WO2014017272A1 - Rankine cycle device - Google Patents

Rankine cycle device Download PDF

Info

Publication number
WO2014017272A1
WO2014017272A1 PCT/JP2013/068435 JP2013068435W WO2014017272A1 WO 2014017272 A1 WO2014017272 A1 WO 2014017272A1 JP 2013068435 W JP2013068435 W JP 2013068435W WO 2014017272 A1 WO2014017272 A1 WO 2014017272A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver tank
refrigerant
oxygen
flow path
working fluid
Prior art date
Application number
PCT/JP2013/068435
Other languages
French (fr)
Japanese (ja)
Inventor
英文 森
井口 雅夫
榎島 史修
文彦 石黒
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2014017272A1 publication Critical patent/WO2014017272A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Definitions

  • the present invention relates to a Rankine cycle apparatus, and more particularly, to a Rankine cycle apparatus provided with an oxygen remover that removes oxygen from a working fluid.
  • a Rankine cycle device is known as a device that effectively uses waste heat.
  • the Rankine cycle device includes a steam generator that generates a working fluid steam, an expander that expands the working fluid steam, a condenser that condenses the working fluid from the expander, and a working fluid that flows out of the condenser.
  • the working fluid flowing through the working fluid flow path contains oil that lubricates the sliding parts of the expander and the pump.
  • water purification means for purifying water is disposed between the condenser outlet and the high-pressure pump inlet. Moreover, the water purification means can perform the dissolved oxygen removal process of water.
  • An object of the present invention is to provide a Rankine cycle apparatus capable of reducing pressure loss due to the working fluid passing through the oxygen removing agent and reducing the installation space.
  • a steam generator that generates steam of a working fluid, an expander that expands the steam of the working fluid, and the steam of the working fluid from the expander.
  • a condenser for condensing a receiver tank for storing the working fluid flowing out from the condenser, a pump for pumping the liquid working fluid stored in the receiver tank to the steam generator, and the steam generator And a working fluid flow path for sequentially connecting the expander, the condenser, the receiver tank, and the pump, and an oxygen removing agent that is accommodated in the receiver tank and removes oxygen contained in the working fluid.
  • the working fluid circulates in the working fluid flow path in the order of the steam generator, the expander, the condenser, the receiver tank, and the pump, and is accommodated in the receiver tank in the receiver tank.
  • Oxygen contained in the working fluid is removed by the oxygen removing agent.
  • the receiver tank has a function of performing gas-liquid separation of the refrigerant condensed in the condenser and storing the separated liquid refrigerant, and both the cross-sectional area of the flow path and the length of the working fluid in the flow direction are large. It is a container.
  • the flow rate of the working fluid passing through the oxygen scavenger can be lowered to reduce the pressure loss. Moreover, it is possible to reduce the installation space without requiring a special container for installing the oxygen scavenger.
  • the receiver tank has an outlet for flowing a liquid working fluid toward the pump, and the outlet is provided at a lower portion of the receiver tank.
  • the outlet is provided at the lower part of the receiver tank, the cross-sectional area of the channel that can be covered with the oxygen removing agent is expanded compared to the case where the outlet is provided at the upper part of the receiver tank. Is possible.
  • the above aspect preferably further includes a desiccant provided upstream of the oxygen scavenger in the receiver tank.
  • the oxygen remover since the desiccant is provided on the upstream side of the oxygen remover in the receiver tank, the oxygen remover can be passed after the moisture contained in the working fluid is removed by the desiccant. Therefore, since the water is removed from the working fluid when passing through the oxygen removing agent, oxygen contained in the working fluid can be efficiently removed.
  • the oxygen scavenger preferably contains iron powder.
  • oxygen contained in the working fluid can be removed using an oxidation reaction between oxygen and iron powder.
  • the Rankine cycle device according to the first embodiment will be described below with reference to the drawings.
  • the Rankine cycle device of the present embodiment is a vehicle-mounted Rankine cycle device mounted on a vehicle.
  • the Rankine cycle apparatus 10 includes a steam generator 11, an expander 12, a condenser 13, a receiver tank 14, and a pump 15.
  • the Rankine cycle apparatus 10 includes a refrigerant flow path 16 that sequentially connects a steam generator 11, an expander 12, a condenser 13, a receiver tank 14, and a pump 15.
  • the refrigerant flow path 16 corresponds to a working fluid flow path, and the refrigerant as the working fluid flowing through the refrigerant flow path 16 is activated by the operation of the pump 15, and the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, The refrigerant flows in the order of the pump 15 through the refrigerant flow path 16.
  • oil is contained in the refrigerant, and the oil contained in the refrigerant flows through the refrigerant flow path 16 together with the refrigerant.
  • the oil contained in the refrigerant fulfills functions such as lubrication, sealing, and cooling in the sliding portions of the expander 12 and the pump 15.
  • the steam generator 11 is a device that generates refrigerant vapor using exhaust gas discharged from the engine 17 through the exhaust passage 18 as a heat source (not shown).
  • the refrigerant flow path passing through the interior of the steam generator 11 constitutes a part of the refrigerant flow path 16.
  • the refrigerant is heated by heat exchange between the refrigerant in the refrigerant flow path 16 and the exhaust gas passing through the exhaust passage 18, thereby generating refrigerant vapor.
  • the exhaust gas that has passed through the steam generator 11 is discharged into the atmosphere through the exhaust passage 18.
  • the refrigerant flow path 16 of the present embodiment includes a first flow path 19 that connects the refrigerant outlet of the steam generator 11 and the refrigerant inlet of the expander 12 to each other.
  • the expander 12 has a rotating body (not shown) driven by high-temperature and high-pressure steam. When the high-temperature and high-pressure steam rotates the rotating body, the expander 12 obtains a rotational force on the output shaft.
  • the refrigerant flow path passing through the inside of the expander 12 constitutes a part of the refrigerant flow path 16.
  • the expander 12 of the present embodiment is a scroll expander, and the rotating body is a movable scroll that can turn with respect to the fixed scroll.
  • the expander 12 converts the pressure energy of the refrigerant vapor into mechanical energy by decompressing and expanding the refrigerant vapor in a substantially adiabatic state.
  • the output shaft of the expander 12 is connected to a load 20 (for example, a generator), and the rotational force obtained in the expander 12 is output to the load 20.
  • the refrigerant channel 16 of the present embodiment includes a second channel 21 that connects the refrigerant outlet of the expander 12 and the refrigerant inlet of the condenser 13 to each other.
  • the condenser 13 is a device that cools and condenses the vapor refrigerant flowing out of the expander 12, and a flow path (not shown) through which the refrigerant passes is provided inside the condenser 13.
  • the refrigerant flow path in the condenser 13 constitutes a part of the refrigerant flow path 16.
  • the refrigerant flow path 16 of the present embodiment includes a third flow path 22 that connects the refrigerant outlet of the condenser 13 and the refrigerant inlet of the receiver tank 14 to each other. At the refrigerant outlet of the condenser 13, the refrigerant condensed through the condenser 13 flows out to the receiver tank 14 on the downstream side.
  • the receiver tank 14 is a tank that stores the refrigerant that has passed through the condenser 13.
  • the refrigerant flow path in the receiver tank 14 constitutes a part of the refrigerant flow path 16.
  • gas-liquid separation of the condensed refrigerant after passing through the condenser 13 is performed, and the liquid refrigerant (liquid refrigerant) is temporarily stored in the receiver tank 14.
  • the refrigerant flow path 16 of the present embodiment includes a fourth flow path 25 that connects the refrigerant outlet of the receiver tank 14 and the refrigerant inlet of the pump 15 to each other.
  • the liquid refrigerant stored in the receiver tank 14 is sucked into the pump 15 through the fourth flow path 25.
  • the receiver tank 14 has a cylindrical shape, and includes a cylindrical peripheral wall portion 14A, a disk-shaped bottom plate portion 14B, and a disk-shaped upper plate portion 14C.
  • An internal space surrounded by the peripheral wall portion 14A, the bottom plate portion 14B, and the upper plate portion 14C functions as a storage space for storing the refrigerant and a flow path through which the refrigerant passes, and constitutes a part of the refrigerant flow path 16.
  • the upper plate portion 14C is formed with a refrigerant inlet 14D and a refrigerant outlet 14E.
  • a pipe 26 connected to the inlet 14D and a pipe 27 connected to the outlet 14E are provided in the receiver tank 14.
  • the pipe 26 is provided in the upper part in the receiver tank 14.
  • the pipe 27 extends downward in the receiver tank 14. The lower end of the pipe 27 is immersed in the liquid refrigerant stored in the receiver tank 14.
  • the inlet 14 ⁇ / b> D is connected to the condenser 13 via the third flow path 22.
  • the outlet 14 ⁇ / b> E is connected to the pump 15 through the fourth flow path 25.
  • the space inside the receiver tank 14 functions as a part of the refrigerant flow path 16.
  • the flow path in the receiver tank 14 has a sufficiently large flow path cross-sectional area as compared with the other refrigerant flow paths 16.
  • the flow path in the receiver tank 14 has a length in the flow path direction in which there is no sudden expansion and contraction of the flow path cross-sectional area. That is, the channel cross-sectional area of the receiver tank 14 is substantially constant.
  • the flow path cross-sectional area corresponds to the size when the cross-sectional area of the pipe 27 is subtracted from the cross-sectional area when the receiver tank 14 is cut in the horizontal direction in FIG. 2 corresponds to the length of the receiver tank 14 in the vertical direction, that is, in the vertical direction.
  • a desiccant 23 and an oxygen remover 24 are accommodated in the space inside the receiver tank 14.
  • An oxygen removing agent 24 is disposed near the middle in the vertical direction of the peripheral wall portion 14A.
  • a desiccant 23 is disposed above the oxygen scavenger 24, that is, upstream.
  • the desiccant 23 is horizontally disposed in a state of being filled in a wire net-like case, and is attached to the peripheral wall portion 14A.
  • a through hole 23A for inserting a pipe 27 disposed in the vertical direction is formed.
  • the desiccant 23 removes moisture in the refrigerant.
  • Below the desiccant 23, an oxygen remover 24 is disposed below the desiccant 23, an oxygen remover 24 is disposed.
  • the oxygen scavenger 24 is disposed horizontally, for example, with iron powder (Fe) interspersed on the surface of a structure having a honeycomb structure, and is attached to the peripheral wall portion 14A.
  • Fe iron powder
  • the oxygen scavenger 24 is a scavenger for removing oxygen contained in the refrigerant, and is specifically an oxygen scavenger or an oxygen adsorbent.
  • An oxygen scavenger removes oxygen by a chemical reaction (oxidation) and includes, for example, iron powder (Fe).
  • the oxygen adsorbent is one that removes oxygen by adsorption of oxygen that is not a chemical reaction, and includes, for example, zeolite.
  • an oxygen scavenger is used as the oxygen scavenger 24.
  • a through hole 24A is formed for inserting a pipe 27 disposed so as to extend in the vertical direction.
  • the oxygen that has entered circulates through the refrigerant flow path 16 in a state of being contained in the refrigerant.
  • the refrigerant and the oil may be deteriorated by oxygen contained in the refrigerant.
  • the oxygen remover 24 is for removing oxygen contained in the refrigerant.
  • the refrigerant that has flowed into the receiver tank 14 through the pipe 26 provided at the inlet 14D is separated into liquid and gas while falling downward.
  • the liquid refrigerant is stored below the receiver tank 14.
  • the pump 15 When the pump 15 is driven, the liquid refrigerant stored in the lower portion of the receiver tank 14 is sucked from the lower end of the pipe 27, moves upward in the pipe 27, and is sucked into the pump 15 through the fourth flow path 25. Is done.
  • the liquid refrigerant falls downward in the receiver tank 14, the liquid refrigerant passes through the desiccant 23 and the oxygen removing agent 24 arranged in the receiver tank 14 from the upper side to the lower side, and is absorbed in the refrigerant by the desiccant 23. The moisture contained in is removed.
  • oxygen contained in the refrigerant is removed by the oxygen remover 24.
  • the pump 15 sucks and discharges the refrigerant flowing out from the receiver tank 14 and pumps it to the steam generator 11.
  • an electric gear pump is employed.
  • the flow path through which the refrigerant passes inside the pump 15 corresponds to a part of the refrigerant flow path 16.
  • the refrigerant channel 16 of this embodiment includes a fifth channel 28 that connects the refrigerant outlet of the pump 15 and the refrigerant inlet of the steam generator 11 to each other.
  • the refrigerant can circulate through the refrigerant flow path 16 in the order of the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, and the pump 15.
  • exhaust gas passes from the engine 17 through the exhaust passage 18 and through the steam generator 11.
  • the pump 15 When the pump 15 is driven, the refrigerant flows in the order of the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, and the pump 15 to circulate through the refrigerant flow path 16.
  • the refrigerant becomes high-temperature and high-pressure steam by heat exchange with the exhaust gas.
  • the refrigerant vapor flows out to the expander 12 through the first flow path 19.
  • the steam flowing into the expander 12 is decompressed and expanded in a substantially adiabatic state in the expander 12, the pressure energy of the steam is converted into mechanical energy, and the rotational force of the expander 12 is output to the load 20.
  • the condenser 13 the refrigerant vapor is cooled and condensed by heat exchange with air.
  • the condensed refrigerant is separated into a liquid refrigerant and a gaseous refrigerant, and the liquid refrigerant is temporarily stored in the receiver tank 14.
  • the condensed refrigerant flowing out from the pipe 26 is separated into liquid refrigerant and gaseous refrigerant while falling downward, and the liquid refrigerant is stored below the receiver tank 14.
  • the liquid refrigerant stored below the receiver tank 14 is sucked from the lower end of the pipe 27 and moves upward in the pipe 27.
  • the liquid refrigerant falls downward in the receiver tank 14, the liquid refrigerant passes through the desiccant 23 and the oxygen removing agent 24 disposed in the receiver tank 14. At this time, moisture contained in the refrigerant is removed by the desiccant 23, and oxygen contained in the refrigerant is removed by the oxygen remover 24.
  • the space inside the receiver tank 14 functions as a part of the refrigerant flow path 16.
  • the flow path in the receiver tank 14 has a sufficiently large flow path cross-sectional area as compared with the other refrigerant flow paths 16.
  • the flow path in the receiver tank 14 has a length in the flow path direction in which there is no sudden expansion and contraction of the flow path cross-sectional area.
  • a special container is not required for installing the oxygen removing agent 24, and the receiver tank 14 can be used as it is as a container for the oxygen removing agent 24, so that installation space can be reduced. is there.
  • the liquid refrigerant stored in the receiver tank 14 flows out to the pump 15 through the pipe 27 and the fourth flow path 25.
  • the liquid refrigerant sucked into the pump 15 through the pipe 27 and the fourth flow path 25 is a saturated liquid, generation of cavitation in the pump 15 can be prevented.
  • the pump 15 sucks and discharges the liquid refrigerant flowing out from the receiver tank 14 and pumps it to the steam generator 11.
  • the flowing liquid refrigerant becomes high-temperature and high-pressure steam by heat exchange with the exhaust gas.
  • the inflowing liquid refrigerant does not contain oxygen, it can be prevented from being deteriorated by the oxidizing action of the refrigerant and oil by oxygen.
  • the Rankine cycle device 10 according to the first embodiment has the following operational effects.
  • the flow path in the receiver tank 14 has a sufficiently large flow path cross-sectional area as compared to the other refrigerant flow paths 16. ing. Further, the flow path in the receiver tank 14 has a length in the flow path direction in which there is no sudden expansion and contraction of the flow path cross-sectional area. That is, the channel cross-sectional area of the receiver tank 14 is substantially constant.
  • the flow rate of the liquid refrigerant passing through the oxygen removing agent 24 can be reduced to reduce the pressure loss, which is caused by the pressure loss on the suction side of the pump 15. Generation of cavitation can be prevented.
  • a separate container is not required to install the oxygen remover 24 separately from the receiver tank 14, and the receiver tank 14 can be used as it is as a container for the oxygen remover 24, so that the installation space can be reduced. It is.
  • the inflowing liquid refrigerant becomes high-temperature and high-pressure steam by heat exchange with the exhaust gas.
  • the inflowing liquid refrigerant does not contain oxygen, it can be prevented from being deteriorated by the oxidizing action of the refrigerant and oil by oxygen.
  • the oxygen remover 24 Since the desiccant 23 is provided on the upstream side of the oxygen remover 24 in the receiver tank 14, the oxygen remover 24 is allowed to pass after the moisture contained in the liquid refrigerant is removed by the desiccant 23. it can. Therefore, since the liquid refrigerant at the time of passing through the oxygen remover 24 has moisture removed, oxygen contained in the liquid refrigerant can be efficiently removed.
  • oxygen scavenger iron powder
  • oxygen adsorbent zeolite
  • the oxygen removing agent 24 contains iron powder, it is possible to remove oxygen contained in the refrigerant using an oxidation reaction between oxygen and iron powder.
  • the Rankine cycle apparatus 30 includes a steam generator 11, an expander 12, a condenser 13, a receiver tank 14, and a pump 15.
  • the Rankine cycle apparatus 30 includes a refrigerant flow path 16 that sequentially connects the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, and the pump 15.
  • the refrigerant as the working fluid flowing through the refrigerant flow path 16 flows through the refrigerant flow path 16 in the order of the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, and the pump 15 by the operation of the pump 15. .
  • an outlet 14E through which a liquid refrigerant flows out toward the pump 15 is provided at the lower part of the receiver tank 14, that is, at the bottom.
  • a refrigerant inlet 14 ⁇ / b> D is formed in the upper plate portion 14 ⁇ / b> C of the receiver tank 14.
  • a pipe 26 connected to the inflow port 14D is attached downward as in the first embodiment.
  • a refrigerant outlet 14E is formed in the bottom plate portion 14B of the receiver tank 14.
  • a pipe 31 connected to the outlet 14E is attached upward.
  • the inlet 14 ⁇ / b> D is connected to the condenser 13 via the third flow path 22.
  • the outlet 14 ⁇ / b> E is connected to the pump 15 through the fourth flow path 25.
  • a desiccant 32 and an oxygen remover 33 are disposed in the space inside the receiver tank 14, and the oxygen remover 33 is disposed near the middle in the vertical direction of the peripheral wall portion 14A.
  • a desiccant 32 is disposed on the upstream side.
  • the desiccant 32 is horizontally disposed in a state of being filled in a wire net-like case, and is attached to the peripheral wall portion 14A.
  • a through hole is not formed at the center of the desiccant 32.
  • an oxygen scavenger 33 is disposed below the desiccant 32.
  • the oxygen scavenger 33 is disposed horizontally, for example, with iron powder (Fe) scattered on the surface of a structure having a honeycomb structure, and is attached to the peripheral wall portion 14A.
  • a through hole is not formed in the center of the oxygen removing agent 33.
  • the configurations of the desiccant 32 and the oxygen removing agent 33 are the same as those in the first embodiment except that the through hole is not formed at the center of each.
  • the pipe 31 connected to the outlet 14 ⁇ / b> E is inserted into the refrigerant stored in the receiver tank 14 from below.
  • the pipe 31 does not pass through the desiccant 32 and the oxygen remover 33 provided in the receiver tank 14.
  • the outlet 14 ⁇ / b> E through which the liquid refrigerant flows toward the pump 15 is provided in the lower portion, that is, the bottom portion of the receiver tank 14.
  • the pipe 31 connected to the outlet 14E is inserted from below into the refrigerant stored in the receiver tank 14 without passing through the oxygen removing agent 33 provided in the receiver tank 14. Therefore, the cross-sectional area of the flow path that can be covered with the oxygen removing agent 33 can be expanded as compared with the first embodiment, and the removal efficiency of oxygen contained in the refrigerant can be improved.
  • Rankine cycle devices 10 and 30 are embodied as in-vehicle Rankine cycle devices mounted on a vehicle, but the Rankine cycle devices are not limited to in-vehicle use.
  • Rankine cycle apparatuses 10 and 30 may be Rankine cycle apparatuses installed on the ground, for example.
  • the internal combustion engine is simply described as the engine 17, but the internal combustion engine may be a gasoline engine or a diesel engine.
  • the desiccant 23 or 32 is provided on the upstream side of the oxygen removing agent 24 or 33 in the receiver tank 14, but on the downstream side of the oxygen removing agent 24 or 33 in the receiver tank 14.
  • a desiccant 23 or 32 may be provided.
  • the desiccant 23 or 32 is provided on the upstream side of the oxygen removing agent 24 or 33 in the receiver tank 14. Instead of this, even if one member in which the oxygen remover 24 and the desiccant 23 are mixed or one member in which the oxygen remover 33 and the desiccant 32 are mixed is disposed in the receiver tank 14. good. In this case, the installation space and the number of parts can be reduced.
  • the generator is cited as an example of the load 20, but the load 20 may be an engine, and is not particularly limited as long as the rotational force output from the expander 12 can be used.
  • the expander 12 is a scroll type expander.
  • the expander 12 is not limited to the scroll type and can be of any type, for example, a vane type expander or a turbine type expander. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

A Rankine cycle device (10) is provided with: a vapor generator (11) for generating the vapor of operating fluid; an expander (12) for expanding the vapor of the operating fluid; a condenser (13) for condensing the vapor of the operating fluid, the vapor flowing from the expander; a receiver tank (14) for holding the operating fluid flowing out of the condenser; a pump (15) for sending under pressure the operating fluid in a liquid state to the vapor generator, the operating fluid in a liquid state being held in the receiver tank; operating fluid flow passages (19, 21, 22, 25, 28) for sequentially connecting the vapor generator, the expander, the condenser, the receiver tank, and the pump; and an oxygen elimination agent (24) received in the receiver tank and eliminating oxygen contained in the operating fluid.

Description

ランキンサイクル装置Rankine cycle equipment
 本発明は、ランキンサイクル装置に関し、特に、作動流体から酸素を除去する酸素除去剤を備えたランキンサイクル装置に関する。 The present invention relates to a Rankine cycle apparatus, and more particularly, to a Rankine cycle apparatus provided with an oxygen remover that removes oxygen from a working fluid.
 廃熱を有効利用する装置として、ランキンサイクル装置が知られている。 A Rankine cycle device is known as a device that effectively uses waste heat.
 ランキンサイクル装置は、作動流体の蒸気を生成する蒸気発生器と、作動流体の蒸気を膨張させる膨張機と、膨張機からの作動流体を凝縮する凝縮器と、凝縮器から流出する作動流体を蒸気発生器へ圧送するポンプと、蒸気発生器、膨張機、凝縮器及びポンプを順次接続する作動流体流路とを備える。 The Rankine cycle device includes a steam generator that generates a working fluid steam, an expander that expands the working fluid steam, a condenser that condenses the working fluid from the expander, and a working fluid that flows out of the condenser. A pump for pumping to the generator, and a working fluid flow path for sequentially connecting the steam generator, the expander, the condenser and the pump.
 通常、作動流体流路を流通する作動流体には、膨張機やポンプにおける摺動部を潤滑するオイルが含まれている。 Normally, the working fluid flowing through the working fluid flow path contains oil that lubricates the sliding parts of the expander and the pump.
 外気中の酸素は作動流体流路を形成する配管の接合部から作動流体流路内に入り込む。このため、作動流体には酸素が含まれ、酸素を含む作動流体は作動流体流路を循環する。この場合、作動流体及びオイルが、作動流体に含まれた酸素による酸化作用によって劣化する恐れがある。このため、作動流体に含まれた酸素を除去するために、作動流体流路に酸素除去剤が配置されることがある。 Oxygen in the outside air enters the working fluid channel from the joint of the piping that forms the working fluid channel. For this reason, the working fluid contains oxygen, and the working fluid containing oxygen circulates in the working fluid flow path. In this case, there is a possibility that the working fluid and the oil are deteriorated due to an oxidizing action by oxygen contained in the working fluid. For this reason, in order to remove oxygen contained in the working fluid, an oxygen removing agent may be disposed in the working fluid flow path.
 例えば、特許文献1に開示された廃熱回収機関では、凝縮器出口と高圧ポンプ入口との間に水の浄化処理を行う水浄化手段が配置されている。また、水浄化手段は、水の溶存酸素除去処理を行うことができる。 For example, in the waste heat recovery engine disclosed in Patent Document 1, water purification means for purifying water is disposed between the condenser outlet and the high-pressure pump inlet. Moreover, the water purification means can perform the dissolved oxygen removal process of water.
特開2003-214102号公報JP 2003-214102 A
 しかしながら、特許文献1に開示された廃熱回収機関では、高圧ポンプの吸入側におけるキャビテーションを防止するために、水浄化手段を通過する水の流速を下げて圧力損失を軽減する必要がある。そのためには流路断面積の大きな容器が必要となる。この場合、容器の出入り口における流路断面積の急拡大及び急収縮による圧力損失を回避するために、容器は作動流体の流れ方向に対しても一定の長さを必要とする。その結果、容器の容量が増大し、容器の設置スペースが拡大してしまう問題がある。 However, in the waste heat recovery engine disclosed in Patent Document 1, in order to prevent cavitation on the suction side of the high-pressure pump, it is necessary to reduce the pressure loss by reducing the flow rate of the water passing through the water purification means. For this purpose, a container having a large channel cross-sectional area is required. In this case, in order to avoid pressure loss due to sudden expansion and contraction of the channel cross-sectional area at the entrance and exit of the container, the container needs to have a certain length with respect to the flow direction of the working fluid. As a result, there is a problem that the capacity of the container is increased and the installation space of the container is increased.
 本発明の目的は、作動流体が酸素除去剤を通過することによる圧力損失を軽減できると共に、設置スペースの抑制を図ることが可能なランキンサイクル装置の提供にある。 An object of the present invention is to provide a Rankine cycle apparatus capable of reducing pressure loss due to the working fluid passing through the oxygen removing agent and reducing the installation space.
 上記目的を達成するために、本発明の一態様は、作動流体の蒸気を生成する蒸気発生器と、前記作動流体の蒸気を膨張させる膨張機と、前記膨張機からの前記作動流体の蒸気を凝縮する凝縮器と、前記凝縮器から流出される前記作動流体を貯留するレシーバタンクと、前記レシーバタンクに貯留された液状の前記作動流体を前記蒸気発生器へ圧送するポンプと、前記蒸気発生器、前記膨張機、前記凝縮器、前記レシーバタンク及び前記ポンプを順次接続する作動流体流路と、前記レシーバタンク内に収容され、前記作動流体に含まれる酸素を除去する酸素除去剤とを備える。 In order to achieve the above object, according to one aspect of the present invention, a steam generator that generates steam of a working fluid, an expander that expands the steam of the working fluid, and the steam of the working fluid from the expander. A condenser for condensing, a receiver tank for storing the working fluid flowing out from the condenser, a pump for pumping the liquid working fluid stored in the receiver tank to the steam generator, and the steam generator And a working fluid flow path for sequentially connecting the expander, the condenser, the receiver tank, and the pump, and an oxygen removing agent that is accommodated in the receiver tank and removes oxygen contained in the working fluid.
 上記構成によれば、ポンプが作動すると、作動流体は、蒸気発生器、膨張機、凝縮器、レシーバタンク、ポンプの順に作動流体流路を循環し、レシーバタンク内ではレシーバタンク内に収容された酸素除去剤によって、作動流体に含まれる酸素が除去される。レシーバタンクは、凝縮器で凝縮された冷媒の気液分離を行い、分離された液冷媒を貯留する機能を有しており、流路断面積及び作動流体の流れ方向の長さの両方とも大きな容器である。 According to the above configuration, when the pump is operated, the working fluid circulates in the working fluid flow path in the order of the steam generator, the expander, the condenser, the receiver tank, and the pump, and is accommodated in the receiver tank in the receiver tank. Oxygen contained in the working fluid is removed by the oxygen removing agent. The receiver tank has a function of performing gas-liquid separation of the refrigerant condensed in the condenser and storing the separated liquid refrigerant, and both the cross-sectional area of the flow path and the length of the working fluid in the flow direction are large. It is a container.
 よって、酸素除去剤をレシーバタンク内に収容することにより、酸素除去剤を通過する作動流体の流速を下げて圧力損失を軽減することができる。また、酸素除去剤を設置するための特別の容器を必要とせず、設置スペースの抑制を図ることが可能である。 Therefore, by storing the oxygen scavenger in the receiver tank, the flow rate of the working fluid passing through the oxygen scavenger can be lowered to reduce the pressure loss. Moreover, it is possible to reduce the installation space without requiring a special container for installing the oxygen scavenger.
 前記レシーバタンクは、前記ポンプへ向けて液体の作動流体を流出する流出口を有し、前記流出口は前記レシーバタンクの下部に設けられていることが好ましい。 It is preferable that the receiver tank has an outlet for flowing a liquid working fluid toward the pump, and the outlet is provided at a lower portion of the receiver tank.
 上記構成によれば、流出口はレシーバタンクの下部に設けられているので、流出口をレシーバタンクの上部に設けた場合と比較して、酸素除去剤で覆うことのできる流路断面積を拡張可能である。 According to the above configuration, since the outlet is provided at the lower part of the receiver tank, the cross-sectional area of the channel that can be covered with the oxygen removing agent is expanded compared to the case where the outlet is provided at the upper part of the receiver tank. Is possible.
 上記態様は、前記レシーバタンク内における前記酸素除去剤の上流側に設けられた乾燥剤を更に備えることが好ましい。 The above aspect preferably further includes a desiccant provided upstream of the oxygen scavenger in the receiver tank.
 上記構成によれば、レシーバタンク内における酸素除去剤の上流側に乾燥剤が設けられているので、乾燥剤によって作動流体に含まれる水分を除去した後、酸素除去剤を通過させることができる。よって、酸素除去剤を通過する際の作動流体は、水分が除去されているため、作動流体に含まれる酸素を効率よく除去可能である。 According to the above configuration, since the desiccant is provided on the upstream side of the oxygen remover in the receiver tank, the oxygen remover can be passed after the moisture contained in the working fluid is removed by the desiccant. Therefore, since the water is removed from the working fluid when passing through the oxygen removing agent, oxygen contained in the working fluid can be efficiently removed.
 前記酸素除去剤が鉄粉を含むことが好ましい。 The oxygen scavenger preferably contains iron powder.
 この構成によれば、酸素除去剤が鉄粉を含むため、酸素と鉄粉との酸化反応を利用して作動流体中に含まれる酸素を除去可能である。 According to this configuration, since the oxygen removing agent contains iron powder, oxygen contained in the working fluid can be removed using an oxidation reaction between oxygen and iron powder.
第1の実施形態に係るランキンサイクル装置の構成図である。It is a lineblock diagram of a Rankine cycle device concerning a 1st embodiment. 図1の要部拡大断面図である。It is a principal part expanded sectional view of FIG. 第2の実施形態に係るランキンサイクル装置の構成図である。It is a lineblock diagram of a Rankine cycle device concerning a 2nd embodiment. 図3の要部拡大断面図である。It is a principal part expanded sectional view of FIG.
 (第1の実施形態)
 以下、第1の実施形態に係るランキンサイクル装置について図面を参照して説明する。本実施形態のランキンサイクル装置は車両に搭載される車載用ランキンサイクル装置である。
(First embodiment)
The Rankine cycle device according to the first embodiment will be described below with reference to the drawings. The Rankine cycle device of the present embodiment is a vehicle-mounted Rankine cycle device mounted on a vehicle.
 図1に示すように、ランキンサイクル装置10は、蒸気発生器11、膨張機12、凝縮器13、レシーバタンク14及びポンプ15を有する。ランキンサイクル装置10は、蒸気発生器11、膨張機12、凝縮器13、レシーバタンク14及びポンプ15を順次接続する冷媒流路16を有する。 As shown in FIG. 1, the Rankine cycle apparatus 10 includes a steam generator 11, an expander 12, a condenser 13, a receiver tank 14, and a pump 15. The Rankine cycle apparatus 10 includes a refrigerant flow path 16 that sequentially connects a steam generator 11, an expander 12, a condenser 13, a receiver tank 14, and a pump 15.
 冷媒流路16は作動流体流路に相当し、冷媒流路16を流通する作動流体としての冷媒は、ポンプ15の作動により、蒸気発生器11、膨張機12、凝縮器13、レシーバタンク14、ポンプ15の順に冷媒流路16を循環して流れる。 The refrigerant flow path 16 corresponds to a working fluid flow path, and the refrigerant as the working fluid flowing through the refrigerant flow path 16 is activated by the operation of the pump 15, and the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, The refrigerant flows in the order of the pump 15 through the refrigerant flow path 16.
 本実施形態のランキンサイクル装置10では、冷媒にオイルが含まれており、冷媒に含まれるオイルは冷媒と共に冷媒流路16を流通する。冷媒に含まれるオイルは、膨張機12およびポンプ15の摺動部における潤滑、密封、冷却等の機能を果たす。 In the Rankine cycle device 10 of the present embodiment, oil is contained in the refrigerant, and the oil contained in the refrigerant flows through the refrigerant flow path 16 together with the refrigerant. The oil contained in the refrigerant fulfills functions such as lubrication, sealing, and cooling in the sliding portions of the expander 12 and the pump 15.
 蒸気発生器11は、エンジン17から排気通路18を通って排出される排気ガスを熱源(図示せず)として冷媒の蒸気を発生させる装置である。蒸気発生器11の内部を通る冷媒の流路は、冷媒流路16の一部を構成する。蒸気発生器11では、冷媒流路16の冷媒と排気通路18を通る排気ガスとの間の熱交換により冷媒は加熱され、それにより冷媒の蒸気が生成される。蒸気発生器11を通過した排気ガスは排気通路18を通じて大気中へ排出される。本実施形態の冷媒流路16は、蒸気発生器11の冷媒出口と膨張機12の冷媒入口とを互いに接続する第1流路19を備えている。 The steam generator 11 is a device that generates refrigerant vapor using exhaust gas discharged from the engine 17 through the exhaust passage 18 as a heat source (not shown). The refrigerant flow path passing through the interior of the steam generator 11 constitutes a part of the refrigerant flow path 16. In the steam generator 11, the refrigerant is heated by heat exchange between the refrigerant in the refrigerant flow path 16 and the exhaust gas passing through the exhaust passage 18, thereby generating refrigerant vapor. The exhaust gas that has passed through the steam generator 11 is discharged into the atmosphere through the exhaust passage 18. The refrigerant flow path 16 of the present embodiment includes a first flow path 19 that connects the refrigerant outlet of the steam generator 11 and the refrigerant inlet of the expander 12 to each other.
 膨張機12は高温かつ高圧の蒸気により駆動される回転体(図示せず)を有している。高温かつ高圧の蒸気が回転体を回転することにより、膨張機12は出力軸において回転力を得る。膨張機12の内部を通る冷媒の流路は、冷媒流路16の一部を構成する。本実施形態の膨張機12はスクロール式膨張機であり、回転体は固定スクロールに対して旋回可能な可動スクロールである。膨張機12は、冷媒の蒸気をほぼ断熱状態で減圧膨張させることにより冷媒の蒸気が有する圧力エネルギーを機械的エネルギーに変換する。膨張機12の出力軸は負荷20(例えば、発電機)に連結されており、膨張機12において得られる回転力は負荷20に出力される。本実施形態の冷媒流路16は、膨張機12の冷媒出口と凝縮器13の冷媒入口とを互いに接続する第2流路21を備えている。 The expander 12 has a rotating body (not shown) driven by high-temperature and high-pressure steam. When the high-temperature and high-pressure steam rotates the rotating body, the expander 12 obtains a rotational force on the output shaft. The refrigerant flow path passing through the inside of the expander 12 constitutes a part of the refrigerant flow path 16. The expander 12 of the present embodiment is a scroll expander, and the rotating body is a movable scroll that can turn with respect to the fixed scroll. The expander 12 converts the pressure energy of the refrigerant vapor into mechanical energy by decompressing and expanding the refrigerant vapor in a substantially adiabatic state. The output shaft of the expander 12 is connected to a load 20 (for example, a generator), and the rotational force obtained in the expander 12 is output to the load 20. The refrigerant channel 16 of the present embodiment includes a second channel 21 that connects the refrigerant outlet of the expander 12 and the refrigerant inlet of the condenser 13 to each other.
 凝縮器13は、膨張機12から流出した蒸気の冷媒を冷却して凝縮する装置であり、凝縮器13の内部には冷媒が通過する流路(図示せず)が設けられている。凝縮器13内の冷媒流路は、冷媒流路16の一部を構成する。本実施形態の冷媒流路16は、凝縮器13の冷媒出口とレシーバタンク14の冷媒入口とを互いに接続する第3流路22を備えている。凝縮器13の冷媒出口では、凝縮器13を通過して凝縮された冷媒が下流側のレシーバタンク14に流出される。 The condenser 13 is a device that cools and condenses the vapor refrigerant flowing out of the expander 12, and a flow path (not shown) through which the refrigerant passes is provided inside the condenser 13. The refrigerant flow path in the condenser 13 constitutes a part of the refrigerant flow path 16. The refrigerant flow path 16 of the present embodiment includes a third flow path 22 that connects the refrigerant outlet of the condenser 13 and the refrigerant inlet of the receiver tank 14 to each other. At the refrigerant outlet of the condenser 13, the refrigerant condensed through the condenser 13 flows out to the receiver tank 14 on the downstream side.
 レシーバタンク14は凝縮器13を通過した冷媒を貯留するタンクである。レシーバタンク14内の冷媒流路は、冷媒流路16の一部を構成する。レシーバタンク14では、凝縮器13通過後の凝縮された冷媒の気液分離が行われ、液状の冷媒(液冷媒)はレシーバタンク14の内部に一時的に貯留される。 The receiver tank 14 is a tank that stores the refrigerant that has passed through the condenser 13. The refrigerant flow path in the receiver tank 14 constitutes a part of the refrigerant flow path 16. In the receiver tank 14, gas-liquid separation of the condensed refrigerant after passing through the condenser 13 is performed, and the liquid refrigerant (liquid refrigerant) is temporarily stored in the receiver tank 14.
 本実施形態の冷媒流路16は、レシーバタンク14の冷媒出口とポンプ15の冷媒入口とを互いに接続する第4流路25を備えている。レシーバタンク14の内部に貯留された液冷媒は、第4流路25を介してポンプ15に吸入される。 The refrigerant flow path 16 of the present embodiment includes a fourth flow path 25 that connects the refrigerant outlet of the receiver tank 14 and the refrigerant inlet of the pump 15 to each other. The liquid refrigerant stored in the receiver tank 14 is sucked into the pump 15 through the fourth flow path 25.
 図2に示すように、レシーバタンク14は、円筒形状を有し、円筒状の周壁部14A、円板状の底板部14B及び円板状の上板部14Cを有している。周壁部14A、底板部14B及び上板部14Cで囲まれた内部の空間は、冷媒を貯留する貯留空間および冷媒が通過する流路として機能し、冷媒流路16の一部を構成する。 As shown in FIG. 2, the receiver tank 14 has a cylindrical shape, and includes a cylindrical peripheral wall portion 14A, a disk-shaped bottom plate portion 14B, and a disk-shaped upper plate portion 14C. An internal space surrounded by the peripheral wall portion 14A, the bottom plate portion 14B, and the upper plate portion 14C functions as a storage space for storing the refrigerant and a flow path through which the refrigerant passes, and constitutes a part of the refrigerant flow path 16.
 上板部14Cには、冷媒の流入口14Dと冷媒の流出口14Eとが形成されている。レシーバタンク14内には、流入口14Dに接続されるパイプ26と、流出口14Eに接続されるパイプ27とが設けられている。パイプ26は、レシーバタンク14内における上部に設けられている。パイプ27は、レシーバタンク14内の下方に向けて延びている。パイプ27の下端部がレシーバタンク14内に貯留された液冷媒に浸漬している。 The upper plate portion 14C is formed with a refrigerant inlet 14D and a refrigerant outlet 14E. In the receiver tank 14, a pipe 26 connected to the inlet 14D and a pipe 27 connected to the outlet 14E are provided. The pipe 26 is provided in the upper part in the receiver tank 14. The pipe 27 extends downward in the receiver tank 14. The lower end of the pipe 27 is immersed in the liquid refrigerant stored in the receiver tank 14.
 流入口14Dは第3流路22を介して凝縮器13と接続されている。流出口14Eは第4流路25を介してポンプ15と接続されている。 The inlet 14 </ b> D is connected to the condenser 13 via the third flow path 22. The outlet 14 </ b> E is connected to the pump 15 through the fourth flow path 25.
 レシーバタンク14の内部の空間は、冷媒流路16の一部として機能する。レシーバタンク14の内部の空間を冷媒流路16の一部としてみたとき、レシーバタンク14内の流路は、他の冷媒流路16と比較して充分大きい流路断面積を有している。また、レシーバタンク14内の流路は、流路断面積の急拡大及び急収縮がない流路方向の長さを有している。即ち、レシーバタンク14の流路断面積はほぼ一定である。なお、流路断面積は、図2においてレシーバタンク14を水平方向に切断したときの断面積からパイプ27の断面積を差し引いたときの大きさに該当し、冷媒の流れ方向長さは、図2においてレシーバタンク14の上下方向、即ち垂直方向の長さに該当する。 The space inside the receiver tank 14 functions as a part of the refrigerant flow path 16. When the space inside the receiver tank 14 is considered as a part of the refrigerant flow path 16, the flow path in the receiver tank 14 has a sufficiently large flow path cross-sectional area as compared with the other refrigerant flow paths 16. Further, the flow path in the receiver tank 14 has a length in the flow path direction in which there is no sudden expansion and contraction of the flow path cross-sectional area. That is, the channel cross-sectional area of the receiver tank 14 is substantially constant. The flow path cross-sectional area corresponds to the size when the cross-sectional area of the pipe 27 is subtracted from the cross-sectional area when the receiver tank 14 is cut in the horizontal direction in FIG. 2 corresponds to the length of the receiver tank 14 in the vertical direction, that is, in the vertical direction.
 レシーバタンク14の内部の空間には、乾燥剤23及び酸素除去剤24が収容されている。周壁部14Aにおける垂直方向の中間付近に酸素除去剤24が配置されている。酸素除去剤24の上側、即ち上流側に乾燥剤23が配置されている。乾燥剤23は、図示しないが金網状のケースに充填された状態で水平に配置され、周壁部14Aに取り付けられている。乾燥剤23の中心には、垂直方向に配設されたパイプ27を挿通するための貫通孔23Aが形成されている。乾燥剤23によって冷媒中の水分の除去が行われる。乾燥剤23の下方には、酸素除去剤24が配置されている。 A desiccant 23 and an oxygen remover 24 are accommodated in the space inside the receiver tank 14. An oxygen removing agent 24 is disposed near the middle in the vertical direction of the peripheral wall portion 14A. A desiccant 23 is disposed above the oxygen scavenger 24, that is, upstream. Although not shown, the desiccant 23 is horizontally disposed in a state of being filled in a wire net-like case, and is attached to the peripheral wall portion 14A. At the center of the desiccant 23, a through hole 23A for inserting a pipe 27 disposed in the vertical direction is formed. The desiccant 23 removes moisture in the refrigerant. Below the desiccant 23, an oxygen remover 24 is disposed.
 酸素除去剤24は、図示しないが、例えば、ハニカム構造を有する構造体の表面に鉄粉(Fe)をちりばめた状態で水平に配置され、周壁部14Aに取り付けられている。 Although not shown, the oxygen scavenger 24 is disposed horizontally, for example, with iron powder (Fe) interspersed on the surface of a structure having a honeycomb structure, and is attached to the peripheral wall portion 14A.
 酸素除去剤24は、冷媒中に含まれる酸素を除去するための除去剤であり、具体的には脱酸素剤又は酸素吸着剤である。脱酸素剤とは、化学反応(酸化)により酸素を除去するものであり、例えば、鉄粉(Fe)を含む。酸素吸着剤とは、化学反応ではない酸素の吸着により酸素を除去するものであり、例えば、ゼオライトを含む。本実施形態では、酸素除去剤24として脱酸素剤が用いられている。 The oxygen scavenger 24 is a scavenger for removing oxygen contained in the refrigerant, and is specifically an oxygen scavenger or an oxygen adsorbent. An oxygen scavenger removes oxygen by a chemical reaction (oxidation) and includes, for example, iron powder (Fe). The oxygen adsorbent is one that removes oxygen by adsorption of oxygen that is not a chemical reaction, and includes, for example, zeolite. In the present embodiment, an oxygen scavenger is used as the oxygen scavenger 24.
 酸素除去剤24の中心には、垂直方向に延びるように配設されたパイプ27を挿通するための貫通孔24Aが形成されている。 In the center of the oxygen removing agent 24, a through hole 24A is formed for inserting a pipe 27 disposed so as to extend in the vertical direction.
 なお、冷媒流路16を形成する配管の接合部から大気中の酸素が入り込むと、入り込んだ酸素は冷媒に含まれた状態で冷媒流路16を循環する。この場合、冷媒及びオイルが冷媒に含まれた酸素によって劣化する恐れがある。酸素除去剤24は、冷媒に含まれる酸素を除去するためのものである。 In addition, when oxygen in the atmosphere enters from the joint portion of the pipe forming the refrigerant flow path 16, the oxygen that has entered circulates through the refrigerant flow path 16 in a state of being contained in the refrigerant. In this case, the refrigerant and the oil may be deteriorated by oxygen contained in the refrigerant. The oxygen remover 24 is for removing oxygen contained in the refrigerant.
 図2に示すように、流入口14Dに設けられたパイプ26を通ってレシーバタンク14内に流入した冷媒は、下方に落下しつつ液体と気体に分離される。液冷媒はレシーバタンク14内の下方に貯留される。ポンプ15の駆動により、レシーバタンク14内の下方に貯留された液冷媒はパイプ27の下端部より吸い込まれ、パイプ27内を上方に向けて移動し第4流路25を通ってポンプ15に吸入される。液冷媒がレシーバタンク14内を下方に落下するとき、液冷媒は、レシーバタンク14内に配置された乾燥剤23及び酸素除去剤24を上方から下方に向って通過し、乾燥剤23によって冷媒中に含まれる水分が除去される。このように、酸素除去剤24によって冷媒中に含まれる酸素が除去される。 As shown in FIG. 2, the refrigerant that has flowed into the receiver tank 14 through the pipe 26 provided at the inlet 14D is separated into liquid and gas while falling downward. The liquid refrigerant is stored below the receiver tank 14. When the pump 15 is driven, the liquid refrigerant stored in the lower portion of the receiver tank 14 is sucked from the lower end of the pipe 27, moves upward in the pipe 27, and is sucked into the pump 15 through the fourth flow path 25. Is done. When the liquid refrigerant falls downward in the receiver tank 14, the liquid refrigerant passes through the desiccant 23 and the oxygen removing agent 24 arranged in the receiver tank 14 from the upper side to the lower side, and is absorbed in the refrigerant by the desiccant 23. The moisture contained in is removed. Thus, oxygen contained in the refrigerant is removed by the oxygen remover 24.
 図1に示すように、ポンプ15は、レシーバタンク14から流出する冷媒を吸入して吐出し、蒸気発生器11へ圧送する。本実施形態では、電動式のギヤポンプが採用されている。 As shown in FIG. 1, the pump 15 sucks and discharges the refrigerant flowing out from the receiver tank 14 and pumps it to the steam generator 11. In this embodiment, an electric gear pump is employed.
 ポンプ15の内部において冷媒が通る流路は、冷媒流路16の一部に相当する。本実施形態の冷媒流路16は、ポンプ15の冷媒出口と蒸気発生器11の冷媒入口とを互いに接続する第5流路28を備えている。 The flow path through which the refrigerant passes inside the pump 15 corresponds to a part of the refrigerant flow path 16. The refrigerant channel 16 of this embodiment includes a fifth channel 28 that connects the refrigerant outlet of the pump 15 and the refrigerant inlet of the steam generator 11 to each other.
 ポンプ15が駆動されることにより、冷媒は、蒸気発生器11、膨張機12、凝縮器13、レシーバタンク14、ポンプ15の順に冷媒流路16を循環することができる。 By driving the pump 15, the refrigerant can circulate through the refrigerant flow path 16 in the order of the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, and the pump 15.
 次に、本実施形態のランキンサイクル装置10の作動について説明する。 Next, the operation of the Rankine cycle device 10 of the present embodiment will be described.
 エンジン17の運転時においては、排気ガスがエンジン17から排気通路18を通り蒸気発生器11を通過する。ポンプ15が駆動されると、冷媒は、蒸気発生器11、膨張機12、凝縮器13、レシーバタンク14、ポンプ15の順に流れて冷媒流路16を循環する。蒸気発生器11では、冷媒は排気ガスとの熱交換により高温かつ高圧の蒸気となる。冷媒の蒸気は、第1流路19を通って膨張機12へ流出する。 During operation of the engine 17, exhaust gas passes from the engine 17 through the exhaust passage 18 and through the steam generator 11. When the pump 15 is driven, the refrigerant flows in the order of the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, and the pump 15 to circulate through the refrigerant flow path 16. In the steam generator 11, the refrigerant becomes high-temperature and high-pressure steam by heat exchange with the exhaust gas. The refrigerant vapor flows out to the expander 12 through the first flow path 19.
 膨張機12に流入した蒸気は、膨張機12内においてほぼ断熱状態で減圧膨張され、蒸気の圧力エネルギーは機械的エネルギーに変換されて膨張機12の回転力は負荷20へ出力される。 The steam flowing into the expander 12 is decompressed and expanded in a substantially adiabatic state in the expander 12, the pressure energy of the steam is converted into mechanical energy, and the rotational force of the expander 12 is output to the load 20.
 膨張機12から流出した低圧の冷媒の蒸気は、第2流路21を通じて凝縮器13へ流入する。凝縮器13では、冷媒の蒸気は空気との熱交換により冷却され凝縮される。凝縮後の冷媒は、第3流路22を通ってレシーバタンク14に流入する。レシーバタンク14では、凝縮後の冷媒を液冷媒とガス状の冷媒とに分離し、液冷媒はレシーバタンク14内に一時的に貯留される。 The low-pressure refrigerant vapor flowing out of the expander 12 flows into the condenser 13 through the second flow path 21. In the condenser 13, the refrigerant vapor is cooled and condensed by heat exchange with air. The condensed refrigerant flows into the receiver tank 14 through the third flow path 22. In the receiver tank 14, the condensed refrigerant is separated into a liquid refrigerant and a gaseous refrigerant, and the liquid refrigerant is temporarily stored in the receiver tank 14.
 図2に示すように、パイプ26から流出する凝縮後の冷媒は、下方に落下しつつ液冷媒とガス状の冷媒とに分離され、液冷媒はレシーバタンク14の下方に貯留される。ポンプ15の駆動により、レシーバタンク14の下方に貯留された液冷媒はパイプ27の下端部から吸い込まれ、パイプ27内を上方に向けて移動する。液冷媒がレシーバタンク14内で下方に落下するとき、液冷媒は、レシーバタンク14内に配置された乾燥剤23及び酸素除去剤24を通過する。このとき、乾燥剤23によって冷媒中に含まれる水分が除去され、酸素除去剤24によって冷媒中に含まれる酸素が除去される。 As shown in FIG. 2, the condensed refrigerant flowing out from the pipe 26 is separated into liquid refrigerant and gaseous refrigerant while falling downward, and the liquid refrigerant is stored below the receiver tank 14. By driving the pump 15, the liquid refrigerant stored below the receiver tank 14 is sucked from the lower end of the pipe 27 and moves upward in the pipe 27. When the liquid refrigerant falls downward in the receiver tank 14, the liquid refrigerant passes through the desiccant 23 and the oxygen removing agent 24 disposed in the receiver tank 14. At this time, moisture contained in the refrigerant is removed by the desiccant 23, and oxygen contained in the refrigerant is removed by the oxygen remover 24.
 レシーバタンク14の内部の空間は、冷媒流路16の一部として機能する。レシーバタンク14の内部の空間を冷媒流路16の一部としてみたとき、レシーバタンク14内の流路は、他の冷媒流路16と比較して充分大きな流路断面積を有している。また、レシーバタンク14内の流路は、流路断面積の急拡大及び急収縮がない流路方向の長さを有している。そして、ポンプ15の駆動により、液冷媒が乾燥剤23及び酸素除去剤24を通過するとき、液冷媒の流速は圧力損失を軽減する程度に十分に低い流速となっている。よって、酸素除去剤24をレシーバタンク14内に設置することにより、液冷媒が酸素除去剤24を通過する流速を下げて圧力損失を軽減することができる。 The space inside the receiver tank 14 functions as a part of the refrigerant flow path 16. When the space inside the receiver tank 14 is viewed as a part of the refrigerant flow path 16, the flow path in the receiver tank 14 has a sufficiently large flow path cross-sectional area as compared with the other refrigerant flow paths 16. Further, the flow path in the receiver tank 14 has a length in the flow path direction in which there is no sudden expansion and contraction of the flow path cross-sectional area. When the liquid refrigerant passes through the desiccant 23 and the oxygen removing agent 24 by driving the pump 15, the flow rate of the liquid refrigerant is low enough to reduce the pressure loss. Therefore, by installing the oxygen remover 24 in the receiver tank 14, the flow rate of the liquid refrigerant passing through the oxygen remover 24 can be reduced to reduce the pressure loss.
 また、レシーバタンク14と別に、酸素除去剤24を設置するために特別の容器を必要とせず、レシーバタンク14を酸素除去剤24の容器としてそのまま活用できるので設置スペースの抑制を図ることが可能である。 In addition to the receiver tank 14, a special container is not required for installing the oxygen removing agent 24, and the receiver tank 14 can be used as it is as a container for the oxygen removing agent 24, so that installation space can be reduced. is there.
 レシーバタンク14に貯留された液冷媒は、パイプ27及び第4流路25を通じてポンプ15へ流出する。なお、パイプ27及び第4流路25を介してポンプ15に吸入される液冷媒は、飽和液となっているので、ポンプ15におけるキャビテーションの発生を防止することができる。 The liquid refrigerant stored in the receiver tank 14 flows out to the pump 15 through the pipe 27 and the fourth flow path 25. In addition, since the liquid refrigerant sucked into the pump 15 through the pipe 27 and the fourth flow path 25 is a saturated liquid, generation of cavitation in the pump 15 can be prevented.
 ポンプ15は、レシーバタンク14から流出する液冷媒を吸入して吐出し、蒸気発生器11へ圧送する。蒸気発生器11では、流入する液冷媒は排気ガスとの熱交換により高温かつ高圧の蒸気となる。このとき、流入する液冷媒中には、酸素が含まれていないので、冷媒及びオイルの酸素による酸化作用によって劣化することを防止できる。 The pump 15 sucks and discharges the liquid refrigerant flowing out from the receiver tank 14 and pumps it to the steam generator 11. In the steam generator 11, the flowing liquid refrigerant becomes high-temperature and high-pressure steam by heat exchange with the exhaust gas. At this time, since the inflowing liquid refrigerant does not contain oxygen, it can be prevented from being deteriorated by the oxidizing action of the refrigerant and oil by oxygen.
 第1の実施形態に係るランキンサイクル装置10によれば、以下の作用効果を奏する。 The Rankine cycle device 10 according to the first embodiment has the following operational effects.
 (1)レシーバタンク14の内部の空間を冷媒流路16の一部としてみたとき、レシーバタンク14内の流路は、他の冷媒流路16と比較して充分大きな流路断面積を有している。また、レシーバタンク14内の流路は、流路断面積の急拡大及び急収縮がない流路方向の長さを有している。即ち、レシーバタンク14の流路断面積はほぼ一定である。そして、ポンプ15の駆動により、液冷媒が乾燥剤23及び酸素除去剤24を通過するとき、液冷媒の流速は圧力損失を軽減する程度に十分に低い流速となっている。よって、酸素除去剤24をレシーバタンク14内に設置することにより、液冷媒が酸素除去剤24を通過する流速を下げて圧力損失を軽減することができ、ポンプ15の吸入側における圧力損失に起因したキャビテーションの発生を防止することができる。 (1) When the space inside the receiver tank 14 is viewed as a part of the refrigerant flow path 16, the flow path in the receiver tank 14 has a sufficiently large flow path cross-sectional area as compared to the other refrigerant flow paths 16. ing. Further, the flow path in the receiver tank 14 has a length in the flow path direction in which there is no sudden expansion and contraction of the flow path cross-sectional area. That is, the channel cross-sectional area of the receiver tank 14 is substantially constant. When the liquid refrigerant passes through the desiccant 23 and the oxygen removing agent 24 by driving the pump 15, the flow rate of the liquid refrigerant is low enough to reduce the pressure loss. Therefore, by installing the oxygen removing agent 24 in the receiver tank 14, the flow rate of the liquid refrigerant passing through the oxygen removing agent 24 can be reduced to reduce the pressure loss, which is caused by the pressure loss on the suction side of the pump 15. Generation of cavitation can be prevented.
 (2)パイプ27及び第4流路25を介してポンプ15に吸入される液冷媒は、飽和液となっているので、ポンプ15の吸入側におけるキャビテーションの発生を防止することができる。 (2) Since the liquid refrigerant sucked into the pump 15 through the pipe 27 and the fourth flow path 25 is a saturated liquid, the occurrence of cavitation on the suction side of the pump 15 can be prevented.
 (3)レシーバタンク14と別に、酸素除去剤24を設置するために特別の容器を必要とせず、レシーバタンク14を酸素除去剤24の容器としてそのまま活用できるので設置スペースの抑制を図ることが可能である。 (3) A separate container is not required to install the oxygen remover 24 separately from the receiver tank 14, and the receiver tank 14 can be used as it is as a container for the oxygen remover 24, so that the installation space can be reduced. It is.
 (4)蒸気発生器11では、流入する液冷媒は排気ガスとの熱交換により高温かつ高圧の蒸気となる。このとき、流入する液冷媒中には、酸素が含まれていないので、冷媒及びオイルの酸素による酸化作用によって劣化することを防止できる。 (4) In the steam generator 11, the inflowing liquid refrigerant becomes high-temperature and high-pressure steam by heat exchange with the exhaust gas. At this time, since the inflowing liquid refrigerant does not contain oxygen, it can be prevented from being deteriorated by the oxidizing action of the refrigerant and oil by oxygen.
 (5)レシーバタンク14内における酸素除去剤24の上流側に乾燥剤23が設けられているので、乾燥剤23によって液冷媒に含まれる水分を除去した後、酸素除去剤24を通過させることができる。よって、酸素除去剤24を通過する際の液冷媒は、水分が除去されているため、液冷媒に含まれる酸素を効率よく除去可能である。 (5) Since the desiccant 23 is provided on the upstream side of the oxygen remover 24 in the receiver tank 14, the oxygen remover 24 is allowed to pass after the moisture contained in the liquid refrigerant is removed by the desiccant 23. it can. Therefore, since the liquid refrigerant at the time of passing through the oxygen remover 24 has moisture removed, oxygen contained in the liquid refrigerant can be efficiently removed.
 (6)酸素除去剤24としては、脱酸素剤(鉄粉)又は酸素吸着剤(ゼオライト)を使用することができるので、酸素除去剤24の選択の自由度を拡張できる。 (6) Since the oxygen scavenger (iron powder) or the oxygen adsorbent (zeolite) can be used as the oxygen scavenger 24, the degree of freedom in selecting the oxygen scavenger 24 can be expanded.
 (7)酸素除去剤24が鉄粉を含むため、酸素と鉄粉との酸化反応を利用して冷媒中に含まれる酸素を除去可能である。 (7) Since the oxygen removing agent 24 contains iron powder, it is possible to remove oxygen contained in the refrigerant using an oxidation reaction between oxygen and iron powder.
 (第2の実施形態)
 次に、第2の実施形態に係るランキンサイクル装置30について図3及び図4を参照して説明する。本実施形態は、第1の実施形態における流出口14Eの位置を変更したものであり、その他の構成は共通である。従って、ここでは説明の便宜上、先の説明で用いた符号を一部共通して用い、共通する構成についてはその説明を省略し、変更した個所のみ説明を行う。
(Second Embodiment)
Next, the Rankine cycle apparatus 30 according to the second embodiment will be described with reference to FIGS. 3 and 4. In the present embodiment, the position of the outlet 14E in the first embodiment is changed, and other configurations are common. Therefore, here, for convenience of explanation, some of the reference numerals used in the previous explanation are used in common, explanations of common configurations are omitted, and only the changed parts are explained.
 図3に示すように、ランキンサイクル装置30は、蒸気発生器11、膨張機12、凝縮器13、レシーバタンク14及びポンプ15を有する。ランキンサイクル装置30は、蒸気発生器11、膨張機12、凝縮器13、レシーバタンク14及びポンプ15を順次接続する冷媒流路16を有する。冷媒流路16を流通する作動流体としての冷媒は、ポンプ15の作動により、蒸気発生器11、膨張機12、凝縮器13、レシーバタンク14、ポンプ15の順に冷媒流路16を循環して流れる。 As shown in FIG. 3, the Rankine cycle apparatus 30 includes a steam generator 11, an expander 12, a condenser 13, a receiver tank 14, and a pump 15. The Rankine cycle apparatus 30 includes a refrigerant flow path 16 that sequentially connects the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, and the pump 15. The refrigerant as the working fluid flowing through the refrigerant flow path 16 flows through the refrigerant flow path 16 in the order of the steam generator 11, the expander 12, the condenser 13, the receiver tank 14, and the pump 15 by the operation of the pump 15. .
 本実施形態では、ポンプ15へ向けて液体の冷媒を流出する流出口14Eが、レシーバタンク14の下部、即ち底部に設けられている。 In this embodiment, an outlet 14E through which a liquid refrigerant flows out toward the pump 15 is provided at the lower part of the receiver tank 14, that is, at the bottom.
 図4に示すように、レシーバタンク14の上板部14Cには、冷媒の流入口14Dが形成されている。レシーバタンク14内には、第1の実施形態と同様に、流入口14Dに接続されるパイプ26が下方に向けて取り付けられている。 As shown in FIG. 4, a refrigerant inlet 14 </ b> D is formed in the upper plate portion 14 </ b> C of the receiver tank 14. In the receiver tank 14, a pipe 26 connected to the inflow port 14D is attached downward as in the first embodiment.
 レシーバタンク14の底板部14Bには、冷媒の流出口14Eが形成されている。レシーバタンク14内には、流出口14Eに接続されるパイプ31が上方に向けて取り付けられている。 A refrigerant outlet 14E is formed in the bottom plate portion 14B of the receiver tank 14. In the receiver tank 14, a pipe 31 connected to the outlet 14E is attached upward.
 流入口14Dは第3流路22を介して凝縮器13と接続されている。流出口14Eは第4流路25を介してポンプ15と接続されている。 The inlet 14 </ b> D is connected to the condenser 13 via the third flow path 22. The outlet 14 </ b> E is connected to the pump 15 through the fourth flow path 25.
 レシーバタンク14の内部の空間には、乾燥剤32及び酸素除去剤33が配置されており、周壁部14Aにおける上下方向の中間付近に酸素除去剤33が配置され、酸素除去剤33の上側、即ち上流側に乾燥剤32が配置されている。 A desiccant 32 and an oxygen remover 33 are disposed in the space inside the receiver tank 14, and the oxygen remover 33 is disposed near the middle in the vertical direction of the peripheral wall portion 14A. A desiccant 32 is disposed on the upstream side.
 乾燥剤32は、図示しないが金網状のケースに充填された状態で水平に配置され、周壁部14Aに取り付けられている。乾燥剤32の中心には、貫通孔が形成されていない。 Although not shown, the desiccant 32 is horizontally disposed in a state of being filled in a wire net-like case, and is attached to the peripheral wall portion 14A. A through hole is not formed at the center of the desiccant 32.
 乾燥剤32の下方には、酸素除去剤33が配置されている。酸素除去剤33は、図示しないが、例えば、ハニカム構造を有する構造体の表面に鉄粉(Fe)をちりばめた状態で水平に配置され、周壁部14Aに取り付けられている。酸素除去剤33の中心には、貫通孔が形成されていない。なお、乾燥剤32及び酸素除去剤33の構成は、それぞれの中心に貫通孔が形成されていないこと以外は、第1の実施形態と同様である。 Below the desiccant 32, an oxygen scavenger 33 is disposed. Although not shown, the oxygen scavenger 33 is disposed horizontally, for example, with iron powder (Fe) scattered on the surface of a structure having a honeycomb structure, and is attached to the peripheral wall portion 14A. A through hole is not formed in the center of the oxygen removing agent 33. The configurations of the desiccant 32 and the oxygen removing agent 33 are the same as those in the first embodiment except that the through hole is not formed at the center of each.
 流出口14Eに接続されるパイプ31は、レシーバタンク14に貯留された冷媒中に下方より挿入されている。パイプ31は、レシーバタンク14内に設けられた乾燥剤32及び酸素除去剤33中を挿通していない。 The pipe 31 connected to the outlet 14 </ b> E is inserted into the refrigerant stored in the receiver tank 14 from below. The pipe 31 does not pass through the desiccant 32 and the oxygen remover 33 provided in the receiver tank 14.
 その他の構成は、第1の実施形態と同様であり、説明を省略する。 Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.
 このように、本実施形態では、ポンプ15へ向けて液体の冷媒を流出する流出口14Eが、レシーバタンク14の下部、即ち底部に設けられている。また、流出口14Eに接続されるパイプ31は、レシーバタンク14内に設けられた酸素除去剤33中を挿通することなく、レシーバタンク14に貯留された冷媒中に下方より挿入されている。よって、第1の実施形態と比べて酸素除去剤33で覆うことのできる流路断面積を拡張可能であり、冷媒中に含まれる酸素の除去効率を向上可能である。 As described above, in the present embodiment, the outlet 14 </ b> E through which the liquid refrigerant flows toward the pump 15 is provided in the lower portion, that is, the bottom portion of the receiver tank 14. The pipe 31 connected to the outlet 14E is inserted from below into the refrigerant stored in the receiver tank 14 without passing through the oxygen removing agent 33 provided in the receiver tank 14. Therefore, the cross-sectional area of the flow path that can be covered with the oxygen removing agent 33 can be expanded as compared with the first embodiment, and the removal efficiency of oxygen contained in the refrigerant can be improved.
 その他の効果については、第1の実施形態における(1)~(7)と同等である。 Other effects are equivalent to (1) to (7) in the first embodiment.
 なお、本発明は、上記した実施形態に限定されるものではなく発明の趣旨の範囲内で種々の変更が可能であり、例えば、次のように変更して具体化しても良い。 Note that the present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the gist of the invention. For example, the present invention may be modified and embodied as follows.
 ○上記各実施形態では、ランキンサイクル装置10,30は車両に搭載される車載用ランキンサイクル装置として具体化されているが、ランキンサイクル装置は車載用に限定されない。ランキンサイクル装置10,30は、例えば、地上に設置されるランキンサイクル装置であってもよい。 In the above embodiments, Rankine cycle devices 10 and 30 are embodied as in-vehicle Rankine cycle devices mounted on a vehicle, but the Rankine cycle devices are not limited to in-vehicle use. Rankine cycle apparatuses 10 and 30 may be Rankine cycle apparatuses installed on the ground, for example.
 ○上記各実施形態では、内燃機関は単にエンジン17と説明したが、内燃機関はガソリンエンジンでもよいし、ディーゼルエンジンであってもよい。 In the above embodiments, the internal combustion engine is simply described as the engine 17, but the internal combustion engine may be a gasoline engine or a diesel engine.
 ○上記各実施形態では、レシーバタンク14内における酸素除去剤24又は33の上流側に乾燥剤23又は32がそれぞれ設けられているが、レシーバタンク14内における酸素除去剤24又は33の下流側に乾燥剤23又は32が設けられても良い。 In each of the above embodiments, the desiccant 23 or 32 is provided on the upstream side of the oxygen removing agent 24 or 33 in the receiver tank 14, but on the downstream side of the oxygen removing agent 24 or 33 in the receiver tank 14. A desiccant 23 or 32 may be provided.
 ○上記各実施形態では、レシーバタンク14内における酸素除去剤24又は33の上流側に乾燥剤23又は32が設けられている。これに代えて、酸素除去剤24と乾燥剤23とを混合した1個の部材、又は、酸素除去剤33と乾燥剤32とを混合した1個の部材がレシーバタンク14内に配置されても良い。この場合には、設置スペース及び部品点数を削減可能である。 In each of the above embodiments, the desiccant 23 or 32 is provided on the upstream side of the oxygen removing agent 24 or 33 in the receiver tank 14. Instead of this, even if one member in which the oxygen remover 24 and the desiccant 23 are mixed or one member in which the oxygen remover 33 and the desiccant 32 are mixed is disposed in the receiver tank 14. good. In this case, the installation space and the number of parts can be reduced.
 ○上記各実施形態では、負荷20の例として発電機を挙げたが、負荷20はエンジンであってもよく、膨張機12から出力される回転力を利用できる構成であれば、特に限定されない。 In the above embodiments, the generator is cited as an example of the load 20, but the load 20 may be an engine, and is not particularly limited as long as the rotational force output from the expander 12 can be used.
 ○上記各実施形態では、膨張機12はスクロール式膨張機であるが、膨張機12はスクロール式に限定されず形式は自由であり、例えば、ベーン式の膨張機やタービン式の膨張機であってもよい。 In each of the above embodiments, the expander 12 is a scroll type expander. However, the expander 12 is not limited to the scroll type and can be of any type, for example, a vane type expander or a turbine type expander. May be.

Claims (4)

  1.  ランキンサイクル装置であって、
     作動流体の蒸気を生成する蒸気発生器と、
     前記作動流体の蒸気を膨張させる膨張機と、
     前記膨張機からの前記作動流体の蒸気を凝縮する凝縮器と、
     前記凝縮器から流出される前記作動流体を貯留するレシーバタンクと、
     前記レシーバタンクに貯留された液状の前記作動流体を前記蒸気発生器へ圧送するポンプと、
     前記蒸気発生器、前記膨張機、前記凝縮器、前記レシーバタンク及び前記ポンプを順次接続する作動流体流路と、
     前記レシーバタンク内に収容され、前記作動流体に含まれる酸素を除去する酸素除去剤とを備えるランキンサイクル装置。
    Rankine cycle device,
    A steam generator for generating working fluid steam;
    An expander for expanding the vapor of the working fluid;
    A condenser for condensing the vapor of the working fluid from the expander;
    A receiver tank for storing the working fluid flowing out from the condenser;
    A pump for pumping the liquid working fluid stored in the receiver tank to the steam generator;
    A working fluid flow path for sequentially connecting the steam generator, the expander, the condenser, the receiver tank, and the pump;
    A Rankine cycle device comprising an oxygen removing agent that is housed in the receiver tank and removes oxygen contained in the working fluid.
  2.  前記レシーバタンクは、前記ポンプへ向けて液体の作動流体を流出する流出口を有し、前記流出口は前記レシーバタンクの下部に設けられている、請求項1に記載のランキンサイクル装置。 The Rankine cycle device according to claim 1, wherein the receiver tank has an outlet for flowing a liquid working fluid toward the pump, and the outlet is provided at a lower portion of the receiver tank.
  3.  前記レシーバタンク内における前記酸素除去剤の上流側に設けられた乾燥剤を更に備える請求項1又は2に記載のランキンサイクル装置。 The Rankine cycle apparatus according to claim 1 or 2, further comprising a desiccant provided upstream of the oxygen scavenger in the receiver tank.
  4.  前記酸素除去剤が鉄粉を含む、請求項1~3のいずれか一項に記載のランキンサイクル装置。 The Rankine cycle device according to any one of claims 1 to 3, wherein the oxygen scavenger contains iron powder.
PCT/JP2013/068435 2012-07-27 2013-07-04 Rankine cycle device WO2014017272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-166423 2012-07-27
JP2012166423A JP2014025416A (en) 2012-07-27 2012-07-27 Rankine cycle device

Publications (1)

Publication Number Publication Date
WO2014017272A1 true WO2014017272A1 (en) 2014-01-30

Family

ID=49997088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068435 WO2014017272A1 (en) 2012-07-27 2013-07-04 Rankine cycle device

Country Status (2)

Country Link
JP (1) JP2014025416A (en)
WO (1) WO2014017272A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237091A (en) * 1985-04-15 1986-10-22 株式会社日立製作所 Corrosion preventive method and device for turbine in nuclear power generating plant
JPH04287805A (en) * 1991-03-18 1992-10-13 Toshiba Corp Power generating plant
JP2000320911A (en) * 1999-05-11 2000-11-24 Matsushita Refrig Co Ltd Freezing cycle
JP2002119967A (en) * 2000-10-13 2002-04-23 Mitsubishi Heavy Ind Ltd Device and method for deoxydation
JP2005207259A (en) * 2004-01-21 2005-08-04 Mitsui Eng & Shipbuild Co Ltd Combined power generation plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237091A (en) * 1985-04-15 1986-10-22 株式会社日立製作所 Corrosion preventive method and device for turbine in nuclear power generating plant
JPH04287805A (en) * 1991-03-18 1992-10-13 Toshiba Corp Power generating plant
JP2000320911A (en) * 1999-05-11 2000-11-24 Matsushita Refrig Co Ltd Freezing cycle
JP2002119967A (en) * 2000-10-13 2002-04-23 Mitsubishi Heavy Ind Ltd Device and method for deoxydation
JP2005207259A (en) * 2004-01-21 2005-08-04 Mitsui Eng & Shipbuild Co Ltd Combined power generation plant

Also Published As

Publication number Publication date
JP2014025416A (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP6763889B2 (en) Integrated process for CO2 capture from internal combustion engines of mobile sources, and use in combined cycle
JP2015187447A (en) Refrigerant scroll compressor for motor vehicle air conditioning systems
JP4863085B2 (en) Engine exhaust gas purification device and engine-driven air conditioner
JP2010185406A (en) Injection pipe
JP6056270B2 (en) Turbo compressor and turbo refrigerator
JP2008506882A (en) Steam compressor compressor oil separator
JP2007285623A (en) Refrigerator
KR20170040149A (en) Thermal energy recovery device
JP3606854B2 (en) High humidity fuel gas compression supply device
JP5983188B2 (en) Turbo compressor and turbo refrigerator
WO2014017272A1 (en) Rankine cycle device
WO2014007148A1 (en) Rankine cycle device
JP5582713B2 (en) Heat pump equipment
JP5272941B2 (en) Turbo compressor and refrigerator
JP2004186118A (en) Air supply device for fuel cell
JP2014025417A (en) Rankine cycle device
CN104976112A (en) Liquid Pump And Rankine Cycle Device
JP2007285630A (en) Heat engine
RU47487U1 (en) HEAT RECYCLING UNIT
EP2984344B1 (en) System and method for compressing carbon dioxide
JP4973099B2 (en) Compressor
JP2009023907A (en) Gas separation method and gas separation apparatus
JP2010096440A (en) Heat pump device
JP2007315638A (en) Refrigeration cycle device
JP7187942B2 (en) Rankine cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822220

Country of ref document: EP

Kind code of ref document: A1