥〈ようにしたのが撥水性触媒である
。々お撥水性触媒によシ酸素濃度の低減効果が現われる
温度範囲は50℃以上である。
In order to reduce the oxygen in the main steam, it is sufficient to recombine the oxygen and hydrogen, and it is most effective to use a water-repellent catalyst for this purpose. However, when the catalyst surface is covered with water molecules, the catalyst activity decreases and the above-described recombination reaction stops. Therefore, water-repellent catalysts are designed to repel water on the catalyst surface. The temperature range in which the water-repellent catalyst exhibits the effect of reducing oxygen concentration is 50°C or higher.

水素と酸素を結合するには、Pt 、 Pd触媒が良い
ことは、古くよシ知られている。Pt 、 Pd触媒は
、通常アルミナ、活性炭に0.1〜0.5 wt%担持
されている。これらの触媒を常温で使用すると、水素と
酸素の結合を促進して水を生成するが、その活性は長く
は続かず、やがて活性はまったく失なわれる。その理由
は、生成した水によシ触媒の表面がぬれてしまうからで
ある。そこで触媒表面を撥水処理したもの、つtb撥水
性触媒が反応を持続させる上で有効となる。
It has long been known that Pt and Pd catalysts are good for combining hydrogen and oxygen. Pt and Pd catalysts are usually supported on alumina or activated carbon in an amount of 0.1 to 0.5 wt%. When these catalysts are used at room temperature, they promote the bonding of hydrogen and oxygen to produce water, but their activity does not last long and eventually they lose their activity altogether. The reason for this is that the surface of the catalyst becomes wet due to the generated water. Therefore, a catalyst whose surface has been treated to make it water repellent, or a tb water-repellent catalyst, is effective in sustaining the reaction.

撥水性触媒を得るKは、親水性の触媒を撥水処理する方
法と、もう一つの方法として撥水性の担体く活性成分を
担持させる方法とがある。
There are two methods for obtaining a water-repellent catalyst: one is to treat a hydrophilic catalyst to make it water-repellent, and another method is to support the active ingredient on a water-repellent carrier.

撥水性の触媒の調整法の一例を第3図に示す。An example of a method for preparing a water-repellent catalyst is shown in FIG.

同図に示す如く、球状のチタニア担体にテフロンの分散
液を含浸し、焼成後、塩化白金酸のメタノール溶液を含
浸して、Pt−Ti0□触媒が調整される。
As shown in the figure, a Pt-Ti0□ catalyst is prepared by impregnating a spherical titania carrier with a Teflon dispersion and, after firing, impregnating it with a methanol solution of chloroplatinic acid.

撥水処理であるテフロン分散液の含浸は、Pt−Tie
2触媒を作りてから施しても良い。撥水化処理の順序の
如何によらず、両者の活性はほぼ等しいことが多い。撥
水性の担体、例えば、多孔質テフロンを使用して撥水性
触媒を調整する場合には、直接塩化白金酸のエタノール
あるいはアセトン溶液を含浸すればよい。
Impregnation with Teflon dispersion, which is a water repellent treatment, is performed using Pt-Tie.
2. It may be applied after making the catalyst. Regardless of the order of water-repellent treatment, the activities of the two are often almost equal. When preparing a water-repellent catalyst using a water-repellent carrier such as porous Teflon, it may be directly impregnated with an ethanol or acetone solution of chloroplatinic acid.

撥水化処理の材料としては、フッ化黒鉛、テフロン、ポ
リエチレン、?リグロピレン、ポリスチレンなどを使用
できる。また、撥水性の担体材料としては、上記と同様
のものを多孔質化したものが使用できる。
Materials for water repellent treatment include fluorinated graphite, Teflon, polyethylene, etc. Ligropyrene, polystyrene, etc. can be used. Further, as the water-repellent carrier material, a porous material similar to the above-mentioned material can be used.

なお、本発明のような酸素濃度の低減による不働態化処
理は、2 NICrMoV鋼などの低合金鋼のみならず
ステンレス鋼、炭素鋼、二、ケル基合金のSCCに対し
ても抑制効果があるもので、原子力発電プラントに拘る
ことなく、火力発電プラント、化学プラントなどにおけ
るSCC防止対策として広範囲な適用を可能としたもの
である。
Note that the passivation treatment by reducing oxygen concentration as in the present invention has the effect of suppressing SCC not only in low alloy steels such as 2NICrMoV steel but also in stainless steel, carbon steel, and 2K-based alloys. This makes it possible to apply it not only to nuclear power plants but also to thermal power plants, chemical plants, etc. as a preventive measure against SCC.

本発明者らは、SCCの抑制効果が現われる酸素濃度と
温度の条件を調べるため、酸素濃度及び温度とSCC感
受性との関係を定荷重法により検討した。
The present inventors investigated the relationship between oxygen concentration and temperature and SCC susceptibility using a constant load method in order to investigate the oxygen concentration and temperature conditions under which the SCC suppressing effect appears.

第1図は、60〜200℃純水蒸気(酸素濃度0〜50
ppm)中で2 NICrMoV鋼のscc挙動を調べ
た結果を示したものである。同図は、縦軸に酸素濃度p
pmの対数目盛をとシ、横軸に温度目盛をとりたもので
0内の数字は試験時間、X印は破断試験で腐食割れが認
められたもの、○印は破断試験で腐食割れが認められな
かったものを示している。第1図に示すように、温度7
0℃以上で、酸素濃度7 ppm以上の領域でSCC感
受性があシ、温度が60℃以下あるいは酸素濃度が5 
ppm以下の領域ではSCC感受性は認められなかった
。すなわち、本発明のSCC抑制効果が現われる酸素濃
度は5 ppm以下の範囲にある。
Figure 1 shows pure water vapor at 60-200℃ (oxygen concentration 0-50℃).
This figure shows the results of investigating the scc behavior of 2 NICrMoV steel in 2 NICrMoV steel (ppm). In the figure, the vertical axis is the oxygen concentration p
The logarithmic scale of pm is plotted, and the temperature scale is plotted on the horizontal axis. The numbers within 0 are the test time, the X mark indicates that corrosion cracking was observed in the rupture test, and the ○ mark indicates that corrosion cracking was observed in the rupture test. It shows what could not be done. As shown in Figure 1, temperature 7
SCC susceptibility is high when the temperature is above 0℃ and the oxygen concentration is 7 ppm or above, and when the temperature is below 60℃ or the oxygen concentration is 5
No SCC susceptibility was observed in the ppm or lower range. That is, the oxygen concentration at which the SCC suppressing effect of the present invention appears is in the range of 5 ppm or less.

本発明者らは、前記した撥水性触媒を用い、これkよっ
て酸素濃度低減処理を行なう場合の最適温度条件を調べ
るため、各温度における酸素濃度低減効果について検討
したものである。実験に用いた蒸気はBWR発電プラン
トの主蒸気と同一組成のものである。
The present inventors have studied the oxygen concentration reducing effect at each temperature in order to investigate the optimal temperature conditions for performing oxygen concentration reduction treatment using the water-repellent catalyst described above. The steam used in the experiment had the same composition as the main steam of the BWR power plant.

下記の表は、処理温度25〜250℃における上記撥水
性触媒による酸素濃度の低減効果を示す。
The table below shows the effect of reducing oxygen concentration by the water-repellent catalyst at a treatment temperature of 25 to 250°C.

この表から明らかなように処理温度50℃以上で酸素濃
度の低減効果が認められた。
As is clear from this table, the effect of reducing oxygen concentration was observed at a treatment temperature of 50° C. or higher.

表 本発明の撥水性触媒による酸素濃度の低減法をBWf?
、 fラントの低圧タービンのSCC防止対策に適用し
た一実施例を第2図に示す。図中、1は聞型原子炉、2
は高圧タービン、3は低圧タービン、4はタービンロー
タディスク、5は湿分分離器、6は主蒸気配管、7は発
電機、8は高圧ポンプ、9及び10は、それぞれ本発明
にもとづいて設けられた撥水性触媒を用いた再結合器及
び温度センサーである。上記再結合器9は、第4図に示
されるように撥水性触媒が充填されておシ、高圧タービ
ン2を出た約20気圧で温度約200℃の主蒸気は主蒸
気配管6を経て低圧タービン3に供給される。上記主蒸
気配管6の途中に、再結合器9及び湿分分離器5が配設
されており、主蒸気中の酸素濃度の低下と湿分の除去を
図りている。また低圧タービン3への主蒸気配管6に設
けられた温度センサー10によシ入ロ蒸気温度を検知し
、これに再結合器9を連動せしめて、主蒸気中の酸素濃
度を8CC防止効果が現われる酸素濃度に制御するよう
kしている。
Table: BWf method for reducing oxygen concentration using the water-repellent catalyst of the present invention?
Fig. 2 shows an example in which this method is applied to prevent SCC in low-pressure turbines of low-pressure turbines. In the diagram, 1 is a double reactor, 2
3 is a high pressure turbine, 3 is a low pressure turbine, 4 is a turbine rotor disk, 5 is a moisture separator, 6 is a main steam pipe, 7 is a generator, 8 is a high pressure pump, 9 and 10 are each provided according to the present invention. This is a recombiner and temperature sensor using a water-repellent catalyst. The recombiner 9 is filled with a water-repellent catalyst as shown in FIG. It is supplied to the turbine 3. A recombiner 9 and a moisture separator 5 are disposed in the middle of the main steam pipe 6 to reduce the oxygen concentration and remove moisture from the main steam. In addition, the temperature sensor 10 installed in the main steam piping 6 to the low pressure turbine 3 detects the temperature of the incoming steam, and the recombiner 9 is linked to this to reduce the oxygen concentration in the main steam by 8 CC. It is designed to control the oxygen concentration that appears.

〔発明の効果〕〔Effect of the invention〕

第1図に結果を示した実験は、集機と同一の熱処理条件
で実施したものであるが、応力条件については実根ター
ビンロータディスクに加わる応力レベルよシ過酷な加速
条件下で評価したものである。
The experiment whose results are shown in Figure 1 was carried out under the same heat treatment conditions as for the collector, but the stress conditions were evaluated under severe acceleration conditions that were different from the stress level applied to the real-root turbine rotor disk. be.

第1図に示されているように、主蒸気中の酸素濃度16
 ppmを1 ppmまで低減するとSCC破断寿命が
約40倍以上に延びることから、プラント寿命は少なく
とも40倍以上延びることが容易に理解されよう。
As shown in Figure 1, the oxygen concentration in the main steam is 16
Since reducing the ppm to 1 ppm increases the SCC rupture life by about 40 times or more, it is easily understood that the plant life will be extended by at least 40 times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のSCC抑制効果を得るための溶存酸素
濃度と温度の関係を示すグラフ、第2図は本発明を適用
したBWFtfラントの概略図、第3図は撥水性触媒P
t−Ti0□−テフロンの調整法説明図、第4図は本発
明において用いる再結合器の概略図である。 1・・・原子炉(ゲイ2)、2・・・高圧タービン、3
・・・低圧タービン、    4・・・タービンロータ
ディスク、5・・・湿分分離器、    6・・・主蒸
気配管、7・・・発電機、      8・・・高圧?
ンデ、9・・・再結合器、     lO・・・酸素セ
ンサー。 一 第1図 温度(tl’J 第2図
Fig. 1 is a graph showing the relationship between dissolved oxygen concentration and temperature to obtain the SCC suppressing effect of the present invention, Fig. 2 is a schematic diagram of a BWFtf runt to which the present invention is applied, and Fig. 3 is a graph showing the water-repellent catalyst P.
FIG. 4, which is an explanatory diagram of a method for adjusting t-Ti0□-Teflon, is a schematic diagram of a recombiner used in the present invention. 1... Nuclear reactor (gay 2), 2... High pressure turbine, 3
...Low pressure turbine, 4...Turbine rotor disk, 5...Moisture separator, 6...Main steam piping, 7...Generator, 8...High pressure?
9...Recombiner, lO...Oxygen sensor. - Figure 1 Temperature (tl'J Figure 2

Claims (1)

【特許請求の範囲】 1、タービンに供給されるべき主蒸気中に放射線分解生
成物としての酸素ガス及び水素ガスを含有する原子力発
電プラントにおいて、前記主蒸気中の酸素濃度を5pp
m以下に制御することを特徴とする原子力発電プラント
におけるタービンの腐食防止方法。 2、前記主蒸気中の酸素濃度を5ppm以下に制御する
ため、前記酸素ガスを含有する主蒸気を撥水性触媒を用
いた再結合器に通して原子力発電プラントにおけるター
ビンに供給するようにしたことを特徴とする特許請求の
範囲第1項に記載のタービン腐食防止方法。 3、原子炉と、該原子炉でつくられる主蒸気を供給する
ための主蒸気配管と、該主蒸気の供給を受けて運転され
るタービンとを含む原子力発電プラントにおいて、前記
原子炉と前記タービンとの間の主蒸気配管中に、前記主
蒸気中の酸素濃度を5ppm以下に制御する手段を設け
たことを特徴とする原子力発電プラントにおけるタービ
ンの腐食防止装置。 4、前記主蒸気中の酸素濃度を5ppm以下に制御する
手段は、撥水性触媒を用いた再結合器であることを特徴
とする特許請求の範囲第1項に記載の原子力発電プラン
トにおけるタービンの腐食防止装置。 5、前記タービンは低圧タービンであることを特徴とす
る特許請求の範囲第3項又は第4項に記載の原子力発電
プラントにおけるタービンの腐食防止装置。
[Claims] 1. In a nuclear power plant in which the main steam to be supplied to the turbine contains oxygen gas and hydrogen gas as radiolysis products, the oxygen concentration in the main steam is set to 5 pp.
A method for preventing corrosion of a turbine in a nuclear power plant, characterized by controlling corrosion to less than m. 2. In order to control the oxygen concentration in the main steam to 5 ppm or less, the main steam containing oxygen gas is supplied to the turbine in the nuclear power plant through a recombiner using a water-repellent catalyst. The turbine corrosion prevention method according to claim 1, characterized in that: 3. In a nuclear power plant including a nuclear reactor, main steam piping for supplying main steam produced in the nuclear reactor, and a turbine operated by receiving the supply of the main steam, the nuclear power plant includes the nuclear reactor and the turbine. 1. A corrosion prevention device for a turbine in a nuclear power plant, characterized in that means for controlling the oxygen concentration in the main steam to 5 ppm or less is provided in the main steam piping between the main steam and the main steam. 4. A turbine in a nuclear power plant according to claim 1, wherein the means for controlling the oxygen concentration in the main steam to 5 ppm or less is a recombiner using a water-repellent catalyst. Corrosion prevention device. 5. The corrosion prevention device for a turbine in a nuclear power plant according to claim 3 or 4, wherein the turbine is a low-pressure turbine.
JP60079759A 1985-04-15 1985-04-15 Corrosion preventive method and device for turbine in nuclear power generating plant Granted JPS61237091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079759A JPS61237091A (en) 1985-04-15 1985-04-15 Corrosion preventive method and device for turbine in nuclear power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079759A JPS61237091A (en) 1985-04-15 1985-04-15 Corrosion preventive method and device for turbine in nuclear power generating plant

Publications (2)

Publication Number Publication Date
JPS61237091A true JPS61237091A (en) 1986-10-22
JPH0566558B2 JPH0566558B2 (en) 1993-09-22

Family

ID=13699145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079759A Granted JPS61237091A (en) 1985-04-15 1985-04-15 Corrosion preventive method and device for turbine in nuclear power generating plant

Country Status (1)

Country Link
JP (1) JPS61237091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017272A1 (en) * 2012-07-27 2014-01-30 株式会社 豊田自動織機 Rankine cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017272A1 (en) * 2012-07-27 2014-01-30 株式会社 豊田自動織機 Rankine cycle device

Also Published As

Publication number Publication date
JPH0566558B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
US5130080A (en) Method of providing extended life expectancy for components of boiling water reactors
JP2766422B2 (en) Method for reducing corrosion of components exposed to hot water
US5793830A (en) Metal alloy coating for mitigation of stress corrosion cracking of metal components in high-temperature water
Hänninen Influence of metallurgical variables on environment-sensitive cracking of austenitic alloys
US5581588A (en) Insulated protective coating doped with a noble metal for mitigation of stress corrosion cracking
CA2143233A1 (en) Noble metal doping or coating of crack interior for strees corrosion cracking protection of metals
US5465281A (en) Insulated protective coating for mitigation of stress corrosion cracking of metal components in high-temperature water
EP2193524A2 (en) Boiling water reactor nuclear power plant with alcohol injection
JPS61237091A (en) Corrosion preventive method and device for turbine in nuclear power generating plant
CN105420734B (en) A kind of high-temperature steam corrosion inhibiter and its application process
TW554347B (en) Method to protect the component of the primary system of a boiling-water reactor especially from stress-crack corrosion
KR101896029B1 (en) Method for the in situ passivation of the steel surfaces of a nuclear reactor
CA2143241A1 (en) Method of doping or coating metal surfaces with metallic elements to improve oxide film insulating characteristics
KR100380127B1 (en) Control of oxide electrical conductivity to maintain low corrosion potential in hot water
JP2017181350A (en) Corrosion environment alleviation method for boiling-water reactor and nuclear power plant
EA029900B1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
JP4437256B2 (en) Methods for preventing corrosion and thinning of carbon steel
JPS62182290A (en) Method for preventing hydrogen embrittlement of member
Bozeman et al. Corrosion of Proton Irradiated 309L Stainless Steel Claddings Fabricated by Directed Energy Deposition
Shamardin et al. Mechanical characteristics and swelling of austenitic Fe-Cr-Mn steels irradiated in the SM-2 and BOR-60 reactors
Chinese Society for Metals (CSM) and The Minerals, Metals & Materials Society (TMS) et al. Advanced steels for accident tolerant fuel cladding in current light water reactors
JPS60103172A (en) Method for preventing stress corrosion cracking in power plant
JPS61149501A (en) Method of preventing stress corrosion cracking of rotor disk in nuclear power plant turbine
KR20010032574A (en) Temperature based method for controlling the amount of metal applied to metal oxide surfaces to reduce corrosion and stress corrosion cracking
Kai et al. Microstructural aspect of irradiation assisted stress corrosion cracking of LWR in-core structural materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees