JP2017181350A - Corrosion environment alleviation method for boiling-water reactor and nuclear power plant - Google Patents

Corrosion environment alleviation method for boiling-water reactor and nuclear power plant Download PDF

Info

Publication number
JP2017181350A
JP2017181350A JP2016070291A JP2016070291A JP2017181350A JP 2017181350 A JP2017181350 A JP 2017181350A JP 2016070291 A JP2016070291 A JP 2016070291A JP 2016070291 A JP2016070291 A JP 2016070291A JP 2017181350 A JP2017181350 A JP 2017181350A
Authority
JP
Japan
Prior art keywords
water
hydrogen
noble metal
reactor
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016070291A
Other languages
Japanese (ja)
Other versions
JP6486860B2 (en
Inventor
一成 石田
Kazunari Ishida
一成 石田
陽一 和田
Yoichi Wada
陽一 和田
正彦 橘
Masahiko Tachibana
正彦 橘
信之 太田
Nobuyuki Ota
信之 太田
亮介 清水
Ryosuke Shimizu
亮介 清水
麻由 佐々木
Mayu SASAKI
麻由 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2016070291A priority Critical patent/JP6486860B2/en
Priority to US15/418,853 priority patent/US10457583B2/en
Publication of JP2017181350A publication Critical patent/JP2017181350A/en
Application granted granted Critical
Publication of JP6486860B2 publication Critical patent/JP6486860B2/en
Priority to US16/577,502 priority patent/US20200055758A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress adhesion of precious metal onto an injection pipe and other pipes when the precious metal is injected into a boiling-water reactor to increase an amount of the precious metal to be injected into cooling water in a nuclear reactor pressure vessel.SOLUTION: With a corrosion environment alleviation method of a boiling-water reactor, during a power generation operation period of a boiling-water nuclear power plant 100 having a nuclear reactor pressure vessel 1, a corrosion environment in the nuclear reactor pressure vessel 1 is alleviated by injecting hydrogen and a precious metal compound into water to be supplied to the nuclear reactor pressure vessel 1. Hydrogen is injected into water to be supplied to the nuclear reactor pressure vessel 1 and a precious metal compound is injected into water of a system whose concentration of oxygen or hydrogen peroxide exceeds an equivalent weight relative to the concentration of hydrogen to be water through a chemical reaction.SELECTED DRAWING: Figure 1A

Description

本発明は、沸騰水型原子炉の腐食環境を緩和する方法及び原子力プラントに関する。   The present invention relates to a method for mitigating the corrosive environment of a boiling water reactor and a nuclear power plant.

沸騰水型原子力プラントでは、原子炉圧力容器内に設置されている炉内構造物または原子炉圧力容器に接続された配管(例えば、再循環系配管)の応力腐食割れ(SCC)を抑制することが、沸騰水型原子力プラントの稼働率向上の観点から重要である。   In boiling water nuclear power plants, to suppress stress corrosion cracking (SCC) of reactor internals installed in the reactor pressure vessel or piping connected to the reactor pressure vessel (for example, recirculation piping) However, it is important from the viewpoint of improving the operating rate of the boiling water nuclear power plant.

応力腐食割れに関しては、以下のことが知られており、応力腐食割れに対する対策が行われている。   Regarding stress corrosion cracking, the following is known and countermeasures against stress corrosion cracking have been taken.

炉内構造物、及び原子炉圧力容器に接続された配管に接する高温高圧の冷却水(炉水)は、原子炉圧力容器内の炉心での炉水の放射線分解により生じた酸素及び過酸化水素を含んでいる。炉水の酸素濃度及び過酸化水素濃度が高いほど、応力腐食割れの発生が顕著である。よって、炉水に接触する炉内構造物及び配管のそれぞれにおける応力腐食割れは、炉水の酸素濃度及び過酸化水素濃度を低減することによって抑制できる。   The high-temperature and high-pressure cooling water (reactor water) in contact with the reactor internal structure and the piping connected to the reactor pressure vessel is oxygen and hydrogen peroxide generated by radiolysis of the reactor water in the reactor core inside the reactor pressure vessel. Is included. The higher the oxygen concentration and hydrogen peroxide concentration in the reactor water, the more remarkable the occurrence of stress corrosion cracking. Therefore, the stress corrosion cracking in each of the in-furnace structure and piping that contacts the reactor water can be suppressed by reducing the oxygen concentration and hydrogen peroxide concentration in the reactor water.

その応力腐食割れを抑制する代表的な方法として貴金属注入がある。この貴金属注入は、炉水中に貴金属(白金、ロジウムまたはパラジウム)の化合物を注入して炉内構造物の表面及び原子炉圧力容器に接続される配管の内面に貴金属を付着させ、炉水に水素を注入する技術である(例えば、特許文献1参照)。貴金属は、水素と酸素及び過酸化水素のそれぞれとの反応を促進し、炉内構造物の表面及び原子炉圧力容器に接続される配管の内面に接触する炉水の酸素又は過酸化水素の濃度を低減する。特許文献1には、炉水に注入する貴金属化合物として貴金属のアセチルアセトナート化合物及び貴金属の硝酸化合物が例示されている。   As a typical method for suppressing the stress corrosion cracking, there is noble metal injection. In this noble metal injection, a compound of noble metal (platinum, rhodium or palladium) is injected into the reactor water to attach the noble metal to the surface of the reactor internal structure and the inner surface of the pipe connected to the reactor pressure vessel, and hydrogen is added to the reactor water. (For example, refer to Patent Document 1). The precious metal promotes the reaction of hydrogen with oxygen and hydrogen peroxide, respectively, and the concentration of oxygen or hydrogen peroxide in the reactor water that contacts the surface of the reactor internal structure and the inner surface of the pipe connected to the reactor pressure vessel Reduce. Patent Document 1 exemplifies a noble metal acetylacetonate compound and a noble metal nitrate compound as noble metal compounds to be injected into the reactor water.

更に、沸騰水型原子力プラントの運転中に原子炉水中に貴金属を注入して炉内構造物の表面及び原子炉圧力容器に接続される配管の内面に貴金属を付着させる技術(以下「運転中貴金属注入技術」という。)の適用により効果的に応力腐食割れを抑制できることが非特許文献2に公開されている。運転中貴金属注入技術では、貴金属化合物として低濃度のヘキサヒドロキソ白金酸ナトリウム(NaPt(OH))が使用される。原子炉に冷却材を注入する給水系配管にヘキサヒドロキソ白金酸ナトリウム水溶液を注入する配管(以下「薬液注入配管」という。)を接続し、薬液注入配管を通して給水中にヘキサヒドロキソ白金酸ナトリウム水溶液が注入され、原子炉水中に送水される。ヘキサヒドロキソ白金酸ナトリウム水溶液を注入するとき、給水系配管と薬液注入配管との接続部より上流の給水系配管から給水中に水素が注入される。 Furthermore, during operation of the boiling water nuclear power plant, a technology that injects noble metal into the reactor water and adheres the noble metal to the surface of the internal structure of the reactor and the inner surface of the pipe connected to the reactor pressure vessel (hereinafter referred to as “precious metal during operation”). Non-Patent Document 2 discloses that stress corrosion cracking can be effectively suppressed by application of “injection technique”. In operation, the noble metal injection technique uses a low concentration of sodium hexahydroxoplatinate (Na 2 Pt (OH) 6 ) as the noble metal compound. A pipe for injecting a sodium hexahydroxoplatinate aqueous solution (hereinafter referred to as a “chemical solution injection pipe”) is connected to a water supply system pipe for injecting a coolant into the nuclear reactor, and the aqueous solution of sodium hexahydroxoplatinate in the feed water through the chemical injection pipe. It is injected and sent into the reactor water. When injecting an aqueous solution of sodium hexahydroxoplatinate, hydrogen is injected into the feed water from the feed water system pipe upstream from the connecting portion between the feed water system pipe and the chemical solution injection pipe.

特許文献2には、ヘキサヒドロキソ白金酸ナトリウムに含まれるナトリウムイオンを水素イオンに置換してガンマ線照射することにより、白金酸化物コロイド溶液を生成する技術が開示されている。   Patent Document 2 discloses a technique for generating a platinum oxide colloidal solution by irradiating gamma rays after replacing sodium ions contained in sodium hexahydroxoplatinate with hydrogen ions.

さらに、非特許文献2には、白金化合物の析出量に伴い、薬液注入配管の差圧上昇が生じた事象が開示されている。   Further, Non-Patent Document 2 discloses an event in which a differential pressure increase in the chemical solution injection pipe occurs with the amount of platinum compound deposited.

特開平7−311296号公報JP 7-311296 A 特開2014−101240号公報JP 2014-101240 A

S.Hettiarachchi, Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Salt Lake City, Utah, August 14-18, 2005S. Hettiarachchi, Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Salt Lake City, Utah, August 14-18, 2005 BWRVIP-62 Rev. 1 Pre-RAI Submittal Meeting、BWRVIP Presentation to NRC Three White Flint North, MD, July 18, 2014(US NRCレポートNo. ML14205A603)BWRVIP-62 Rev. 1 Pre-RAI Submittal Meeting, BWRVIP Presentation to NRC Three White Flint North, MD, July 18, 2014 (US NRC report No. ML14205A603)

非特許文献1に記載のように運転中貴金属注入技術を適用するときに、給水配管からヘキサヒドロキソ白金酸ナトリウム水溶液を注入すると、ヘキサヒドロキソ白金酸ナトリウムが熱分解反応や、給水に含まれる水素による白金への還元反応に伴い、給水系配管及び、薬液注入配管の給水系配管接続部近傍で白金化合物の一部が析出して、原子炉水中に貴金属量が減少する可能性がある。   When applying the noble metal injection technology during operation as described in Non-Patent Document 1, if sodium hexahydroxoplatinate aqueous solution is injected from the water supply pipe, sodium hexahydroxoplatinate is caused by thermal decomposition reaction or hydrogen contained in the water supply. With the reduction reaction to platinum, a part of the platinum compound may be deposited in the vicinity of the feed water system pipe and the feed water system pipe connection part of the chemical solution injection pipe, and the amount of noble metal may be reduced in the reactor water.

本発明の目的は、沸騰水型原子炉への貴金属の注入に際し、注入配管その他の配管への貴金属の付着を抑制し、原子炉圧力容器内の冷却水に注入される貴金属の量を増加することにある。   The object of the present invention is to suppress the adhesion of noble metal to the injection pipe and other pipes and to increase the amount of the noble metal injected into the cooling water in the reactor pressure vessel when injecting the noble metal into the boiling water reactor. There is.

本発明の沸騰水型原子炉の腐食環境緩和方法は、原子炉圧力容器を有する沸騰水型原子力プラントの発電運転期間中に、原子炉圧力容器に補給する水に水素及び貴金属化合物を注入することにより、原子炉圧力容器内の腐食環境を緩和する方法であって、原子炉圧力容器に供給する水に水素を注入するとともに、化学反応して水になる水素の濃度に対して酸素又は過酸化水素の濃度が当量を超えている系統の水に貴金属化合物を注入する。   The boiling water reactor corrosive environment mitigation method of the present invention injects hydrogen and a noble metal compound into water to be supplied to a reactor pressure vessel during a power generation operation of a boiling water nuclear plant having a reactor pressure vessel. To reduce the corrosive environment in the reactor pressure vessel by injecting hydrogen into the water supplied to the reactor pressure vessel and oxygen or peroxidation with respect to the concentration of hydrogen that chemically reacts to become water A noble metal compound is injected into water of a system in which the concentration of hydrogen exceeds the equivalent.

また、本発明の原子力プラントは、原子炉圧力容器と、タービンと、復水器と、復水器の水を原子炉圧力容器に補給する給水配管と、原子炉圧力容器の水を浄化する浄化系配管と、浄化系配管に配置した炉水浄化装置と、を備えた沸騰水型の原子力プラントであって、原子炉圧力容器に供給する水に水素を注入する水素注入装置が付設され、化学反応して水になる水素の濃度に対して酸素又は過酸化水素の濃度が当量を超えている系統の水に貴金属化合物を注入する貴金属注入装置が付設されている。   Further, the nuclear power plant of the present invention includes a reactor pressure vessel, a turbine, a condenser, a water supply pipe for supplying water from the condenser to the reactor pressure vessel, and a purification for purifying the water in the reactor pressure vessel. A boiling water nuclear power plant equipped with a system piping and a reactor water purification device disposed in the purification system piping, and is equipped with a hydrogen injection device for injecting hydrogen into the water supplied to the reactor pressure vessel. A noble metal injection device is provided for injecting a noble metal compound into water of a system in which the concentration of oxygen or hydrogen peroxide exceeds the equivalent with respect to the concentration of hydrogen that reacts to form water.

本発明によれば、沸騰水型原子炉への貴金属の注入に際し、注入配管その他の配管への貴金属の付着を抑制し、原子炉圧力容器内の冷却水に注入される貴金属の量を増加することができる。   According to the present invention, when injecting a noble metal into a boiling water reactor, adhesion of the noble metal to the injection pipe and other pipes is suppressed, and the amount of the noble metal injected into the cooling water in the reactor pressure vessel is increased. be able to.

実施例1の原子力プラントを示す概略構成図である。1 is a schematic configuration diagram illustrating a nuclear power plant according to a first embodiment. 図1Aの原子力プラントの変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the nuclear power plant of FIG. 1A. 炭素鋼配管を対象とした場合に、白金化合物の付着に及ぼす水素濃度の影響を示すグラフである。It is a graph which shows the influence of the hydrogen concentration which has on the adhesion of a platinum compound when carbon steel piping is made into object. 炭素鋼配管への白金化合物の付着に及ぼす注入化学形態の影響を示すグラフである。It is a graph which shows the influence of the injection | pouring chemical form which has on the adhesion of the platinum compound to carbon steel piping. ヘキサヒドロキソ白金酸ナトリウムの熱分解率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the thermal decomposition rate of sodium hexahydroxoplatinate. 本発明の好適な貴金属注入装置を示す構成図である。It is a block diagram which shows the suitable noble metal injection | pouring apparatus of this invention. 本発明の好適な酸化剤注入装置を示す構成図である。It is a block diagram which shows the suitable oxidizing agent injection | pouring apparatus of this invention. 実施例2の原子力プラントを示す概略構成図である。It is a schematic block diagram which shows the nuclear power plant of Example 2. FIG.

最初に、ヘキサヒドロキソ白金酸ナトリウム水溶液の還元反応に及ぼす水素濃度の影響について、試験により調べた結果を説明する。   First, the effect of the hydrogen concentration on the reduction reaction of the aqueous sodium hexahydroxoplatinate solution will be described.

図2は、炭素鋼配管を対象とした場合に、白金化合物の付着に及ぼす水素濃度の影響を示したものである。図中、横軸には溶存水素濃度、縦軸には白金付着量をとっている。   FIG. 2 shows the influence of the hydrogen concentration on the adhesion of the platinum compound when carbon steel piping is targeted. In the figure, the horizontal axis represents dissolved hydrogen concentration, and the vertical axis represents platinum adhesion.

この試験は、ヘキサヒドロキソ白金酸ナトリウム水溶液を炭素鋼に通水することにより行った。白金の濃度として0.05質量%となるヘキサヒドロキソ白金酸ナトリウム水溶液を、圧力8MPaで215℃に加熱した炭素鋼配管(内径0.22cm、長さ10cm)に1g/minの流量で8時間通水し、炭素鋼配管内面に付着する白金の量を調べた。ヘキサヒドロキソ白金酸ナトリウム水溶液に含まれる溶存水素濃度を0μg/L、160μg/L、320μg/Lに調整した。   This test was conducted by passing an aqueous sodium hexahydroxoplatinate solution through carbon steel. An aqueous solution of sodium hexahydroxoplatinate having a platinum concentration of 0.05 mass% was passed through a carbon steel pipe (inner diameter 0.22 cm, length 10 cm) heated to 215 ° C. at a pressure of 8 MPa at a flow rate of 1 g / min for 8 hours. The amount of platinum adhering to the inner surface of the carbon steel pipe was examined. The dissolved hydrogen concentration contained in the aqueous sodium hexahydroxoplatinate solution was adjusted to 0 μg / L, 160 μg / L, and 320 μg / L.

炭素鋼に付着した白金の量は、炭素鋼の内面を王水で溶解し、溶解液に含まれる白金濃度を原子吸光光度計で測定することにより求めた。   The amount of platinum adhering to the carbon steel was determined by dissolving the inner surface of the carbon steel with aqua regia and measuring the platinum concentration contained in the solution with an atomic absorption photometer.

本図より、水素濃度が320μg/Lの場合は白金付着量が2.8mg・cm−2と比較して、水素濃度が0μg/Lの場合は白金付着量が0.4mg・cm−2となり、水素濃度を0とすることにより白金付着量を約1/7に低減できることが分かる。 From this figure, when the hydrogen concentration is 320 μg / L, the platinum adhesion amount is 2.8 mg · cm −2, and when the hydrogen concentration is 0 μg / L, the platinum adhesion amount is 0.4 mg · cm −2 . It can be seen that by setting the hydrogen concentration to 0, the platinum adhesion amount can be reduced to about 1/7.

この試験結果をもとにして、ヘキサヒドロキソ白金酸ナトリウム水溶液を、水素と化学反応して水になる反応に対する水素濃度より酸素又は過酸化水素の濃度が過剰となっている系統に薬液注入配管を接続し、当該接続配管からヘキサヒドロキソ白金酸ナトリウム水溶液を注入することにより、給水系配管及び、薬液注入配管と系統配管接続部近傍で白金化合物の析出量を低減することができるという本発明に至った。   Based on this test result, the chemical injection pipe is connected to a system in which the concentration of oxygen or hydrogen peroxide is higher than the hydrogen concentration for the reaction that chemically reacts with hydrogen to form water by reacting sodium hexahydroxoplatinate aqueous solution. By connecting and injecting an aqueous solution of sodium hexahydroxoplatinate from the connection pipe, the present invention has led to a reduction in the amount of platinum compound deposited in the vicinity of the water supply system pipe and the chemical solution injection pipe and the system pipe connection. It was.

次に、ヘキサヒドロキソ白金酸ナトリウム水溶液の代わりに白金酸化物コロイド溶液を注入試薬として使用する場合の効果について調べた結果について説明する。   Next, the results of examining the effect of using a platinum oxide colloidal solution as an injection reagent instead of an aqueous solution of sodium hexahydroxoplatinate will be described.

図3は、ヘキサヒドロキソ白金酸ナトリウム水溶液を注入した場合と白金酸化物コロイド溶液を注入した場合とを対比して示したものである。   FIG. 3 shows a comparison between the case of injecting a sodium hexahydroxoplatinate aqueous solution and the case of injecting a platinum oxide colloid solution.

白金酸化物コロイド溶液は、特許文献2に開示されている方法で作製した。ヘキサヒドロキソ白金酸ナトリウム水溶液及び白金酸化物コロイド溶液の白金の濃度は、0.05質量%で統一した。ヘキサヒドロキソ白金酸ナトリウム水溶液又は白金酸化物コロイド溶液を、215℃に加熱した炭素鋼配管(内径0.22cm、長さ10cm)に1g/minの流量で8時間通水し、炭素鋼配管の内面に付着する白金の量を調べた。ヘキサヒドロキソ白金酸ナトリウム水溶液又は白金酸化物コロイド溶液に含まれる溶存水素濃度は、160μg/Lに調整した。炭素鋼に付着した白金の量は、炭素鋼内面を王水で溶解し、溶解液に含まれる白金濃度を原子吸光光度計で測定することにより求めた。   The platinum oxide colloid solution was prepared by the method disclosed in Patent Document 2. The concentration of platinum in the sodium hexahydroxoplatinate aqueous solution and the platinum oxide colloidal solution was unified at 0.05% by mass. An aqueous solution of sodium hexahydroxoplatinate or a colloidal platinum oxide solution was passed through a carbon steel pipe (inner diameter 0.22 cm, length 10 cm) heated to 215 ° C. at a flow rate of 1 g / min for 8 hours, and the inner surface of the carbon steel pipe The amount of platinum adhering to was examined. The dissolved hydrogen concentration contained in the sodium hexahydroxoplatinate aqueous solution or the platinum oxide colloidal solution was adjusted to 160 μg / L. The amount of platinum adhering to the carbon steel was determined by dissolving the inner surface of the carbon steel with aqua regia and measuring the platinum concentration contained in the solution with an atomic absorption photometer.

本図より、白金酸化物コロイド溶液を使用した場合は白金付着量が0.21mg・cm−2となり、ヘキサヒドロキソ白金酸ナトリウム水溶液を使用した場合は白金付着量が1.63mg・cm−2となり、白金酸化物コロイド溶液を使用した場合には、ヘキサヒドロキソ白金酸ナトリウム水溶液を使用した場合に比べて、白金付着量を約1/8に低減できることが分かる。 From this figure, when the platinum oxide colloid solution is used, the platinum adhesion amount is 0.21 mg · cm −2 , and when the sodium hexahydroxoplatinate aqueous solution is used, the platinum adhesion amount is 1.63 mg · cm −2 . When the platinum oxide colloidal solution is used, it can be seen that the platinum adhesion amount can be reduced to about 1/8 compared to the case where the aqueous solution of sodium hexahydroxoplatinate is used.

この試験結果をもとに、白金酸化物コロイド溶液を注入試薬として使用することにより、給水系配管、及び、薬液注入配管と系統配管との接続部の近傍で白金化合物が析出する量を低減することができるという本発明に至った。   Based on this test result, by using a platinum oxide colloidal solution as an injection reagent, the amount of platinum compound deposited in the vicinity of the connection between the water supply system piping and the chemical solution injection piping and the system piping is reduced. The present invention has been achieved.

最後に、ヘキサヒドロキソ白金酸ナトリウムの熱分解に及ぼす温度の影響について調べた結果について説明する。   Finally, the results of examining the effect of temperature on the thermal decomposition of sodium hexahydroxoplatinate will be described.

図4は、ヘキサヒドロキソ白金酸ナトリウム水溶液が熱分解した割合(熱分解率)の温度依存性を示したものである。ヘキサヒドロキソ白金酸ナトリウムは、加熱することにより、白金酸化物コロイドを生成すると考えられる。   FIG. 4 shows the temperature dependence of the rate of thermal decomposition of the aqueous sodium hexahydroxoplatinate (thermal decomposition rate). It is thought that sodium hexahydroxoplatinate generates a platinum oxide colloid when heated.

試験の条件は、白金の濃度として0.05質量%となるヘキサヒドロキソ白金酸ナトリウム水溶液を、圧力8MPaで90〜280℃に加熱した四フッ化エチレン樹脂を内筒したステンレス配管(内径0.11cm、長さ1m)に通水した。熱分解反応が下記反応式(1)で表されるものと仮定して、pH変化からヘキサヒドロキソ白金酸ナトリウムの熱分解率を求めた。   The test conditions were a stainless steel pipe (inner diameter 0.11 cm) having an inner cylinder of an ethylene tetrafluoride resin heated to 90 to 280 ° C. at a pressure of 8 MPa, an aqueous solution of sodium hexahydroxoplatinate having a platinum concentration of 0.05% by mass. , 1 m long). Assuming that the thermal decomposition reaction is represented by the following reaction formula (1), the thermal decomposition rate of sodium hexahydroxoplatinate was determined from the pH change.

NaPt(OH) = PtO+2NaOH+2HO …反応式(1)
本図より、190℃以上でヘキサヒドロキソ白金酸ナトリウムは熱分解を開始し、280℃でほぼ100%熱分解することが分かった。
Na 2 Pt (OH) 6 = PtO 2 + 2NaOH + 2H 2 O Reaction formula (1)
From this figure, it was found that sodium hexahydroxoplatinate started to thermally decompose at 190 ° C. or higher and almost 100% thermally decomposed at 280 ° C.

以上の結果より、190℃以上より好ましくは280℃以上で、四フッ化エチレン樹脂で被覆した圧力容器内でヘキサヒドロキソ白金酸ナトリウムを熱分解することにより、給水系配管、及び、薬液注入配管と系統配管との接続部の近傍で白金化合物の析出量を低減するのに好適な白金酸化物コロイド溶液を生成できることという本発明に至った。   From the above results, a water supply system pipe and a chemical solution injection pipe are obtained by thermally decomposing sodium hexahydroxoplatinate in a pressure vessel covered with tetrafluoroethylene resin at 190 ° C. or higher, more preferably 280 ° C. or higher. The present inventors have reached the present invention that a platinum oxide colloidal solution suitable for reducing the amount of platinum compound deposited in the vicinity of the connection with the system piping can be produced.

本発明の特徴は、ヘキサヒドロキソ白金酸ナトリウム水溶液を、水素と化学反応して水になる下記反応式(2)及び(3)に対する水素濃度より酸素又は過酸化水素の濃度が過剰となっている系統にヘキサヒドロキソ白金酸ナトリウム水溶液を注入する。   The feature of the present invention is that the concentration of oxygen or hydrogen peroxide is excessive compared to the hydrogen concentration relative to the following reaction formulas (2) and (3) in which an aqueous solution of sodium hexahydroxoplatinate is chemically reacted with hydrogen to become water. The system is injected with an aqueous solution of sodium hexahydroxoplatinate.

+ H = 2HO …反応式(2)
2H + O = 2HO …反応式(3)
注入したヘキサヒドロキソ白金酸ナトリウム水溶液が水素と接触することを抑制することで、水素による還元反応に伴う給水系配管及び、薬液注入配管と系統配管接続部近傍で白金化合物の析出量を低減することができる。
H 2 + H 2 O 2 = 2H 2 O ... Reaction Formula (2)
2H 2 + O 2 = 2H 2 O ... Reaction Formula (3)
By suppressing the injected sodium hexahydroxoplatinate aqueous solution from coming into contact with hydrogen, the amount of platinum compound deposited should be reduced in the vicinity of the water supply piping and chemical solution injection piping and system piping connection in connection with the reduction reaction with hydrogen. Can do.

上記した目的を達成する本発明の第2の特徴は、白金酸化物コロイド溶液を注入試薬として使用する。白金酸化物コロイド溶液は四フッ化エチレン樹脂で被覆した圧力容器中でヘキサヒドロキソ白金酸ナトリウムを190℃以上、より好ましくは280℃以上に加熱することで、ヘキサヒドロキソ白金酸ナトリウムの熱分解反応により白金酸化物コロイド溶液が生成される。予め生成した白金酸化物コロイド溶液を使用することで、熱分解反応に伴う給水系配管及び、薬液注入配管と系統配管接続部近傍で白金化合物の析出量を低減することができる。   The second feature of the present invention that achieves the above object is to use a platinum oxide colloid solution as an injection reagent. The platinum oxide colloid solution is prepared by heating sodium hexahydroxoplatinate to 190 ° C. or higher, more preferably 280 ° C. or higher in a pressure vessel coated with tetrafluoroethylene resin. A platinum oxide colloidal solution is produced. By using a preliminarily produced platinum oxide colloidal solution, it is possible to reduce the amount of platinum compound deposited in the vicinity of the water supply system piping and the chemical solution injection piping and the system piping connection portion associated with the thermal decomposition reaction.

より好ましくは、ヘキサヒドロキソ白金酸ナトリウム水溶液を、水素と化学反応して水になる上記反応式(2)及び(3)に対する水素濃度より酸素又は過酸化水素の濃度が過剰となっている系統に薬液注入配管を接続し、当該接続配管から白金酸化物コロイド溶液を注入する。これにより、水素による還元反応及び熱分解反応に伴う給水系配管及び、薬液注入配管と系統配管接続部近傍で白金化合物の析出量を低減することができる。   More preferably, the aqueous solution of sodium hexahydroxoplatinate is a system in which the concentration of oxygen or hydrogen peroxide is higher than the hydrogen concentration relative to the above reaction formulas (2) and (3) that chemically react with hydrogen to form water. A chemical solution injection pipe is connected, and a platinum oxide colloid solution is injected from the connection pipe. Thereby, the precipitation amount of a platinum compound can be reduced in the vicinity of the water supply system piping and chemical solution injection piping and system piping connection part accompanying the reduction reaction and thermal decomposition reaction by hydrogen.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1Aは、本実施例の原子力プラントの構成を示したものである。   FIG. 1A shows the configuration of the nuclear power plant of this embodiment.

本図に示す沸騰水型原子力プラント100は、原子炉圧力容器1、タービン4、復水器5、原子炉浄化系及び給水系等を備えている。原子炉圧力容器1は、内部に、複数の燃料集合体を装荷した炉心2を配置している。燃料集合体は、核燃料物質で製造された複数の燃料ペレットが充填された複数の燃料棒を含んでいる。複数のインターナルポンプ(図示せず)が、原子炉圧力容器1の底部に設けられる。原子炉圧力容器1に接続された主蒸気配管3は、タービン4に接続される。   A boiling water nuclear power plant 100 shown in the figure includes a reactor pressure vessel 1, a turbine 4, a condenser 5, a reactor purification system, a water supply system, and the like. The reactor pressure vessel 1 has a core 2 loaded with a plurality of fuel assemblies disposed therein. The fuel assembly includes a plurality of fuel rods filled with a plurality of fuel pellets made of nuclear fuel material. A plurality of internal pumps (not shown) are provided at the bottom of the reactor pressure vessel 1. A main steam pipe 3 connected to the reactor pressure vessel 1 is connected to a turbine 4.

給水系は、復水器5と原子炉圧力容器1とを連絡する給水配管6に、復水ろ過脱塩装置7、給水ポンプ8及び給水加熱器9を、復水器4から原子炉圧力容器1に向って、この順に設置した構成を有している。タービン4は復水器5の上部に設置され、復水器5はタービン4に連絡されている。主蒸気配管3に接続されたバイパス配管10は、給水加熱器9を通って復水器5に接続されている。   The water supply system includes a condensate filtration and desalination device 7, a feed water pump 8, and a feed water heater 9 connected to a feed water pipe 6 that connects the condenser 5 and the reactor pressure vessel 1. It has the structure installed in this order toward 1. The turbine 4 is installed in the upper part of the condenser 5, and the condenser 5 is connected to the turbine 4. The bypass pipe 10 connected to the main steam pipe 3 is connected to the condenser 5 through the feed water heater 9.

原子炉浄化系は、原子炉圧力容器1から炉水の一部を引き抜き給水配管6の途中に合流するように配置した浄化系配管11に、浄化系ポンプ12、再生熱交換器13、非再生熱交換器(図示せず)及び炉水浄化装置14をこの順に設置した構成を有している。浄化系配管11は、給水加熱器9の下流で給水配管6に接続されている。原子炉圧力容器1は、原子炉建屋(図示せず)内に配置された原子炉格納容器内に設置されている。   The reactor purification system draws a part of the reactor water from the reactor pressure vessel 1 and arranges the purification system pipe 11, which is arranged so as to join in the middle of the water supply pipe 6, the purification system pump 12, the regenerative heat exchanger 13, and the non-regeneration. It has the structure which installed the heat exchanger (not shown) and the reactor water purification apparatus 14 in this order. The purification system pipe 11 is connected to the feed water pipe 6 downstream of the feed water heater 9. The reactor pressure vessel 1 is installed in a reactor containment vessel arranged in a reactor building (not shown).

原子炉圧力容器1内の冷却水(以下「炉水」という。)は、インターナルポンプで昇圧され、炉心2に供給される。炉心2に供給された炉水は、燃料棒内の核燃料物質の核分裂で発生する熱によって加熱される。加熱された炉水の一部は、蒸気になる。この蒸気は、原子炉圧力容器1内に設けられた気水分離器(図示せず)及び蒸気乾燥器(図示せず)にて水分が除去された後、原子炉圧力容器1から主蒸気配管3を通ってタービン4に導かれ、タービン4を回転させる。タービン4に連結された発電機(図示せず)が回転し、電力が発生する。   Cooling water in the reactor pressure vessel 1 (hereinafter referred to as “reactor water”) is pressurized by an internal pump and supplied to the core 2. Reactor water supplied to the core 2 is heated by heat generated by fission of nuclear fuel material in the fuel rods. A part of the heated reactor water becomes steam. The steam is removed from the reactor pressure vessel 1 by a steam / water separator (not shown) and a steam dryer (not shown) provided in the reactor pressure vessel 1 and then the main steam pipe. 3 is led to the turbine 4 to rotate the turbine 4. A generator (not shown) connected to the turbine 4 rotates to generate electric power.

タービン4から排出された蒸気は、復水器5で凝縮されて水になる。この水は、給水として、給水配管6を通り原子炉圧力容器1内に供給される。給水配管6を流れる給水は、復水ろ過脱塩装置7で不純物が除去され、給水ポンプ8で昇圧される。給水は、給水加熱器9内で、抽気配管10で主蒸気管3から抽気された抽気蒸気によって加熱され、給水配管6を通して原子炉圧力容器1内に導かれる。   The steam discharged from the turbine 4 is condensed by the condenser 5 to become water. This water is supplied to the reactor pressure vessel 1 through the water supply pipe 6 as water supply. Impurities are removed from the feed water flowing through the feed water pipe 6 by the condensate filtration and desalination apparatus 7 and the pressure is raised by the feed water pump 8. The feed water is heated by the extraction steam extracted from the main steam pipe 3 by the extraction pipe 10 in the feed water heater 9 and guided into the reactor pressure vessel 1 through the water supply pipe 6.

原子炉圧力容器1内の炉水の一部は、浄化系ポンプ12の駆動によって原子炉浄化系の浄化系配管11内に流入し、再生熱交換器13及び非再生熱交換器で冷却された後、炉水浄化装置14で浄化される。浄化された炉水は、再生熱交換器13で加熱され、浄化系配管11及び給水配管6を経て原子炉圧力容器1内に戻される。   A part of the reactor water in the reactor pressure vessel 1 flows into the purification system piping 11 of the reactor purification system by driving the purification system pump 12, and is cooled by the regenerative heat exchanger 13 and the non-regenerative heat exchanger. Then, it is purified by the reactor water purification device 14. The purified reactor water is heated by the regenerative heat exchanger 13 and returned to the reactor pressure vessel 1 through the purification system pipe 11 and the feed water pipe 6.

復水ろ過脱塩装置7と給水ポンプ8との間の給水配管6には、酸素注入装置15及び水素注入装置16が設置され、各々から給水に酸素ガス、水素ガスが注入される。給水の溶存酸素濃度は、20〜50μg/Lとなるように酸素ガスが注入される。また、運転中貴金属注入技術を適用する場合、給水の溶存水素濃度が200〜400μg/Lとなるように水素ガスが注入される。   An oxygen injection device 15 and a hydrogen injection device 16 are installed in the water supply pipe 6 between the condensate filtration and desalination device 7 and the water supply pump 8, and oxygen gas and hydrogen gas are injected into the water supply from each. Oxygen gas is injected so that the dissolved oxygen concentration of the feed water is 20 to 50 μg / L. Moreover, when applying the noble metal injection technique during operation, hydrogen gas is injected so that the dissolved hydrogen concentration of the feed water is 200 to 400 μg / L.

本実施例においては、原子炉水中に貴金属化合物を注入するための貴金属注入装置17は、浄化系配管11のうち、炉水浄化装置14から給水配管6との合流点までの部位に設置されている。一方、酸化剤注入装置18は、浄化系配管11のうち、貴金属注入装置17より上流側に設置されている。   In the present embodiment, the noble metal injection device 17 for injecting the noble metal compound into the reactor water is installed in a portion of the purification system pipe 11 from the reactor water purification device 14 to the junction with the water supply pipe 6. Yes. On the other hand, the oxidant injection device 18 is installed upstream of the noble metal injection device 17 in the purification system pipe 11.

本図においては、貴金属注入装置17は、浄化系配管11のうち、再生熱交換器13から給水配管6との合流点までの部位に設置されている。一方、酸化剤注入装置18は、浄化系配管11のうち、炉水浄化装置14の下流側であって再生熱交換器13の上流側に設置されている。   In this figure, the noble metal injection device 17 is installed in a part of the purification system pipe 11 from the regenerative heat exchanger 13 to the junction with the water supply pipe 6. On the other hand, the oxidant injection device 18 is installed in the purification system pipe 11 downstream of the reactor water purification device 14 and upstream of the regenerative heat exchanger 13.

図1Bは、図1Aの沸騰水型原子力プラント100の変形例を示したものである。   FIG. 1B shows a modification of the boiling water nuclear plant 100 of FIG. 1A.

図1Bにおいては、貴金属注入装置17は、浄化系配管11のうち、酸化剤注入装置18の下流側であって再生熱交換器13の上流側に設置されている。図1Bにおける他の構成は、図1Aと同じである。   In FIG. 1B, the noble metal injection device 17 is installed in the purification system pipe 11 downstream of the oxidant injection device 18 and upstream of the regenerative heat exchanger 13. Other configurations in FIG. 1B are the same as those in FIG. 1A.

貴金属注入装置17を給水配管6の近傍の浄化系配管11に接続すると、注入した貴金属が原子炉圧力容器1に持ち込まれるまでの流れる配管の長さが短くなるメリットがある。一方、再生熱交換器13と炉水浄化装置14を接続する浄化系配管11に設置すると、温度の低い系統水に貴金属化合物を注入できるメリットがある。   Connecting the noble metal injection device 17 to the purification system pipe 11 in the vicinity of the water supply pipe 6 has an advantage that the length of the pipe through which the injected noble metal is brought into the reactor pressure vessel 1 is shortened. On the other hand, when installed in the purification system pipe 11 connecting the regenerative heat exchanger 13 and the reactor water purification device 14, there is an advantage that a noble metal compound can be injected into the system water having a low temperature.

図5は、貴金属注入装置17の詳細を示したものである。   FIG. 5 shows details of the noble metal injection device 17.

本図において、貴金属注入装置17は、貴金属化合物溶液(たとえば、ヘキサヒドロキソ白金酸ナトリウム水溶液)を充填した薬液タンク25と、ポンプ26と、弁21、24と、これらを接続し浄化系配管11に接続された配管22と、を備えている。弁21は、ポンプ26の下流側に配置されている。弁24は、薬液タンク25とポンプ26との間に配置されている。弁24とポンプ26との間には、流量計23が配置されている。   In this figure, the noble metal injection device 17 is connected to a chemical tank 25 filled with a noble metal compound solution (for example, an aqueous solution of sodium hexahydroxoplatinate), a pump 26, valves 21 and 24, and these are connected to the purification system pipe 11. And a connected pipe 22. The valve 21 is disposed on the downstream side of the pump 26. The valve 24 is disposed between the chemical liquid tank 25 and the pump 26. A flow meter 23 is arranged between the valve 24 and the pump 26.

弁24及び弁21を開にし、ポンプ26を起動することにより、薬液タンク25から貴金属化合物溶液を浄化系配管11に注入する。流量は、ポンプ26により調節され、流量計23で確認される。   By opening the valve 24 and the valve 21 and starting the pump 26, the noble metal compound solution is injected from the chemical tank 25 into the purification system pipe 11. The flow rate is adjusted by the pump 26 and confirmed by the flow meter 23.

図1Aの酸化剤注入装置18については、酸化剤として過酸化水素を注入する場合、図5の貴金属注入装置17と同じ構成でよく、薬液タンク25に貴金属化合物溶液の代わりに過酸化水素水を充填した構成でよい。   The oxidant injection device 18 shown in FIG. 1A may have the same configuration as the noble metal injection device 17 shown in FIG. 5 when hydrogen peroxide is injected as an oxidant. Hydrogen peroxide water is added to the chemical tank 25 instead of the noble metal compound solution. A filled configuration may be used.

図6は、酸化剤として酸素を注入する場合の酸化剤注入装置18を示したものである。   FIG. 6 shows an oxidant injection device 18 for injecting oxygen as an oxidant.

本図においては、酸素を充填したボンベ35と浄化系配管11とが配管32で接続されている。配管32には、上流側のボンベ35から、減圧流量調整弁34、流量計33、弁31が、その順に設置されている。   In this figure, a cylinder 35 filled with oxygen and a purification system pipe 11 are connected by a pipe 32. In the pipe 32, a decompression flow rate adjustment valve 34, a flow meter 33, and a valve 31 are installed in that order from an upstream cylinder 35.

以下、運転中貴金属注入技術の適用手順について図1A、5及び6を用いて説明する。   Hereinafter, an application procedure of the noble metal injection technique during operation will be described with reference to FIGS. 1A, 5 and 6.

最初に、酸化剤注入装置18から過酸化水素又は酸素を、浄化系配管11を流れる酸素又は過酸化水素が水素と反応して水になるのに必要とされる以上の濃度となるように、酸素又は過酸化水素を注入する。以下、酸素及び過酸化水素を合わせて「酸化剤」と呼ぶ。   First, hydrogen peroxide or oxygen is supplied from the oxidizer injection device 18 so that the oxygen or hydrogen peroxide flowing through the purification system pipe 11 has a concentration higher than that required for reacting with hydrogen to become water. Inject oxygen or hydrogen peroxide. Hereinafter, oxygen and hydrogen peroxide are collectively referred to as an “oxidant”.

浄化系配管11を流れる酸化剤及び溶存水素の濃度は、再生熱交換器13と炉水浄化装置14とを接続する浄化系配管11に設置されたサンプリング配管から採取された原子炉水の酸素及び過酸化水素の濃度を測定することにより把握することができる。溶存酸素濃度をCO2[単位:mol/L]、過酸化水素濃度をCH2O2[単位:mol/L]、溶存水素濃度をCH2[単位:mol/L]とし、過剰な溶存酸素濃度をΔCIO2[単位:mol/L]、過剰な過酸化水素濃度をΔCIH2O2[単位:mol/L]とすると、浄化系配管11を流れる原子炉水中の溶存酸素濃度CIO2が下記式(4)により、過酸化水素濃度CIH2O2が下記式(5)により、それぞれ、計算される値となるように、酸素又は過酸化水素を注入する。 The concentrations of the oxidant and dissolved hydrogen flowing through the purification system pipe 11 are the oxygen of the reactor water collected from the sampling pipe installed in the purification system pipe 11 connecting the regenerative heat exchanger 13 and the reactor water purification device 14 and This can be determined by measuring the concentration of hydrogen peroxide. The dissolved oxygen concentration is C O2 [unit: mol / L], the hydrogen peroxide concentration is C H2O2 [unit: mol / L], the dissolved hydrogen concentration is C H2 [unit: mol / L], and the excess dissolved oxygen concentration is When ΔCI O2 [unit: mol / L] and the excess hydrogen peroxide concentration is ΔCI H2O2 [unit: mol / L], the dissolved oxygen concentration CI O2 in the reactor water flowing through the purification system pipe 11 is expressed by the following formula (4). Thus, oxygen or hydrogen peroxide is injected so that the hydrogen peroxide concentration CI H2O2 becomes a value calculated by the following equation (5).

CIO2=2×CH2O2+CO2−2×CH2+ΔCIO2 …式(4)
CIH2O2=CH2O2+0.5×CO2−CH2+ΔCIH2O2 …式(5)
過酸化水素を注入する場合の注入流量FTH2O2[単位:L/h]は、薬液タンク25に充填した過酸化水素の濃度CTH2O2[単位:mol/L]と、浄化系配管11を流れる原子炉水の流量FRWCU[単位:L/h]とを用いて、下記式(6)で表される。
CI O2 = 2 × C H 2 O 2 + C O 2 −2 × C H 2 + ΔCI O 2 Formula (4)
CI H2O2 = C H2O2 + 0.5 × C O2 −C H2 + ΔCI H2O2 Formula (5)
The injection flow rate FT H2O2 [unit: L / h] in the case of injecting hydrogen peroxide is the concentration of hydrogen peroxide CT H2O2 [unit: mol / L] charged in the chemical tank 25 and the atoms flowing through the purification system pipe 11. It is represented by the following formula (6) using the flow rate F RWCU [unit: L / h] of the reactor water.

FTH2O2=(CIH2O2/CTH2O2)×FRWCU …式(6)
また、酸素を注入する場合の注入流量FTO2[単位:NL/h]は、ボンベ35に充填した酸素濃度をX[体積%]と、浄化系配管11を流れる原子炉水の流量FRWCU[単位:L/h]とを用いて、下記式(7)で表される。
FT H2O2 = (CI H2O2 / CT H2O2 ) × F RWCU Formula (6)
Further, the injection flow rate FT O2 [unit: NL / h] in the case of injecting oxygen is X [volume%] of the oxygen concentration filled in the cylinder 35 and the flow rate F RWCU of the reactor water flowing through the purification system pipe 11 [ Unit: L / h], and is represented by the following formula (7).

FTO2=CIO2×FRWCU×(100/X)×22.4 …式(7)
過剰な溶存酸素濃度ΔCIO2は0.5〜2.0μmol/L、過剰な過酸化水素濃度ΔCIH2O2は1.0〜4.0μmol/Lとすれば十分である。
FT O2 = CI O2 × F RWCU × (100 / X) × 22.4 (Expression (7))
It is sufficient that the excessive dissolved oxygen concentration ΔCI O2 is 0.5 to 2.0 μmol / L and the excessive hydrogen peroxide concentration ΔCI H2O2 is 1.0 to 4.0 μmol / L.

このように設定した注入流量に従って、酸化剤として過酸化水素を注入する場合、図5の薬液タンク25に貴金属化合物溶液の代わりに過酸化水素水を充填した構成を有する酸化剤注入装置18(図5の貴金属注入装置17と同じ構成)において、弁21、弁24を開け、注入流量FTH2O2となるようにポンプ26の流量を設定して、原子炉水中に過酸化水素を注入する。注入が不要になったら、ポンプ26を停止し、弁21、弁24を閉にする。 When hydrogen peroxide is injected as an oxidant according to the injection flow rate set in this way, the oxidant injection device 18 (FIG. 5) having a configuration in which the chemical solution tank 25 of FIG. 5 is filled with hydrogen peroxide water instead of the noble metal compound solution. 5 and the noble metal injection apparatus 17), the valves 21 and 24 are opened, the flow rate of the pump 26 is set so as to be the injection flow rate FT H2O2, and hydrogen peroxide is injected into the reactor water. When the injection becomes unnecessary, the pump 26 is stopped and the valves 21 and 24 are closed.

酸化剤として酸素を注入する場合、図6の酸化剤注入装置18の弁31を開け、酸素ガス注入量を注入流量FTO2となるように減圧流量調整弁34の流量を設定して、原子炉水中に酸素を注入する。注入が不要になったら、減圧流量調整弁34を閉にし、弁31を閉にする。 When oxygen is injected as an oxidant, the valve 31 of the oxidant injection device 18 of FIG. 6 is opened, the flow rate of the pressure reducing flow rate adjustment valve 34 is set so that the oxygen gas injection amount becomes the injection flow rate FTO2, and the reactor Inject oxygen into the water. When the injection becomes unnecessary, the pressure reducing flow rate adjustment valve 34 is closed and the valve 31 is closed.

次に、図5の貴金属注入装置17から貴金属化合物を注入する。ここでは、貴金属化合物としてヘキサヒドロキソ白金酸ナトリウム溶液を注入する場合を例示する。貴金属注入装置17の注入流量FTPT[単位:L/h]は、薬液タンク25に充填したヘキサヒドロキソ白金酸ナトリウム溶液の白金濃度CTH2O2[単位:mol/L]、浄化系配管11を流れる原子炉水の白金濃度CIRWCU[単位:mol/L]、浄化系配管11を流れる原子炉水の流量FRWCU[単位:L/h]から下記式(8)で表される。 Next, a noble metal compound is injected from the noble metal injection device 17 of FIG. Here, a case where a sodium hexahydroxoplatinate solution is injected as the noble metal compound is illustrated. The injection flow rate FT PT [unit: L / h] of the noble metal injection device 17 is the platinum concentration CT H2O2 [unit: mol / L] of the sodium hexahydroxoplatinate solution filled in the chemical tank 25 and the atoms flowing through the purification system pipe 11. From the platinum concentration CI RWCU [unit: mol / L] of the reactor water and the flow rate F RWCU [unit: L / h] of the reactor water flowing through the purification system pipe 11, it is expressed by the following formula (8).

FTPT=(CIPT/CTPT)×FRWCU …式(8)
例えば、白金の注入量(CIPT×FRWCU)を0.01mol/Lとして、10日間程度注入すれば腐食環境緩和効果が得られる。
FT PT = (CI PT / CT PT ) × F RWCU Equation (8)
For example, if the injection amount of platinum (CI PT × F RWCU ) is 0.01 mol / L and it is injected for about 10 days, a corrosion environment mitigating effect can be obtained.

また、白金の注入量(CIPT×FRWCU)を0.001mol/Lとして、100日間程注入するなど、白金の注入量を小さくし、注入期間を長くすることで、白金の注入に伴う電気伝導率の変動を小さくできるメリットがある。 In addition, the platinum injection amount (CI PT × F RWCU ) is set to 0.001 mol / L, and injection is performed for about 100 days. For example, by reducing the platinum injection amount and extending the injection period, There is an advantage that the fluctuation of conductivity can be reduced.

このように設定した注入流量に従って貴金属注入装置17から貴金属化合物を注入する場合、貴金属注入装置17(図5)の弁21、弁24を開け、注入流量FTPTとなるようにポンプ26の流量を設定して原子炉水中にヘキサヒドロキソ白金酸ナトリウム溶液を注入する。注入が不要になったら、ポンプ26を停止し、弁21及び弁24を閉にする。 When injecting the noble metal compound from the noble metal injection device 17 in accordance with the injection flow set in this way, the valve 21 and the valve 24 of the noble metal injection device 17 (FIG. 5) are opened, and the flow rate of the pump 26 is set to be the injection flow rate FT PT. Set and inject sodium hexahydroxoplatinate solution into reactor water. When the injection is no longer necessary, the pump 26 is stopped and the valves 21 and 24 are closed.

図7は、本実施例の原子力プラントの構成を示したものである。   FIG. 7 shows the configuration of the nuclear power plant of this embodiment.

以下では、本実施例における実施例1との違いについて説明し、実施例1と同様の構成については説明を省略する。   In the following, the difference between the present embodiment and the first embodiment will be described, and the description of the same configuration as the first embodiment will be omitted.

本図に示す原子力プラント200における実施例1との違いは、給水配管6に付設した水素注入装置16a(第一の水素注入装置)に加えて、浄化系配管11にも水素注入装置16b(第二の水素注入装置)を付設し、貴金属注入装置17は給水配管6に付設した点である。このような配置にすることにより、水素注入装置16aにより注入する水素の量を加減して、酸素注入装置15により注入する酸素が給水配管6内で完全には消失しないようにすることができ、貴金属注入装置17から注入される貴金属化合物を、水素濃度より酸素又は過酸化水素の濃度が過剰となっている給水に注入することができる。実施例1のように酸化剤注入装置18を追加で設置する必要がなくなるメリットがある。   The difference from the first embodiment in the nuclear power plant 200 shown in this figure is that, in addition to the hydrogen injection device 16a (first hydrogen injection device) attached to the water supply pipe 6, the hydrogen injection device 16b (the first hydrogen injection device) is also added to the purification system pipe 11. The second hydrogen injection device) is attached, and the noble metal injection device 17 is attached to the water supply pipe 6. With this arrangement, the amount of hydrogen injected by the hydrogen injection device 16a can be adjusted so that the oxygen injected by the oxygen injection device 15 is not completely lost in the water supply pipe 6. The noble metal compound injected from the noble metal injection device 17 can be injected into the feed water in which the concentration of oxygen or hydrogen peroxide is excessive from the hydrogen concentration. As in the first embodiment, there is an advantage that it is not necessary to additionally install the oxidizing agent injection device 18.

浄化系配管11を流れる原子炉水の水素濃度CH2、RWCUは、溶存水素濃度をCH2[単位:mol/L]、給水流量FFW[単位:L/h]、浄化系配管11を流れる原子炉水の流量FRWCU[単位:L/h]から、下記式(9)で計算される水素濃度となるように水素注入装置16bから水素を注入する必要がある。 The hydrogen concentration C H2 and RWCU of the reactor water flowing through the purification system pipe 11 flows through the purification system pipe 11 with the dissolved hydrogen concentration of C H2 [unit: mol / L], the feed water flow rate F FW [unit: L / h]. From the flow rate F RWCU [unit: L / h] of the reactor water, it is necessary to inject hydrogen from the hydrogen injection device 16b so that the hydrogen concentration calculated by the following formula (9) is obtained.

H2、RWCU=CH2×(FFW/FRWCU) …式(9)
ここで、CH2は、200〜400μg/Lが望ましい。
C H2, RWCU = C H2 × (F FW / F RWCU) ... (9)
Here, C H2 is desirably 200 to 400 μg / L.

1:原子炉圧力容器、2:炉心、3:主蒸気配管、4:タービン、5:復水器、6:給水配管、7:復水ろ過脱塩装置、8:給水ポンプ、10:抽気配管、11:浄化系配管、12:浄化系ポンプ、13:再生熱交換器、14:炉水浄化装置、15:酸素注入装置、16、16a、16b:水素注入装置、17:貴金属注入装置、18:酸化剤注入装置、21、24、31、34:弁、22、32:配管、23、33:流量計、25:薬液タンク、35:ボンベ。   1: Reactor pressure vessel, 2: Core, 3: Main steam pipe, 4: Turbine, 5: Condenser, 6: Feed water pipe, 7: Condensate filtration demineralizer, 8: Feed water pump, 10: Extraction pipe 11: Purification system piping, 12: Purification system pump, 13: Regenerative heat exchanger, 14: Reactor water purification device, 15: Oxygen injection device, 16, 16a, 16b: Hydrogen injection device, 17: Noble metal injection device, 18 : Oxidizer injection device, 21, 24, 31, 34: valve, 22, 32: piping, 23, 33: flow meter, 25: chemical tank, 35: cylinder.

Claims (14)

原子炉圧力容器を有する沸騰水型原子力プラントの発電運転期間中に、前記原子炉圧力容器に補給する水に水素及び貴金属化合物を注入することにより、前記原子炉圧力容器内の腐食環境を緩和する方法であって、
前記原子炉圧力容器に供給する水に水素を注入するとともに、化学反応して水になる水素の濃度に対して酸素又は過酸化水素の濃度が当量を超えている系統の水に貴金属化合物を注入する、沸騰水型原子炉の腐食環境緩和方法。
During power generation operation of a boiling water nuclear power plant having a reactor pressure vessel, hydrogen and a noble metal compound are injected into water to be supplied to the reactor pressure vessel, thereby mitigating the corrosive environment in the reactor pressure vessel. A method,
Hydrogen is injected into the water supplied to the reactor pressure vessel, and a noble metal compound is injected into water of a system in which the concentration of oxygen or hydrogen peroxide exceeds the equivalent concentration of hydrogen that is chemically reacted to form water. To reduce the corrosive environment of boiling water reactors.
前記貴金属化合物は、酸化剤を注入する部位の下流側であって前記化学反応して水になる水素の濃度より酸素又は過酸化水素の濃度が過剰となっている系統の水に注入する、請求項1記載の沸騰水型原子炉の腐食環境緩和方法。   The noble metal compound is injected into water in a system downstream of the site where the oxidant is injected and in which the concentration of oxygen or hydrogen peroxide is higher than the concentration of hydrogen that chemically reacts to form water. Item 4. A method for mitigating a corrosive environment of a boiling water reactor according to Item 1. 前記貴金属化合物は、酸素を注入する部位及び水素を注入する部位の下流側であって前記化学反応して水になる水素の濃度より酸素又は過酸化水素の濃度が過剰となっている系統の水に注入する、請求項1記載の沸騰水型原子炉の腐食環境緩和方法。   The noble metal compound is a downstream of the site where oxygen is injected and the site where hydrogen is injected, and water in a system in which the concentration of oxygen or hydrogen peroxide is excessive from the concentration of hydrogen which chemically reacts to become water. The method for mitigating a corrosive environment of a boiling water reactor according to claim 1, wherein the method is injected into the boiling water reactor. 前記酸化剤は、酸素又は過酸化水素である、請求項2記載の沸騰水型原子炉の腐食環境緩和方法。   The method according to claim 2, wherein the oxidizing agent is oxygen or hydrogen peroxide. 前記貴金属化合物は、ヘキサヒドロキソ白金酸ナトリウム又は白金酸化物コロイドである、請求項1〜4のいずれか一項に記載の沸騰水型原子炉の腐食環境緩和方法。   The method for mitigating a corrosive environment in a boiling water reactor according to any one of claims 1 to 4, wherein the noble metal compound is sodium hexahydroxoplatinate or a colloidal platinum oxide. 前記貴金属化合物は、ヘキサヒドロキソ白金酸ナトリウムを190℃以上に加熱することにより白金酸化物コロイドを生成して注入する、請求項1〜4のいずれか一項に記載の沸騰水型原子炉の腐食環境緩和方法。   The corrosion of a boiling water reactor according to any one of claims 1 to 4, wherein the noble metal compound is formed and injected with a platinum oxide colloid by heating sodium hexahydroxoplatinate to 190 ° C or higher. Environmental mitigation methods. 前記貴金属化合物は、ヘキサヒドロキソ白金酸ナトリウムを280℃以上に加熱することにより白金酸化物コロイドを生成して注入する、請求項1〜4のいずれか一項に記載の沸騰水型原子炉の腐食環境緩和方法。   The corrosion of a boiling water reactor according to any one of claims 1 to 4, wherein the noble metal compound generates and injects a platinum oxide colloid by heating sodium hexahydroxoplatinate to 280 ° C or higher. Environmental mitigation methods. 原子炉圧力容器と、タービンと、復水器と、前記復水器の水を前記原子炉圧力容器に補給する給水配管と、前記原子炉圧力容器の水を浄化する浄化系配管と、前記浄化系配管に配置した炉水浄化装置と、を備えた沸騰水型の原子力プラントであって、
前記原子炉圧力容器に供給する水に水素を注入する水素注入装置が付設され、
化学反応して水になる水素の濃度に対して酸素又は過酸化水素の濃度が当量を超えている系統の水に貴金属化合物を注入する貴金属注入装置が付設されている、原子力プラント。
A reactor pressure vessel, a turbine, a condenser, a water supply pipe for replenishing the reactor pressure vessel with water from the condenser, a purification system pipe for purifying the water in the reactor pressure vessel, and the purification A boiling water nuclear power plant equipped with a reactor water purification device disposed in a system pipe,
A hydrogen injection device for injecting hydrogen into the water supplied to the reactor pressure vessel is attached,
A nuclear power plant equipped with a noble metal injection device for injecting a noble metal compound into water of a system in which the concentration of oxygen or hydrogen peroxide exceeds an equivalent amount relative to the concentration of hydrogen that chemically reacts to become water.
前記浄化系配管のうち前記炉水浄化装置の下流側であって前記給水配管との合流部の上流側には、酸化剤注入装置が付設され、
前記貴金属注入装置は、前記浄化系配管のうち前記酸化剤注入装置の下流側であって前記給水配管との合流部の上流側に付設されている、請求項8記載の原子力プラント。
An oxidant injection device is attached to the downstream side of the reactor water purification device in the purification system piping and upstream of the junction with the water supply piping,
The nuclear power plant according to claim 8, wherein the noble metal injection device is attached downstream of the oxidant injection device and upstream of a junction with the water supply pipe in the purification system pipe.
前記給水配管には、前記給水配管の水に酸素を注入する酸素注入装置と、前記給水配管の水に水素を注入する第一の水素注入装置と、が付設され、
前記浄化系配管のうち前記炉水浄化装置の下流側であって前記給水配管との合流部の上流側には、前記浄化系配管の水に水素を注入する第二の水素注入装置が付設され、
前記貴金属注入装置は、前記給水配管のうち前記酸素注入装置の下流側であって前記浄化系配管との合流部の上流側に付設されている、請求項8記載の原子力プラント。
The water supply pipe is provided with an oxygen injection device for injecting oxygen into the water of the water supply piping, and a first hydrogen injection device for injecting hydrogen into the water of the water supply piping,
A second hydrogen injection device for injecting hydrogen into the water of the purification system pipe is attached to the downstream side of the reactor water purification apparatus in the purification system pipe and upstream of the junction with the water supply pipe. ,
The nuclear power plant according to claim 8, wherein the noble metal injection device is attached downstream of the oxygen injection device in the water supply pipe and upstream of a junction with the purification system pipe.
前記酸化剤注入装置から注入される酸化剤は、酸素又は過酸化水素である、請求項8〜10のいずれか一項に記載の原子力プラント。   The nuclear power plant according to any one of claims 8 to 10, wherein the oxidizing agent injected from the oxidizing agent injection device is oxygen or hydrogen peroxide. 前記貴金属化合物は、ヘキサヒドロキソ白金酸ナトリウム又は白金酸化物コロイドである、請求項8〜11のいずれか一項に記載の原子力プラント。   The nuclear power plant according to any one of claims 8 to 11, wherein the noble metal compound is sodium hexahydroxoplatinate or a platinum oxide colloid. 前記貴金属注入装置は、ヘキサヒドロキソ白金酸ナトリウムを190℃以上に加熱することにより白金酸化物コロイドを生成して注入するものである、請求項8〜12のいずれか一項に記載の原子力プラント。   The nuclear power plant according to any one of claims 8 to 12, wherein the noble metal injection device generates and injects a platinum oxide colloid by heating sodium hexahydroxoplatinate to 190 ° C or higher. 前記貴金属注入装置は、ヘキサヒドロキソ白金酸ナトリウムを280℃以上に加熱することにより白金酸化物コロイドを生成して注入するものである、請求項8〜12のいずれか一項に記載の原子力プラント。   The nuclear power plant according to any one of claims 8 to 12, wherein the noble metal injecting device generates and injects a platinum oxide colloid by heating sodium hexahydroxoplatinate to 280 ° C or higher.
JP2016070291A 2016-03-31 2016-03-31 Method for mitigating corrosive environment of boiling water reactor and nuclear power plant Active JP6486860B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016070291A JP6486860B2 (en) 2016-03-31 2016-03-31 Method for mitigating corrosive environment of boiling water reactor and nuclear power plant
US15/418,853 US10457583B2 (en) 2016-03-31 2017-01-30 Method for relieving corrosive environment of boiling water reactor, nuclear power plant, and method for injecting noble metal which is carried out in nuclear power plant
US16/577,502 US20200055758A1 (en) 2016-03-31 2019-09-20 Method for Relieving Corrosive Environment of Boiling Water Reactor, Nuclear Power Plant, and Method for Injecting Noble Metal Which is Carried Out in Nuclear Power Plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070291A JP6486860B2 (en) 2016-03-31 2016-03-31 Method for mitigating corrosive environment of boiling water reactor and nuclear power plant

Publications (2)

Publication Number Publication Date
JP2017181350A true JP2017181350A (en) 2017-10-05
JP6486860B2 JP6486860B2 (en) 2019-03-20

Family

ID=60004453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070291A Active JP6486860B2 (en) 2016-03-31 2016-03-31 Method for mitigating corrosive environment of boiling water reactor and nuclear power plant

Country Status (1)

Country Link
JP (1) JP6486860B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158567A (en) * 2018-03-13 2019-09-19 日立Geニュークリア・エナジー株式会社 Method for suppressing radioactive nuclide deposition to carbon steel member of nuclear power plant
WO2020066118A1 (en) * 2018-09-28 2020-04-02 日立Geニュークリア・エナジー株式会社 Nuclear power plant, oxygen injection device, dissolved oxygen concentration meter and corrosion suppression method for nuclear power plant

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339793A (en) * 1997-06-06 1998-12-22 Toshiba Corp Water quality control system and water quality control method
JP2003129102A (en) * 2001-08-04 2003-05-08 Omg Ag & Co Kg Powder of platinum and platinum alloy with high surface area and low chlorine content, and process for preparing the same
JP2005010160A (en) * 2003-06-16 2005-01-13 General Electric Co <Ge> Method for mitigate stress corrosion cracking of structural material in high temperature water
US20060211569A1 (en) * 2005-03-16 2006-09-21 Sud-Chemie Inc. Oxidation catalyst on a substrate utilized for the purification of exhaust gases
JP2014101240A (en) * 2012-11-19 2014-06-05 Hitachi-Ge Nuclear Energy Ltd Platinum oxide colloid solution and manufacturing method and manufacturing apparatus of the same
US20140175186A1 (en) * 2012-12-20 2014-06-26 Thomas Alfred Caine Insulated solution injector, system including the same, and method of injecting using the same
JP2014163811A (en) * 2013-02-26 2014-09-08 Hitachi-Ge Nuclear Energy Ltd Noble metal injection method of nuclear power plant with boiling water reactor
JP2015158486A (en) * 2014-01-27 2015-09-03 日立Geニュークリア・エナジー株式会社 Method for adhering noble metal to structural member of nuclear power plant
JP2015218079A (en) * 2014-05-16 2015-12-07 日立Geニュークリア・エナジー株式会社 Method for producing platinum oxide colloidal solution

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339793A (en) * 1997-06-06 1998-12-22 Toshiba Corp Water quality control system and water quality control method
JP2003129102A (en) * 2001-08-04 2003-05-08 Omg Ag & Co Kg Powder of platinum and platinum alloy with high surface area and low chlorine content, and process for preparing the same
JP2005010160A (en) * 2003-06-16 2005-01-13 General Electric Co <Ge> Method for mitigate stress corrosion cracking of structural material in high temperature water
US20060211569A1 (en) * 2005-03-16 2006-09-21 Sud-Chemie Inc. Oxidation catalyst on a substrate utilized for the purification of exhaust gases
JP2014101240A (en) * 2012-11-19 2014-06-05 Hitachi-Ge Nuclear Energy Ltd Platinum oxide colloid solution and manufacturing method and manufacturing apparatus of the same
US20140175186A1 (en) * 2012-12-20 2014-06-26 Thomas Alfred Caine Insulated solution injector, system including the same, and method of injecting using the same
JP2014163811A (en) * 2013-02-26 2014-09-08 Hitachi-Ge Nuclear Energy Ltd Noble metal injection method of nuclear power plant with boiling water reactor
JP2015158486A (en) * 2014-01-27 2015-09-03 日立Geニュークリア・エナジー株式会社 Method for adhering noble metal to structural member of nuclear power plant
JP2015218079A (en) * 2014-05-16 2015-12-07 日立Geニュークリア・エナジー株式会社 Method for producing platinum oxide colloidal solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019158567A (en) * 2018-03-13 2019-09-19 日立Geニュークリア・エナジー株式会社 Method for suppressing radioactive nuclide deposition to carbon steel member of nuclear power plant
WO2019176264A1 (en) * 2018-03-13 2019-09-19 日立Geニュークリア・エナジー株式会社 Method for suppressing radioactive nuclide adhesion to carbon steel member of nuclear power plant
WO2020066118A1 (en) * 2018-09-28 2020-04-02 日立Geニュークリア・エナジー株式会社 Nuclear power plant, oxygen injection device, dissolved oxygen concentration meter and corrosion suppression method for nuclear power plant

Also Published As

Publication number Publication date
JP6486860B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
EP2395130B1 (en) Method and systems for operating power plants plants
JP6034149B2 (en) Method of attaching noble metal to components of nuclear power plant
EP0707319A1 (en) Co-deposition of palladium during oxide film growth in high-temperature water to mitigate stress corrosion cracking
JP2005010160A (en) Method for mitigate stress corrosion cracking of structural material in high temperature water
JP2016161466A (en) Method of suppressing sticking of radioactive nuclide on atomic power plant constitution member
JP6486860B2 (en) Method for mitigating corrosive environment of boiling water reactor and nuclear power plant
JP2012247322A (en) Method for forming platinum film on plant component
JP6619717B2 (en) Method for adhering noble metals to carbon steel members of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel members of nuclear power plant
US20200055758A1 (en) Method for Relieving Corrosive Environment of Boiling Water Reactor, Nuclear Power Plant, and Method for Injecting Noble Metal Which is Carried Out in Nuclear Power Plant
JP2002323596A (en) Pressurized water reactor and noble metal catalyst for reducing corrosion, erosion and stress corrosion cracking in contingent high temperature water environment
WO2019176376A1 (en) Method of attaching noble metal to carbon steel member of nuclear power plant and method of suppressing attachment of radionuclides to carbon steel members of nuclear power plant
JP2011111661A (en) Method for forming ferrite film on component of nuclear power, method for suppressing progress of stress corrosion cracking, and apparatus for forming ferrite film
US20220213601A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for preventing adhesion of radionuclides to carbon steel member of nuclear power plant
JP6868545B2 (en) Corrosion control method for carbon steel parts of plants
JP2018165645A (en) Deposition method of noble metal to carbon steel member of atomic power plant, and deposition suppression method of radioactive nuclei to carbon steel member of atomic plower plant
JP4437256B2 (en) Methods for preventing corrosion and thinning of carbon steel
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JP2010054499A (en) Method to protect bwr reactor from corrosion during start-up
JP6894862B2 (en) Method for suppressing radionuclide adhesion to carbon steel components of nuclear power plants
WO2019102768A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel member of nuclear power plant
JP4366227B2 (en) Stress corrosion cracking suppression method
JP2018100836A (en) Method of forming radioactive substance adhesion inhibit coating
JP2007017245A (en) Method for mitigating stress corrosion cracking in structural material for nuclear power plant
JP2012225665A (en) Water quality management method and water quality management device for nuclear power plant, and nuclear power plant with the water quality management device
JP2019157215A (en) Corrosion prevention method of carbon steel member of plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190220

R150 Certificate of patent or registration of utility model

Ref document number: 6486860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150