JPS61236627A - Accumulating method for fine glass grain - Google Patents

Accumulating method for fine glass grain

Info

Publication number
JPS61236627A
JPS61236627A JP7613785A JP7613785A JPS61236627A JP S61236627 A JPS61236627 A JP S61236627A JP 7613785 A JP7613785 A JP 7613785A JP 7613785 A JP7613785 A JP 7613785A JP S61236627 A JPS61236627 A JP S61236627A
Authority
JP
Japan
Prior art keywords
burner
glass layer
rod
porous glass
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7613785A
Other languages
Japanese (ja)
Inventor
Kunio Ogura
邦男 小倉
Katsumi Orimo
折茂 勝巳
Shinichi Yano
慎一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7613785A priority Critical patent/JPS61236627A/en
Publication of JPS61236627A publication Critical patent/JPS61236627A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To secure the stability of an air stream in a period of the accumulation of the fine glass grains and to form a porous glass layer having the superior quality by rotating and transferring slowly a burner along a locus circle in a period of the formation of the porous glass layer. CONSTITUTION:A rodlike base material 21 is interposed between a burner 11 and an exhaust port 18 and rotated in the direction shown in an arrow R and transferred in the V direction. An injection end part of the burner 11 is directed toward a point P of the exhaust port 8 which is deviated from a rotating axial core O of the base material 21. The fine glass grains are injected on an outside periphery of the base material 21 from the burner 11 to form a porous glass layer 22. When a laser beam L circumscribed to the peripheral surface of the base material 21 is interrupted by the accumulated formation of the porous glass layer 22, the burner 11 and an irradiator 19 provided thereby are drawn in the direction shown in an arrow S with a guide rail 13 as the guidance. The angular laser beam is made incident on a detector 20 and the porous glass layer 22 is accumulated up to a prescribed thickness. Thereby the air stream of the burner is smoothly flowed to the exhaust port 18 along the peripheral surface of the porous glass layer 22.

Description

【発明の詳細な説明】 1産業上の利用分野1 本発明は通信用、光学用の各種ガラス母材を製造するた
めのガラス微粒子堆積方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application 1. The present invention relates to a method for depositing glass fine particles for producing various glass base materials for communication and optical applications.

【従来の技術1 一般に、通信用、光学用のガラス母材をOVD法により
作製するとき、多重管構造としたバーナへ気相のガラス
原料、気相のドープ原料、燃料ガス、助燃ガス、緩衝ガ
ス等を供給し、これら各ガスの火炎加水分解反応により
生成したガラス微粒子を、回転している棒状基材の外周
に噴射かつ堆積させて該棒状基材外周に多孔質ガラス層
を形成する。
[Conventional technology 1] Generally, when glass base materials for communication and optical applications are manufactured by the OVD method, a burner with a multi-tube structure is fed with vapor-phase glass raw materials, vapor-phase dope materials, fuel gas, auxiliary combustion gas, and buffer gas. A gas or the like is supplied, and glass particles generated by a flame hydrolysis reaction of each of these gases are injected and deposited on the outer periphery of a rotating rod-shaped base material to form a porous glass layer on the outer periphery of the rod-shaped base material.

その後、多孔質ガラス層を高温の炉内に入れてこれを透
明ガラス化する。
Thereafter, the porous glass layer is placed in a high-temperature furnace to turn it into transparent glass.

通常、上述した多孔質ガラス層の形成は、清浄な雰囲気
に保持された反応容器内で行なわれ、この際、棒状基材
を挟んでバーナと対向する位置には排気口が設けられ、
該ガラス層形成時の排気ガスがその排気口から排出され
る。
Usually, the formation of the above-mentioned porous glass layer is carried out in a reaction vessel maintained in a clean atmosphere, and at this time, an exhaust port is provided at a position facing the burner with the rod-shaped base material in between.
Exhaust gas during the formation of the glass layer is discharged from the exhaust port.

第3図は従来における多孔質ガラス層の形成状況を示し
たものである。
FIG. 3 shows the state of formation of a conventional porous glass layer.

同図において、矢印R方向へ回転している棒状基材1の
外周面には、バーナ2から噴射されたガラス微粒子の堆
積により多孔質ガラス層3が形成ぎれ、この際の排気ガ
スが排気口4から排出されるが、かかるガラス堆積によ
り多孔質ガラス層3の外径が大きくなると、バーナ2か
らのガラス微粒子を含む気流が径大化した多孔質ガラス
層3により跳ね返され、バーナ2と多孔質ガラス層3と
の間に好ましくない渦流が生じて排気口4への円滑な流
動性が阻害される。
In the same figure, a porous glass layer 3 is formed on the outer circumferential surface of a rod-shaped base material 1 rotating in the direction of arrow R due to the accumulation of glass particles injected from a burner 2, and the exhaust gas at this time is However, when the outer diameter of the porous glass layer 3 increases due to such glass accumulation, the air flow containing glass particles from the burner 2 is repelled by the porous glass layer 3 with the enlarged diameter, and the burner 2 and the porous glass layer 3 are discharged from the burner 2. An unfavorable vortex is generated between the glass layer 3 and the glass layer 3, and smooth flow to the exhaust port 4 is inhibited.

「発明が解決しようとする問題点」 上述したように、従来のガラス微粒子堆積手段では、八
−す2からのガラス微粒子が多孔質ガラス層3により跳
ね返され、排気口4への円滑な流動性が阻害される。
"Problems to be Solved by the Invention" As described above, in the conventional glass particle deposition means, the glass particles from the eight-cell 2 are repelled by the porous glass layer 3, and smooth flow to the exhaust port 4 is prevented. is inhibited.

そのため、反応容器内ではガラス微粒子の一部が乱舞し
、乱舞したガラス微粒子はその容器外へ排出されず、多
孔質ガラス層のバーナ火炎の当たらない箇所に軟らかく
付着してクラックや発泡の原因をつくる。
As a result, some of the glass particles are scattered inside the reaction vessel, and the scattered glass particles are not discharged outside the vessel, but instead adhere softly to areas of the porous glass layer that are not exposed to the burner flame, causing cracks and foaming. to make.

あるいは、乱舞したガラス微粒子が反応容器の内壁に−
たん付着し、これが大きく成長した後、多孔質ガラス層
」二に落下してより大きな発泡原因をつくる。
Or, the scattered glass particles may be deposited on the inner wall of the reaction vessel.
After this adheres to the surface and grows large, it falls onto the porous glass layer, causing even larger bubbles.

また、上記従来例ではガスが一定方向へ流れないことに
よりバーナ火炎が安定性な←揺れ動き、多孔質ガラス層
の外径変動を大きくする。
Furthermore, in the conventional example described above, since the gas does not flow in a fixed direction, the burner flame undergoes stable oscillations, which increases the variation in the outer diameter of the porous glass layer.

こうした問題は、上記ガラス材を母材とする製品、例え
ば光ファイバにおいて、外径変動、強度不良、伝送ロス
増、寸法精度不良となってあられれる。
These problems occur in products that use the above-mentioned glass material as a base material, such as optical fibers, as variations in outer diameter, poor strength, increased transmission loss, and poor dimensional accuracy.

本発明は上記の問題点に鑑み、ガラス微粒子堆積時にお
ける気流の安定性を確保し、良質の多孔質ガラス層が形
成できるガラス微粒子の堆積方法を提供しようとするも
のである。
In view of the above-mentioned problems, the present invention aims to provide a method for depositing glass particles, which ensures stability of airflow during deposition of glass particles and allows formation of a high-quality porous glass layer.

1問題点を解決するための手段j 本発明は、バーナの噴射端部が棒状基材外周の一側面に
面しているとともに排気系の排気口が棒状基材外周の他
側面に面しており、バーナから噴射されたガラス微粒子
を、回転している棒状基材の外周に噴射かつ堆積させて
該棒状基材外周に多孔質ガラス層を形成し、この際の廃
ガスを排気口から排出するガラス微粒子の堆積方法にお
いて、バーナの噴射端部を棒状基材の回転軸心からずれ
た排気口側の一点に向けておき、当該バーナを介した棒
状基材外周への多孔質ガラス層形成時、その多孔質ガラ
ス層の外径が大きくなるにしたがい、上記一点を中心と
する軌跡円に沿ってバーナを徐々に回転移動させること
を特徴としている。
1. Means for Solving Problems j The present invention is characterized in that the injection end of the burner faces one side of the outer periphery of the rod-shaped base material, and the exhaust port of the exhaust system faces the other side of the outer periphery of the rod-shaped base material. The glass particles ejected from the burner are injected and deposited on the outer periphery of the rotating rod-shaped base material to form a porous glass layer around the outer periphery of the rod-shaped base material, and the waste gas at this time is discharged from the exhaust port. In the method for depositing glass particles, the injection end of the burner is directed toward a point on the exhaust port side that is offset from the rotation axis of the rod-shaped substrate, and a porous glass layer is formed on the outer periphery of the rod-shaped substrate via the burner. As the outer diameter of the porous glass layer increases, the burner is gradually rotated along a locus circle centered on the one point.

1作用J 本発明方法において、バーナから噴射されたガラス微粒
子を回転状態の棒状基材外周に噴射かつ堆積させてその
外周に多孔質ガラス層を形成する点は既成のOVD法と
基本的に変らないが、この際、バーナの噴射端部を棒状
基材の回転軸心からずれた排気口側の一点に向けておく
1 Effect J The method of the present invention is fundamentally different from existing OVD methods in that glass fine particles injected from a burner are injected and deposited on the outer periphery of a rotating rod-shaped substrate to form a porous glass layer on the outer periphery. However, at this time, the injection end of the burner is directed toward a point on the exhaust port side that is offset from the rotation axis of the rod-shaped base material.

こうして八−すの噴射端部の向きを棒状基材の回転軸心
からずらせた場合、該噴射端部を棒状基材の回転軸心に
向けたときにみられる当該両者の真向からの対立が回避
される。
In this way, when the direction of the injection end of the eight is shifted from the rotation axis of the rod-shaped base material, the direct opposition between the two occurs when the injection end is directed toward the rotation axis of the rod-shaped base material. is avoided.

したがって、ガラス微粒子を含むバーナ気流が棒状基材
外周面へ衝突した際の衝撃が緩和され、有害な渦流の発
生が抑制されるとともに排気口へのガス流動性も円滑と
なり、ガラス微粒子はほとんど乱舞することなく棒状基
材の外周面へ堆積される。
Therefore, the impact when the burner air flow containing glass particles collides with the outer circumferential surface of the rod-shaped base material is alleviated, the generation of harmful vortices is suppressed, and the gas flow toward the exhaust port is smoothed, and the glass particles are hardly scattered around. It is deposited on the outer peripheral surface of the rod-shaped base material without any damage.

かかるガラス微粒子の堆積により、棒状基材の外周面に
は多孔質ガラス層が形成され、その堆積が進行すること
により多孔質ガラス層の外径が大きくなる。
Due to the deposition of such glass particles, a porous glass layer is formed on the outer peripheral surface of the rod-shaped base material, and as the deposition progresses, the outer diameter of the porous glass layer increases.

多孔質ガラス層の外径が大きくなると、その周面に対す
るバーナ気流の衝突面積が増し、有害な渦流の発生、ガ
ラス微粒子の乱舞等が起こりはじめるが、前記ガラス微
粒子の堆積開始後において多孔質ガラス層の外径が大き
くなるにしたがい、所定の一点を中心とする軌跡円に沿
ってバーナを徐々に回転移動させる。
As the outer diameter of the porous glass layer increases, the impact area of the burner air flow against its circumferential surface increases, causing harmful eddy currents to occur and glass particles to scatter, but after the glass particles begin to accumulate, the porous glass layer As the outer diameter of the layer increases, the burner is gradually rotated along a locus circle centered on a predetermined point.

こうした場合、多孔質ガラス層の周面に対するバーナ気
流の衝突面積はさほど変化せず、前述した良好なガラス
微粒子堆積状態がそのまま保持できる。
In such a case, the collision area of the burner air flow against the circumferential surface of the porous glass layer does not change much, and the above-described favorable glass particle deposition state can be maintained as it is.

かくて、ガラス微粒子堆積時における気流の安定性、ガ
ラス微粒子の乱舞抑制等がはかれるようになり、気泡や
外径変動のない良質の多孔質ガラス層が形成できる。
In this way, the stability of the airflow during the deposition of glass fine particles, the suppression of the scattering of glass fine particles, etc. can be achieved, and a high-quality porous glass layer without bubbles or fluctuations in outer diameter can be formed.

「実 施 例J 以下本発明の具体的実施例につき、図面を参照して説明
する。
Embodiment J Specific embodiments of the present invention will be described below with reference to the drawings.

第1図、第2図において、11は多重管構造からなるバ
ーナである。
In FIGS. 1 and 2, 11 is a burner having a multi-tube structure.

上記バーナ11には係合部材12が取りつけられており
、この係合部材12が適当な円孤状に曲げられたガイド
レール13と互いに係合している。
An engaging member 12 is attached to the burner 11, and this engaging member 12 engages with a guide rail 13 bent into a suitable circular arc shape.

14は上記バーナ11をガイドレール13に沿わせて牽
引するための牽引装置であり、当該牽引装置14はワイ
ヤ15とワイヤ巻取機16とその巻取機18の制御器1
7とからなり、ワイヤ15の端部が八−す11に連結さ
れている。
Reference numeral 14 denotes a traction device for pulling the burner 11 along the guide rail 13, and the traction device 14 includes a wire 15, a wire winder 16, and a controller 1 for the wire winder 18.
7, and the end of the wire 15 is connected to the eighth 11.

18はパイプ等を備えた排気系であり、この排気系18
の排気口はバーナと対向する位置に配置されている。
18 is an exhaust system equipped with pipes, etc., and this exhaust system 18
The exhaust port is located opposite the burner.

」1記排気系18における排気口側の一点をPとした場
合、前述のガイドレール13はその点Pを中心とする軌
跡円と同じ曲率半径を有している。
1) If a point on the exhaust port side of the exhaust system 18 is P, the guide rail 13 described above has the same radius of curvature as the trajectory circle centered on that point P.

18はレーザ光の照射器、20はレーザ光の検出器であ
り、照射器19は上記バーナ11に、検出器20は排気
系18の排気口端側にそれぞれ取りつけられ、互いに投
光受光可能に対応している。
18 is a laser beam irradiator, 20 is a laser beam detector, the irradiator 19 is attached to the burner 11, and the detector 20 is attached to the exhaust port end side of the exhaust system 18, so that they can transmit and receive light from each other. Compatible.

図中21は石英棒、アルミナ棒等からなる棒状基材、2
2はその棒状基材の外周に堆積形成された多孔質ガラス
層である。
In the figure, 21 is a rod-shaped base material made of quartz rod, alumina rod, etc.;
2 is a porous glass layer deposited on the outer periphery of the rod-shaped base material.

第1図、第2図において棒状基材21の外周に多孔質ガ
ラス層22を形成するとき、その棒状基材21は第1図
のスタート位置Aにあるバーナ11と排気口(排気系1
8)との間に介在され、矢印R方向へ回転されるととも
に矢印■方向へ往動される。
When forming the porous glass layer 22 on the outer periphery of the rod-shaped base material 21 in FIGS. 1 and 2, the rod-shaped base material 21 is connected to the burner 11 at the starting position A in FIG.
8), and is rotated in the direction of arrow R and moved forward in the direction of arrow (■).

バーナー1がスタート位置Aにあるとき、バーナ+1の
噴射端部は棒状基材21の回転軸心0からずれた排気口
側の前記一点Pを指向しており、照射器lθと検出器2
0とにわたるレーザ光りは棒状基材21の周面に近接し
ている。
When the burner 1 is at the start position A, the injection end of the burner +1 is directed to the point P on the exhaust port side that is offset from the rotation axis 0 of the rod-shaped base material 21, and the irradiator lθ and the detector 2
The laser beam extending over 0 is close to the circumferential surface of the rod-shaped base material 21.

一方、バーナー1には気相のガラス原料、気相のドープ
原料、燃料ガス、助燃ガス、緩衝ガスなどの各ガスが供
給され、これら各ガスの火炎加水分解灰地により生成さ
れたガラス微粒子が、上記回転状態にある棒状基材21
の外周へ噴射される。
On the other hand, the burner 1 is supplied with various gases such as a gaseous glass raw material, a gaseous dope raw material, a fuel gas, a combustion assisting gas, and a buffer gas, and the glass fine particles generated by the flame hydrolysis ash of these gases are , the rod-shaped base material 21 in the rotating state
is injected to the outer periphery of the

この際、八−す11からの気流は、第1図点線のように
棒状基材21の周面に沿って円滑に流れ、排気系lBの
排気口に至る。
At this time, the airflow from the eighth 11 flows smoothly along the circumferential surface of the rod-shaped base material 21 as shown by the dotted line in FIG. 1, and reaches the exhaust port of the exhaust system IB.

バーナー1から回転状態の棒状基材21に向けてガラス
微粒子が噴射され、その棒状基材21が前記矢印V方向
へ往動し、かつ、反矢印V方向へ復動するとき、当該棒
状基材21の外周には、その長手方向にわたるガラス微
粒子堆積により多孔質ガラス層22が形成される。
Glass particles are injected from the burner 1 toward the rotating rod-shaped substrate 21, and when the rod-shaped substrate 21 moves forward in the direction of the arrow V and backward in the opposite direction of the arrow V, the rod-shaped substrate 21 A porous glass layer 22 is formed on the outer periphery of 21 by depositing glass fine particles along its longitudinal direction.

こうして多孔質ガラス層22の堆積形成が開始されると
、棒状基材2Iの周面に外接していたレーザ光りがその
多孔質ガラス層22により遮断され、検出器20にはレ
ーザ光りが入射されなくなる。
When the deposition of the porous glass layer 22 is started in this manner, the laser light circumscribing the circumferential surface of the rod-shaped base material 2I is blocked by the porous glass layer 22, and the laser light is not incident on the detector 20. It disappears.

このとき、巻取機1Bの制御器17は検出器20への光
遮断状態を検知し、その巻取4111Bを運転させるこ
とによりワイヤ15を微小量巻きとる。
At this time, the controller 17 of the winder 1B detects the state in which light is cut off to the detector 20, and winds a minute amount of the wire 15 by operating the winder 4111B.

ワイヤ15が巻きとられると、バーナ11とこれに付設
された照射器18がガイドレール13を案内にして第1
図の矢印S方向(矢印R方向と同方向)へ牽引されるよ
うになり、かかる牽引により、照射器1Bからのレーザ
光りが多孔質ガラス層22の周面をわずかに越えると、
検出器20には再度レーザ光りが入射される。
When the wire 15 is wound up, the burner 11 and the irradiator 18 attached thereto are guided by the guide rail 13 and the first
When the laser beam from the irradiator 1B slightly exceeds the circumferential surface of the porous glass layer 22, due to this traction,
Laser light is made incident on the detector 20 again.

検出器20にレーザ光りが再入射されたとき、前記制御
器17は巻取機16を停止させる。
When the laser beam enters the detector 20 again, the controller 17 stops the winder 16.

以下、棒状基材21の外周に所定厚さの多孔質ガラス層
22が形成されるまで、バーナ11と照射器18は前記
矢印S方向へ断続的に牽引され、したがってバーナ気流
は多孔質ガラス層22の周面に沿い、排気口へと円滑に
流れる。
Thereafter, the burner 11 and the irradiator 18 are intermittently pulled in the direction of the arrow S until the porous glass layer 22 of a predetermined thickness is formed on the outer periphery of the rod-shaped base material 21. 22, and flows smoothly to the exhaust port.

つぎに本発明方法の具体例とその比較例を説明する。Next, specific examples of the method of the present invention and comparative examples thereof will be explained.

具体例 棒状基材として、VAD法で作製されたコア用ガラスの
△が0.3%、コア用ガラス/クラッド用ガラスの外径
比が6.0の単一モード光ファイバ母材を用いた。
Specific example As a rod-shaped base material, a single mode optical fiber base material was used, which was produced by the VAD method and had a core glass of 0.3% and an outer diameter ratio of core glass/cladding glass of 6.0. .

バーナとしては既製の五重管バーナを用い、その第一流
路(中心流路)には四塩化ケイ素1.5IL/win、
を、第二流路には水素lO!;L/l1inを、第三流
路にはアルゴン341/winを、第四流路には酸素1
01 /+*inをそれぞれ供給するようにした。
A ready-made five-tube burner was used as the burner, and its first flow path (center flow path) contained 1.5 IL/win of silicon tetrachloride,
, the second flow path contains hydrogen lO! ;L/l1in, argon 341/win in the third flow path, oxygen 1/win in the fourth flow path
01 /+*in were supplied respectively.

バーナの案内手段、牽引手段を含め、装置全体の概要は
第1図、第2図の通りであるが、この際のレーザ光検出
器は、反応容器に小さな孔を開けてここから排気口の側
部に設置した。
The outline of the entire apparatus, including the burner guide means and traction means, is shown in Figures 1 and 2. In this case, the laser photodetector was installed by drilling a small hole in the reaction vessel and connecting it to the exhaust port. Installed on the side.

レーザ光は、光源に接続されたライトガイドをバーナの
側面に取りつけ、ここから出射するようにした。
A light guide connected to a light source was attached to the side of the burner, and the laser light was emitted from there.

バーナ先端から検出器までの距離は80■菖とし、棒状
基材の回転軸心から検出器までの距離は35mmとした
The distance from the tip of the burner to the detector was 80 mm, and the distance from the rotation axis of the rod-shaped base material to the detector was 35 mm.

棒状基材はこれを3Or、p、mで回転させながらその
軸心線方向へ500m11往復動させるようにし、その
際の移動速度は80m腸/薦inとした。
The rod-shaped base material was rotated at 3 Or, p, m and reciprocated for 500 m11 in the axial direction, and the moving speed at that time was 80 m/recommendation.

前述したガラス微粒子の堆積を上述の条件で実施し、棒
状基材の外周に外径(直径) 50+amの多孔質ガラ
ス層を形成した。
The above-mentioned glass fine particles were deposited under the above-mentioned conditions to form a porous glass layer having an outer diameter (diameter) of 50+ am around the outer periphery of the rod-shaped base material.

この具体例で形成された多孔質ガラス層の外径を測定し
たところ、50Il■±1層腸にて外径の安定した部分
が400+sm長確保できた。
When the outer diameter of the porous glass layer formed in this specific example was measured, a portion with a stable outer diameter of 400 + sm could be secured in a 50Il±1 layer.

比較例 バーナ、棒状基材、排気口の関係を第3図のように設定
し、バーナを固定状態とした以外は前記具体例と同様に
して棒状基材の外周に多孔質ガラス層を形成した。
Comparative Example A porous glass layer was formed on the outer periphery of the rod-shaped substrate in the same manner as in the specific example above, except that the relationship between the burner, rod-shaped substrate, and exhaust port was set as shown in Figure 3, and the burner was kept in a fixed state. .

この比較例で形成された多孔質ガラス層の外径を測定し
たところ、最大外径部47層組最小外径部52m+*と
外径変動が大きかった。
When the outer diameter of the porous glass layer formed in this comparative example was measured, it was found that the maximum outer diameter part was 47 layers, and the smallest outer diameter part was 52 m+*, and the outer diameter variation was large.

」−記各側で形成した多孔質ガラス層を、1600℃の
ヘリウム含有雰囲気内でそれぞれ透明ガラス化し、各透
明ガラス層の一端から白色光を入射して気泡の数を調べ
たところ、具体例の透明ガラス層が気泡2個であるのに
対し、比較例のガラス層には気泡が15個も認められた
” - The porous glass layers formed on each side were each made into transparent glass in a helium-containing atmosphere at 1600°C, and white light was applied from one end of each transparent glass layer to examine the number of bubbles. There were 2 bubbles in the transparent glass layer of Example 1, whereas as many as 15 bubbles were observed in the glass layer of Comparative Example.

さらに上記棒状基材と透明ガラス層とからなる各個の母
材を、これの外径が1251Lmとなるようそれぞれ紡
糸するとともに当該紡糸直後の光フアイバ外周にシリコ
ーン製の被覆層を形成した。
Furthermore, each base material consisting of the rod-shaped base material and the transparent glass layer was spun to have an outer diameter of 1251 Lm, and a silicone coating layer was formed on the outer periphery of the optical fiber immediately after the spinning.

これら光ファイバの伝送特性につき、波長1.30gm
にて測定したところ、具体例によるものはその伝送ロス
がo、38dB/に厘と小さなロス値を示したのに対し
、比較例によるものは0.58dB/に■とロス値が大
きかった。
Regarding the transmission characteristics of these optical fibers, the wavelength is 1.30 g.
When measured, the transmission loss of the specific example was as small as 0.38 dB/, while that of the comparative example was as large as 0.58 dB/.

気泡に起因したロス値については具体例のものがOdB
/ks、比較例のものが0゜15dB/に園である。
Regarding the loss value caused by bubbles, the specific example is OdB.
/ks, and that of the comparative example is 0°15 dB/.

さらに測定長lO■としたスクリーニングテストでは、
具体例の平均破断強度が5.1kg 、比較例の平均破
断強度が4.2kgであり、具体例がこの点でも優れて
いた。
Furthermore, in a screening test with a measurement length of lO■,
The average breaking strength of the specific example was 5.1 kg, and the average breaking strength of the comparative example was 4.2 kg, and the specific example was excellent in this respect as well.

その他、全長15kmの光ファイバを1k11ごとに切
断し、そのコア径を測定した結果では、具体例のものが
8.5±0.11Lmと外径変動が小さがったのに対し
、比較例のものは8.5±0.3 gmと大きな外径変
動をともなっていた。
In addition, the results of cutting an optical fiber with a total length of 15 km every 1k11 and measuring the core diameter showed that the specific example had a small outer diameter variation of 8.5 ± 0.11 Lm, while the comparative example The diameter of the sample was 8.5±0.3 gm, which was accompanied by a large variation in outer diameter.

なお、バーナの案内手段としては各種断面形状のガイド
レール、ローラ、ネジ軸、歯車等が採用でき、その他、
バーナに自走式の走行機を装着することにより当該バー
ナをガイドレールに沿って走行させることもできる。
In addition, guide rails with various cross-sectional shapes, rollers, screw shafts, gears, etc. can be used as guide means for the burner.
By equipping the burner with a self-propelled traveling machine, the burner can also be made to travel along the guide rail.

「発明の効果J 以上説明した通り、本発明方法によるときは、棒状基材
の外周にガラス微粒子を噴射かつ堆積させて多孔質ガラ
ス層を形成するとき、バーナを所定方向へ移動させてバ
ーナ気流を安定させるから特性、品質のよい多孔質ガラ
ス層が形成できる。
Effects of the Invention J As explained above, when using the method of the present invention, when a porous glass layer is formed by injecting and depositing glass particles on the outer periphery of a rod-shaped base material, the burner is moved in a predetermined direction and the burner airflow is It is possible to form a porous glass layer with good properties and quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明方法の一実施例を略示した平面
図と側面図、第3図は従来法を略示した説明図である。 11−・・バーナ 13φ−・バーナのガイドレール 14#串・バーナの牽引装置 18φ・・排気系 19#φ・レーザ光の照射器 20・φ・レーザ光の検出器 21会ψ・棒状基材 2211φ・多孔質ガラス層 O−ψ・排気口側の一点 P・・・棒状基材の回転軸心 代理人 弁理士  斎 藤 義 雄 第1図 第2図 フ【
1 and 2 are a plan view and a side view schematically showing an embodiment of the method of the present invention, and FIG. 3 is an explanatory diagram schematically showing a conventional method. 11-... Burner 13φ- Burner guide rail 14# Skewer Burner traction device 18φ... Exhaust system 19#φ Laser light irradiator 20 φ Laser light detector 21 φ Rod-shaped base material 2211φ・Porous glass layer O-φ・One point P on the exhaust port side...Rotation axis representative of rod-shaped base material Yoshio Saito, patent attorney Figure 1 Figure 2 F [

Claims (2)

【特許請求の範囲】[Claims] (1)バーナの噴射端部が棒状基材外周の一側面に面し
ているとともに排気系の排気口が棒状基材外周の他側面
に面しており、バーナから噴射されたガラス微粒子を、
回転している棒状基材の外周に噴射かつ堆積させて該棒
状基材外周に多孔質ガラス層を形成し、この際の廃ガス
を排気口から排出するガラス微粒子の堆積方法において
、バーナの噴射端部を棒状基材の回転軸心からずれた排
気口側の一点に向けておき、当該バーナを介した棒状基
材外周への多孔質ガラス層形成時、その多孔質ガラス層
の外径が大きくなるにしたがい、上記一点を中心とする
軌跡円に沿つてバーナを徐々に回転移動させることを特
徴とするガラス微粒子堆積方法。
(1) The injection end of the burner faces one side of the outer periphery of the rod-shaped substrate, and the exhaust port of the exhaust system faces the other side of the outer periphery of the rod-shaped substrate, and the glass particles injected from the burner are
In a method for depositing glass fine particles, in which a porous glass layer is formed on the outer periphery of a rotating rod-shaped substrate by injecting and depositing the same, and the waste gas at this time is discharged from an exhaust port, injection of a burner is performed. The end is directed toward a point on the exhaust port side that is offset from the rotation axis of the rod-shaped substrate, and when forming a porous glass layer on the outer periphery of the rod-shaped substrate through the burner, the outer diameter of the porous glass layer is A method for depositing glass fine particles, characterized in that a burner is gradually rotated along a locus circle centered on the above-mentioned point as the glass particles increase in size.
(2)バーナとともに移動するレーザ光を、棒状基材外
周のガラス堆積面に外接させて受光検出器へと入射させ
ておき、そのレーザ光が多孔質ガラス層により遮断され
るごと、上記バーナを所定方向へ移動させる特許請求の
範囲第1項記載のガラス微粒子の堆積方法。
(2) The laser beam moving together with the burner is incident on the light receiving detector while circumscribing the glass deposition surface on the outer periphery of the rod-shaped base material, and each time the laser beam is blocked by the porous glass layer, the burner is A method for depositing glass particles according to claim 1, wherein the glass particles are moved in a predetermined direction.
JP7613785A 1985-04-10 1985-04-10 Accumulating method for fine glass grain Pending JPS61236627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7613785A JPS61236627A (en) 1985-04-10 1985-04-10 Accumulating method for fine glass grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7613785A JPS61236627A (en) 1985-04-10 1985-04-10 Accumulating method for fine glass grain

Publications (1)

Publication Number Publication Date
JPS61236627A true JPS61236627A (en) 1986-10-21

Family

ID=13596579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7613785A Pending JPS61236627A (en) 1985-04-10 1985-04-10 Accumulating method for fine glass grain

Country Status (1)

Country Link
JP (1) JPS61236627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018284A1 (en) * 2000-09-01 2002-03-07 Heraeus Tenevo Ag Method for producing an sio2 preform
JP2010052956A (en) * 2008-08-26 2010-03-11 Fujikura Ltd Method for producing optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018284A1 (en) * 2000-09-01 2002-03-07 Heraeus Tenevo Ag Method for producing an sio2 preform
JP2010052956A (en) * 2008-08-26 2010-03-11 Fujikura Ltd Method for producing optical fiber preform

Similar Documents

Publication Publication Date Title
FI68391B (en) CONTAINER CONTAINER FOIL FRAMEWORK FOR FRAMSTAELLNING AV ETT AEMNE FOER EN OPTISK VAOGLEDARE
CA1071405A (en) Axial fabrication of optical fibers
US4336049A (en) Method for producing multi-component glass fiber preform
US5558693A (en) Methods of making optical waveguides
US4578097A (en) Method of forming a polarization preserving optical waveguide
JP2002160926A (en) Burner for synthesizing glass fine particle and method of producing porous glass substance
JP2003226544A (en) Method of manufacturing optical fiber porous preform
CN103922578A (en) Method of fabricating an optical fiber preform and a burner therefor
JPS62171939A (en) Apparatus for production of porous optical fiber preform
JPS61236627A (en) Accumulating method for fine glass grain
US20020100295A1 (en) Optical fiber base material ingot and method for producing the same
JP2003226543A (en) Method of manufacturing optical fiber preform and burner apparatus for manufacturing optical fiber using the same
JP3744350B2 (en) Porous glass base material synthesis burner and method for producing porous glass base material
US4421539A (en) Method of producing rod-shaped base material for optical transmission fiber
JP4404767B2 (en) Method and apparatus for producing preforms from synthetic quartz glass using plasma assisted deposition
JP2006306652A (en) Method for manufacturing porous glass preform and burner for deposition used in the same
JPS6234699B2 (en)
JPH0310204A (en) Nonlinear optical fiber and its manufacture
JP2000327341A (en) Multiple pipe burner for producing porous glass base material and method and device for producing porous glass base material by use of the same
EP0301797B1 (en) Methods of making optical fiber and products produced thereby
JPH11199238A (en) Fine glass particle deposition device
WO1999032413A1 (en) Method of making large scale optical fiber preforms with improved properties
JP2000109329A (en) Production of porous preform
JP2898705B2 (en) Manufacturing method of optical fiber preform
FI91146B (en) A method of making a porous glass preform for optical fibers