JPS61236184A - Preparation of semiconductor laser element - Google Patents

Preparation of semiconductor laser element

Info

Publication number
JPS61236184A
JPS61236184A JP7667785A JP7667785A JPS61236184A JP S61236184 A JPS61236184 A JP S61236184A JP 7667785 A JP7667785 A JP 7667785A JP 7667785 A JP7667785 A JP 7667785A JP S61236184 A JPS61236184 A JP S61236184A
Authority
JP
Japan
Prior art keywords
layer
type
implanted
semiconductor laser
mqw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7667785A
Other languages
Japanese (ja)
Other versions
JPH0149030B2 (en
Inventor
Toshiaki Fukunaga
敏明 福永
Keisuke Kobayashi
啓介 小林
Hisao Nakajima
尚男 中島
Shigeru Semura
滋 瀬村
Yoko Uchida
陽子 内田
Tsuneaki Oota
太田 恒明
Takaro Kuroda
崇郎 黒田
Tadashi Narisawa
成沢 忠
Tatsuo Yokozuka
横塚 達男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7667785A priority Critical patent/JPS61236184A/en
Publication of JPS61236184A publication Critical patent/JPS61236184A/en
Publication of JPH0149030B2 publication Critical patent/JPH0149030B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To simplify the production process, make the contact of electrodes easy, and reduce the leak current, by forming a current constriction layer and a refraction index wave guide layer in the inside by Si implantation with high energy. CONSTITUTION:On the (001) face of the N-type GaAs substrate 1b, the following layers are laminated; the N-type GaAs buffer layer 2b, the N-type AlxGa1-xAs/ GaAsMQW buffer layer 3b, the N-type AlzGa1-zAs/AlwGa1-wAsMQW active layer 6, the P-type AlyGa1-yAs photo guide layer 7b, the P-type AlxGa1-xAs clad layer 8b and the cap layer 14. On the surface of this element, the metal mask is formed leaving the stripe in the (110) direction, and the Si ion with high energy is implanted to form the current constriction region 10. The P-type GaAs contact layer 9b is grown by epitaxy, when the MQW structure of the active layer 6 gives way to become the uniform mixed crystal, and the portion of low refraction index is formed in the oscillation region. Then, the P-side electrode layer 13 and the N-side electrode layer 12 are formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、GaAlAs系材料を用いた多重量子井戸
(MQW ’)屈折率導波型半導体レーザ素子の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a multiple quantum well (MQW') index-guided semiconductor laser device using GaAlAs-based materials.

(従来の技術) 従来、MQW屈折率導波型半導体レーザ素子は一回のエ
ピタキシャル成長と亜鉛拡散によシ製造されている。こ
の製造例を第2図に基いて説明すると、エピタキシャル
成長によりp型GaAs基板/αの(001)面上にp
型GaAsバッファ層ユα、p型A1.Ga 1−、A
ll /G(BAJMQWバッファ層3α、p型Als
Ga1−gAsクラッド層11a、p型AlyGα1−
yAs光導波層よα、A jf G31−fAJ/Aj
#Gα、−wAaMQW活性層6.3型AjyGa1−
yAs光導波層7cL、  n型klzGa 1−zA
sクラッド層gα、n型GaAsコンタクト層9αを積
層してから斜線部分にzn拡散によシミ流狭窄領域10
を形成すると同時に、活性クルのMQWを破壊すること
で屈折率導波機構を形成し、次にn型AjgGe1−π
A8クラッド層ざα上に絶縁膜//を形成してからその
上にn側電極層/、2、p型−A8基板/a裏面にp側
電極層13を蒸着するものである。
(Prior Art) Conventionally, MQW index-guided semiconductor laser devices have been manufactured by one-time epitaxial growth and zinc diffusion. This manufacturing example will be explained based on FIG. 2. By epitaxial growth, p
Type GaAs buffer layer Yu α, p type A1. Ga 1-, A
ll /G (BAJMQW buffer layer 3α, p-type Als
Ga1-gAs cladding layer 11a, p-type AlyGα1-
yAs optical waveguide layer α, A jf G31-fAJ/Aj
#Gα, -wAaMQW active layer 6.3 type AjyGa1-
yAs optical waveguide layer 7cL, n-type klzGa 1-zA
After laminating the s cladding layer gα and the n-type GaAs contact layer 9α, a stain flow constriction region 10 is formed in the shaded area by Zn diffusion.
At the same time, a refractive index waveguide mechanism is formed by destroying the MQW of the active cell, and then an n-type AjgGe1-π
After forming an insulating film // on the A8 cladding layer α, an n-side electrode layer 2 is deposited thereon, and a p-side electrode layer 13 is deposited on the back surface of the p-type A8 substrate/a.

(発明が解決しようとする問題点) しかし、以上のような半導体レーザ素子の製造法におい
ては内部ストライプ構造をとシにくいため、製造工程が
複雑となる他、これに採用゛されている亜鉛拡散は拡散
に時間が掛υ過ぎとともに、キャリヤ濃度の制御が困難
であり、り7.゛、う、1ラド層jαのキャリヤ濃度が
103−sにも達する鱒 ことがある。このため、電流狭窄層10の抵抗が小さく
、高出力の場合には大きな漏れ電流を生ずる。
(Problems to be Solved by the Invention) However, in the manufacturing method of the semiconductor laser device as described above, it is difficult to eliminate the internal stripe structure, which complicates the manufacturing process, and the zinc diffusion used in this device also complicates the manufacturing process. 7. It takes too much time for diffusion and it is difficult to control the carrier concentration. In some trout, the carrier concentration in one rad layer jα can reach as high as 103-s. Therefore, the resistance of the current confinement layer 10 is small, and a large leakage current occurs when the output is high.

(問題点を解決するための手段) 以上の問題点を解決するために、この発明では高エネル
ギーでSiイオンを打込み、内部に電流狭窄層及び屈折
率導波層を形成するようにしたklGaAs系材料を用
いたMQW屈折率導波型半導体レーザ素子の製造法を提
案するものである。
(Means for Solving the Problems) In order to solve the above problems, in the present invention, Si ions are implanted with high energy to form a current confinement layer and a refractive index waveguide layer inside the klGaAs system. This paper proposes a method for manufacturing an MQW index-guided semiconductor laser device using this material.

ここで、Siイオンは例えばエピタキシャル成長時のよ
うな低温(700℃)でアニールされてS<イオンが打
込まれたMQW活性層のMQW構造が崩れ、均一な混晶
になるような高エネルギー及び線量で打込む。具体的に
はエネルギー1〜3M−■で、 MQW活性層における
Siイオン濃度は1゛×109ffi−1程度になるよ
うに線量を設定する。
Here, the Si ions are annealed at a low temperature (700°C), such as during epitaxial growth, and the MQW structure of the MQW active layer into which the S Type in. Specifically, the energy is 1 to 3 M-■, and the dose is set so that the Si ion concentration in the MQW active layer is about 1.times.10.sup.9ffi.sup.-1.

−(発明の効果) となる。- (Effect of invention) becomes.

また、この発明ではS(イオン打込み法を使用するため
、キャリヤ濃度の制御を容易に行うことができる。この
ため、クラッド層におけるイオン打込み部分のキャリヤ
濃度を極力低く抑えることができ、且つクラッド層では
Ajの組成が0.5以上であるとSiイオンに対して深
い単位を形成するため、電流狭窄部分の抵抗が従来の亜
鉛拡散で得られるものよシ大きくなシ、漏れ電流が減少
する。
In addition, in this invention, since the S (ion implantation method) is used, the carrier concentration can be easily controlled. Therefore, the carrier concentration in the ion implanted portion of the cladding layer can be kept as low as possible, and the cladding layer If the composition of Aj is 0.5 or more, a deep unit is formed for Si ions, so the resistance of the current confinement portion is greater than that obtained by conventional zinc diffusion, and leakage current is reduced.

更に、この発明ではSSイオン打込み法を使用するため
、ストライプ幅の制御が容易となる。・このため、低発
振閾値電流で高出力までの横基本モード発振させること
ができる。また、この発明によ〕得られた半導体レーザ
素子は非点収差が小さいために、ディシイタル・オーデ
ィオ・ディスク、書き込み及び読取シ用の光デイスクメ
モリ、レーザビームプリンタ等の光源として最適である
Furthermore, since the present invention uses the SS ion implantation method, the stripe width can be easily controlled.・Therefore, it is possible to perform transverse fundamental mode oscillation up to high output with a low oscillation threshold current. Further, since the semiconductor laser device obtained according to the present invention has small astigmatism, it is suitable as a light source for digital audio disks, optical disk memories for writing and reading, laser beam printers, and the like.

なお、この場合1Mイオンが打込まれたMQW活性層の
MQW構造が700℃程度の低温で崩れ、均ゝ° また
上述のように、SiイオンをMQW活性層に高エネルギ
ーで打込んだ場合、素子内部の損傷は700℃、20分
程度で回復する。即ち2回目のエピタキシャル成長前に
回復するので、Siイオン打込み時の損傷による悪影響
はない。
In this case, the MQW structure of the MQW active layer into which 1M ions have been implanted collapses at a low temperature of about 700°C, and as described above, when Si ions are implanted into the MQW active layer at high energy, Damage inside the element will be recovered in about 20 minutes at 700°C. That is, since it is recovered before the second epitaxial growth, there is no adverse effect caused by damage during Si ion implantation.

(実施例) 以下、この発明を図示の実施例に基いて説明する。第1
図はこの発明によるAj GaAs MQW屈折率導波
型半導体レーザ素子の製造工程例を示すもので、第1図
←)に示すように分子線エピタキシャル(MBE)成長
法或いは有機金属気相エピタキシャル(OMVPE )
成長法を用いて成長室内でn型−M基板16の(001
)面上にn型Gapsバッファ層2b、 n型AjgG
41−gAj/GaAa MQW バッファ層、76 
%s M Al&Gα1−ghaクラッド層<xb、 
n型Aj。
(Example) The present invention will be explained below based on the illustrated example. 1st
The figure shows an example of the manufacturing process of an Aj GaAs MQW index-guided semiconductor laser device according to the present invention. )
The (001
) on the n-type Gaps buffer layer 2b, n-type AjgG
41-gAj/GaAa MQW buffer layer, 76
%s M Al&Gα1-gha cladding layer <xb,
n-type Aj.

Ga1−、As光導波層!rb、 AlgGcLl−g
A8/A1wGG1−@haMQW活性層6、p製AJ
、Ga1−、Aa光導波層qb、 p型AlsGcL1
−gAJ1クラッド層tb、キャップ層14!を積層す
る。
Ga1-, As optical waveguide layer! rb, AlgGcLl-g
A8/A1wGG1-@haMQW active layer 6, p made AJ
, Ga1-, Aa optical waveguide layer qb, p-type AlsGcL1
-gAJ1 cladding layer tb, cap layer 14! Laminate.

なお、Alの組成は用途によって異なるが、2>y>g
>uとなるように定め、且つZ > 0.3とする。
Note that the composition of Al varies depending on the application, but 2>y>g
> u, and Z > 0.3.

MQWバッファ層3bはOMVPE成長法の場合には省
略してもよい。
The MQW buffer layer 3b may be omitted in the case of OMVPE growth.

キャップ層/lは次のエピタキシャル成長マチの間にク
ラッド層tbの表面が大気に晒らされるのを防ぐために
設けられ、−Asの薄膜で構成してもよいが、この実施
例では低温で成長して薄膜を形成し、且つ通常のエピタ
キシャル成長温度で形成した薄膜が蒸発してしまう物質
、  I?LP、InAa 、 Inch等のIn化合
物を使用し、約1ooXの厚みで薄膜を形成する。
The cap layer /l is provided to prevent the surface of the cladding layer tb from being exposed to the atmosphere during the next epitaxial growth process, and may be composed of a thin film of -As, but in this example, it is grown at a low temperature. A substance that forms a thin film at normal epitaxial growth temperatures and evaporates at normal epitaxial growth temperatures. A thin film with a thickness of about 1ooX is formed using an In compound such as LP, InAa, Inch, etc.

またMQW活性層乙りル壁及び厚みは、siイオンの打
込み、アニールによってMQW構造が崩れ、均一な混晶
になった時の発振波長における屈折率がMQW構造の屈
折率よりも小さく、且つ発振閾値電流が低くなるように
定める。
In addition, the MQW active layer wall and thickness are such that the MQW structure collapses due to Si ion implantation and annealing, and when it becomes a uniform mixed crystal, the refractive index at the oscillation wavelength is smaller than the refractive index of the MQW structure, and the oscillation Set so that the threshold current is low.

以上のように積層された素子の表面に、幅5μのストラ
イプを(110)或いは(rTO)方向に残して金属マ
スクを施し、高エネルギーのSiイオンを打込む。なお
、金属の厚みはSSイオンがキャップ層13に達しない
程度とする。
A metal mask is applied to the surface of the elements stacked as described above, leaving stripes with a width of 5 μ in the (110) or (rTO) direction, and high-energy Si ions are implanted. Note that the thickness of the metal is such that SS ions do not reach the cap layer 13.

またS(イオンはMQW活性層乙りルQW構造が次のエ
ピタキシャル成長時にアニールされて崩れるような濃度
(5×1♂”m−”程度)となるように打込まれ、この
実施例では打込みエネルギーは2M、Vとし、斜線部分
にSSイオンの打込みが行なわれ、電流狭窄領域ioが
形成される。
In addition, S (ions) are implanted at a concentration (approximately 5×1♂"m-") such that the MQW active layer's original QW structure will be annealed and collapsed during the next epitaxial growth, and in this example, the implantation energy is are set to 2M and V, and SS ions are implanted in the shaded area to form a current confinement region io.

次に、成長室内で通常のエピタキシャル成長温度(70
0t:程度)に昇温してM圧を加えながらキャップ層l
ダを蒸発させてからMBE成長法或いはOMYPE法に
よシ22回目エピタキシャル成長によシフラッド層tb
上にp 製Gapsコンタクト層9bを積層する。
Next, the normal epitaxial growth temperature (70°C) is applied in the growth chamber.
0t: approx.) and apply M pressure while forming the cap layer l.
After evaporating the film, the shift layer tb is formed by the 22nd epitaxial growth using the MBE growth method or the OMYPE method.
A p-type Gaps contact layer 9b is laminated thereon.

逆に、クラッド層gb上にコンタクト層9bを積層し、
2回目のエピタキシャル成長でコンタクト層9bを更に
成長させてもよい。この場合にはキャップ層/3を設け
なくてもよい。
Conversely, a contact layer 9b is laminated on the cladding layer gb,
Contact layer 9b may be further grown in the second epitaxial growth. In this case, the cap layer/3 may not be provided.

なお、り2ラド層tb1 コンタクト層9bの厚み等は
SSイオンの打込みエネルギーにも関係するので、以上
いずれを採用するかはこれ等を考慮して定める。
Note that the thickness of the contact layer 9b and the second layer tb1 are also related to the implantation energy of SS ions, so which of the above to be adopted is determined in consideration of these factors.

一方、Siイオンを打込まれたMQW活性層6は2回目
のエピタキシャル成長過程でそのMQW 構造が崩れて
均一な混晶とな夛、発振波長において屈折率の低い部分
が形成される。
On the other hand, in the MQW active layer 6 implanted with Si ions, its MQW structure collapses during the second epitaxial growth process and becomes a uniform mixed crystal, forming a portion with a low refractive index at the oscillation wavelength.

またS<イオン打込みによって受けた損傷は700℃、
20分間のM圧下でのアニーリングで回復したことが打
込み後のsi活性化率よシ確かめられた。このことよシ
、成長前のA8圧下での被復層を700℃で蒸発させて
いる間に損復が回復するので、2回目の成長に何らの影
響も与えない。
Also, S<the damage caused by ion implantation is 700℃,
The recovery was confirmed by annealing under M pressure for 20 minutes, as confirmed by the Si activation rate after implantation. This does not have any influence on the second growth because the damage is recovered while the layer to be recovered under the A8 pressure before the growth is evaporated at 700°C.

更に、コンタクト層9b及びn型GaAs基板lbの裏
面にはp側電極層13、n側電極層/Jを蒸着によシ形
成して半導体レーザ素子を製造する。
Furthermore, a p-side electrode layer 13 and an n-side electrode layer /J are formed by vapor deposition on the contact layer 9b and the back surface of the n-type GaAs substrate 1b, thereby manufacturing a semiconductor laser device.

次に、このようKして得られた半導体レーザ素子の動作
原理を述べると、p側電極層13を接地して外側電極層
l−に負電圧を加えることによシミ流はクラッド層tb
、光導波層7bの電流狭窄領域10によって狭窄されて
MQW活性層のMQW構造部分に注入されて発光する。
Next, to describe the operating principle of the semiconductor laser device obtained in this manner, by grounding the p-side electrode layer 13 and applying a negative voltage to the outer electrode layer l-, the stain flow can be suppressed from the cladding layer tb.
, is constricted by the current confinement region 10 of the optical waveguide layer 7b, and is injected into the MQW structure portion of the MQW active layer to emit light.

この光は上下及び左右の屈折率の低い部分によって導波
され、発振する。
This light is guided by the upper, lower, left and right parts with low refractive index, and oscillates.

また、Siイオンの打込みによってストライプ幅を制御
することによって低発振閾値電流、高効率動作、高出力
までの横基本モードを確保することかでする。
Furthermore, by controlling the stripe width by implanting Si ions, it is possible to ensure a low oscillation threshold current, high efficiency operation, and a lateral fundamental mode up to high output.

なお、この実施例ではクラッド層gbの表面は2回目の
エピタキシャル成長までの間キャップ層/3によシ被覆
され、大気中に晒らされることがないのでクラッド層g
bとコンタクト層9bの間に高い抵抗部分が形成される
こともなく、またキャップ層13として2回目のエピタ
キシャル成長過程で蒸発してしまうようなIn化合物で
構成される薄膜を使用しているため、キャップ層13の
除去のための熱によj5 MQW構造の急峻性が損われ
ることがない。
In this example, the surface of the cladding layer gb is covered with the cap layer /3 until the second epitaxial growth and is not exposed to the atmosphere, so the surface of the cladding layer gb is not exposed to the atmosphere.
A high resistance portion is not formed between the contact layer 9b and the contact layer 9b, and a thin film made of an In compound that evaporates during the second epitaxial growth process is used as the cap layer 13. The steepness of the j5 MQW structure is not impaired by heat for removing the cap layer 13.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の製造工程の一例を示すもので、第
1図(α)は第1回目のエピタキシャル、成長とSsイ
オン打込み工程を示す図、第1図(6)は第2回目のエ
ピタキシャル成長と電極形成工程を示す図、第2図は従
来の方法で製造された半導体レーザ素子の斜視図である
。 図中、6はMQW活性層、10は電流狭窄領域。
Figure 1 shows an example of the manufacturing process of the present invention. Figure 1 (α) shows the first epitaxial, growth and Ss ion implantation process, and Figure 1 (6) shows the second process. FIG. 2 is a perspective view of a semiconductor laser device manufactured by a conventional method. In the figure, 6 is an MQW active layer, and 10 is a current confinement region.

Claims (2)

【特許請求の範囲】[Claims] (1)高エネルギーでSiイオンを打込み、内部に電流
狭窄及び屈折率導波領域を形成するようにしたことを特
徴とするAlGaAs多重量子井戸屈折率導波量半導体
レーザの製造法。
(1) A method for manufacturing an AlGaAs multiple quantum well refractive index waveguide semiconductor laser, characterized in that Si ions are implanted at high energy to form a current confinement and refractive index waveguide region inside.
(2)Siイオンの打込みのエネルギー及び線量を、S
iイオンの打込まれた多重量子井戸活性層の多重量子井
戸構造が次のエピタキシャル成長でアニールさせてくず
れるように設定する特許請求の範囲第1項記載の製造法
(2) Set the energy and dose of Si ion implantation to S
2. The manufacturing method according to claim 1, wherein the multi-quantum well structure of the multi-quantum well active layer into which i-ions have been implanted is set so as to be annealed and destroyed during subsequent epitaxial growth.
JP7667785A 1985-04-12 1985-04-12 Preparation of semiconductor laser element Granted JPS61236184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7667785A JPS61236184A (en) 1985-04-12 1985-04-12 Preparation of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7667785A JPS61236184A (en) 1985-04-12 1985-04-12 Preparation of semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS61236184A true JPS61236184A (en) 1986-10-21
JPH0149030B2 JPH0149030B2 (en) 1989-10-23

Family

ID=13612059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7667785A Granted JPS61236184A (en) 1985-04-12 1985-04-12 Preparation of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS61236184A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236886A (en) * 1985-08-12 1987-02-17 Hitachi Ltd Semiconductor structure and manufacture thereof
US4980313A (en) * 1989-01-24 1990-12-25 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor laser
JPH04127489A (en) * 1988-12-21 1992-04-28 Hikari Keisoku Gijutsu Kaihatsu Kk Semiconductor optical element and manufacture thereof
US5238868A (en) * 1989-11-30 1993-08-24 Gte Laboratories Incorporated Bandgap tuning of semiconductor quantum well structures
WO1996019856A1 (en) * 1994-12-22 1996-06-27 Polaroid Corporation Laser diode with an ion-implanted region

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500681A (en) * 1981-05-06 1983-04-28 ユニバ−シテイ オブ イリノイ フアンデ−シヨン Manufacturing method of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58500681A (en) * 1981-05-06 1983-04-28 ユニバ−シテイ オブ イリノイ フアンデ−シヨン Manufacturing method of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236886A (en) * 1985-08-12 1987-02-17 Hitachi Ltd Semiconductor structure and manufacture thereof
JPH04127489A (en) * 1988-12-21 1992-04-28 Hikari Keisoku Gijutsu Kaihatsu Kk Semiconductor optical element and manufacture thereof
US4980313A (en) * 1989-01-24 1990-12-25 Mitsubishi Denki Kabushiki Kaisha Method of producing a semiconductor laser
US5238868A (en) * 1989-11-30 1993-08-24 Gte Laboratories Incorporated Bandgap tuning of semiconductor quantum well structures
WO1996019856A1 (en) * 1994-12-22 1996-06-27 Polaroid Corporation Laser diode with an ion-implanted region

Also Published As

Publication number Publication date
JPH0149030B2 (en) 1989-10-23

Similar Documents

Publication Publication Date Title
JPH11330605A (en) Semiconductor laser
JPS61236184A (en) Preparation of semiconductor laser element
JPH08148752A (en) Manufacture of semiconductor laser device and semiconductor laser device
JPS6085585A (en) Buried type semiconductor laser
JPH0992924A (en) Semiconductor laser
JP3708213B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPS6062179A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS59172785A (en) Semiconductor laser
JPH0125238B2 (en)
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPS60164383A (en) Manufacture of semiconductor laser
JPS593872B2 (en) Method for manufacturing semiconductor light emitting device
JP2000133875A (en) Semiconductor laser element and manufacture of semiconductor laser
JPH11145551A (en) Refractive index guiding type semiconductor layer and its manufacture
JPH0621567A (en) Semiconductor laser
JPS60176286A (en) Semiconductor laser
JPH0590699A (en) Manufacture of multiple-wavelength semiconductor laser device
JPH0519837B2 (en)
JPH03206679A (en) Semiconductor laser
JPH0563287A (en) Semiconductor laser
JPH01110788A (en) Manufacture of semiconductor laser
JPS63248190A (en) Semiconductor laser
JPH05121821A (en) Manufacture of semiconductor laser device
JPH01281784A (en) Manufacture of semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term