JPH01281784A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH01281784A
JPH01281784A JP11080388A JP11080388A JPH01281784A JP H01281784 A JPH01281784 A JP H01281784A JP 11080388 A JP11080388 A JP 11080388A JP 11080388 A JP11080388 A JP 11080388A JP H01281784 A JPH01281784 A JP H01281784A
Authority
JP
Japan
Prior art keywords
layer
active layer
region
mqw
disordered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11080388A
Other languages
Japanese (ja)
Inventor
Tetsuo Shiba
哲夫 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11080388A priority Critical patent/JPH01281784A/en
Publication of JPH01281784A publication Critical patent/JPH01281784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate realization of an active layer composed of a narrow MQW(Multilayer Quantum Well) structure by a method wherein only the region of the MQW into which a second impurity is implanted is not disordered in an annealing process and the region is used as the active layer. CONSTITUTION:The width of an active layer composed of GaAs layers 3a and AlzGa1-zAs layers 3b is limited by an Si diffused region 7 formed by diffusion from the tip of a V-groove 11 and the sufficiently narrow active layer can be realized easily. If a forward bias is applied to this laser, a current is injected from a Zn diffused region 6 into the active layer in the Si diffused region 7 which is not disordered and has a low built-in potential from both the sides of it. The active layer has not only the function of confining a current and a light in the vertical direction but also has the function of a waveguide region in the horizontal direction because both the sides of the active layer are disordered and has lower refractive indices. Moreover, as the amplifying region of the light is also limited, the light can be confined efficiently, so that a stable laser oscillation can be realized.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、活性層としてM Q W (Multi 
Quan−tum Well:多重量子井戸層)を備え
た半導体レーザの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) This invention provides an active layer with MQW (Multi
The present invention relates to a method of manufacturing a semiconductor laser equipped with a quantum well layer.

〔従来の技術〕[Conventional technology]

従来より半導体レーザの低しきい値化に関しては、半導
体レーザ内での電流狭さく効果を構造上の工夫によって
向上させることが行われており、この結果、実用レベル
において10mAを下まわるものが開発されている。
Conventionally, in order to lower the threshold voltage of semiconductor lasers, efforts have been made to improve the current narrowing effect within the semiconductor laser by improving the structure, and as a result, a device with a threshold voltage of less than 10 mA at a practical level has been developed. ing.

しかしながら、レーザと電子デバイスとの集積化を考え
た場合、個別素子の時と異り、レーザから発生する熱を
有効に逃す手段がないため、個別の時と同様の電流を流
すことができなくなる。レーザが複数個になると、この
問題は益々深刻なものとなり、レーザの駆動電流として
許されるのは高々1mA程度であろうと言われており、
このような背景のもとに低しきい値レーザの開発が行わ
れている。
However, when considering the integration of lasers and electronic devices, unlike when using individual elements, there is no way to effectively release the heat generated from the laser, so it is no longer possible to flow the same current as when they are integrated. . This problem becomes even more serious when there are multiple lasers, and it is said that the only allowable driving current for the laser is about 1 mA at most.
Against this background, low threshold lasers are being developed.

第3図(a)、(b)はElectoronics L
etters■1117に示された従来の半導体レーザ
の素子構造およびそのダブルへテロ構造部を示す断面図
である。これらの図において、21はn−GaAsから
なる基板、22はn−AlGaAsからなる下クラッド
層、23はMQW層、23aはGaAs層、23bはA
 l z G a t−g A s層、23cはAI、
Ga+−、As層、24はp−AIGaAsからなる上
クラッド層、25はp−GaAsからなるキャップ層、
26はp” −Zn拡散領域、27は自然酸化膜、28
はp電極、29はn電極である。
Figure 3 (a) and (b) are Electronics L
1117 is a cross-sectional view showing the element structure of a conventional semiconductor laser and its double heterostructure shown in No. 1117. In these figures, 21 is a substrate made of n-GaAs, 22 is a lower cladding layer made of n-AlGaAs, 23 is an MQW layer, 23a is a GaAs layer, and 23b is an A
lzGat-gAs layer, 23c is AI,
24 is an upper cladding layer made of p-AIGaAs, 25 is a cap layer made of p-GaAs,
26 is a p''-Zn diffusion region, 27 is a natural oxide film, 28
is a p-electrode, and 29 is an n-electrode.

このレーザでは、MQW層2層内3内aAs層23aと
AI、Gap−、As層23bを活性層としているので
、電子と正孔の状態密度が局在化され、利得が大きくな
るため低しきい値化が図られている。そして活性層の上
下には、AI、Ga1−yAs層23cと上クラッド層
24、下クラッド層22を設けているため、垂直方向に
光および注入キャリアが閉じ込められる。また、活性層
の両端はエツチングにより落とされており、その両面か
らのZnの拡散によってMQWの一部が無秩序化され、
活性層の狭さく化がなされている。
In this laser, the aAs layer 23a in the second and third MQW layers and the AI, Gap-, As layer 23b are used as active layers, so the density of states of electrons and holes is localized, and the gain is large and low. A threshold is being established. Since the AI and Ga1-yAs layers 23c, the upper cladding layer 24, and the lower cladding layer 22 are provided above and below the active layer, light and injected carriers are confined in the vertical direction. In addition, both ends of the active layer are removed by etching, and part of the MQW is disordered due to the diffusion of Zn from both sides.
The active layer is narrowed.

〔発明が解決しようとする課題) 上記のような従来の半導体レーザは、MQW構造の採用
と活性層の狭さく化の2つの効果によって1mA程度の
低しきい値を実現しているが、活性層の両側をエツチン
グすることは技術的に困難であり、また、Znの拡散も
再現性に乏しいため実用化には適していなかった この発明は、かかる課題を解決するためになされたもの
で、幅の狭いMQW構造の活性層を容易に実現可能な半
導体レーザの製造方法を得ることを目的とする。
[Problem to be solved by the invention] The conventional semiconductor laser as described above achieves a low threshold of about 1 mA by adopting an MQW structure and narrowing the active layer. It is technically difficult to etch both sides of the film, and Zn diffusion also has poor reproducibility, making it unsuitable for practical use.This invention was made to solve these problems, and An object of the present invention is to obtain a method for manufacturing a semiconductor laser that can easily realize an active layer having a narrow MQW structure.

(課題を解決するための手段〕 この発明に係る半導体レーザの製造方法は、半絶縁性基
板上に下クラッド層、第1の不純物を含むMQW層、上
クラッド層を順次形成する工程と、この上クラッド層に
溝を形成し、この溝からMQW層まで第2の不純物を注
入する工程と、MQW層の第2の不純物の注入されてい
ない領域のみが無秩序化される温度でアニールを行う工
程とを含むものである。
(Means for Solving the Problems) A method for manufacturing a semiconductor laser according to the present invention includes the steps of sequentially forming a lower cladding layer, an MQW layer containing a first impurity, and an upper cladding layer on a semi-insulating substrate; A step of forming a groove in the upper cladding layer and implanting a second impurity from the groove to the MQW layer, and a step of annealing at a temperature such that only the region of the MQW layer where the second impurity is not implanted is disordered. This includes:

〔作用〕[Effect]

この発明においては、MQW層の第2の不純物が注入さ
れた領域のみがアニール工程で無秩序化されず、この領
域が活性層となる。
In this invention, only the region of the MQW layer into which the second impurity is implanted is not disordered in the annealing step, and this region becomes the active layer.

(実施例〕 第1図(a)〜(d)はこの発明の半導体レーザの製造
方法の一実施例を説明するための断面図であり、第2図
(a)〜(C)はこの発明によって得られた半導体レー
ザの構造、ダブルへテロ構造部および無秩序化されたダ
ブルへテロ構造部を示す断面図である。これらの図にお
いて、1は半絶縁性GaAsからなる基板、2はp−A
IXGax−、Asからなる下クラッド層、3はMQW
層、3aはGaAs層、3bはAlllGa、−。
(Example) FIGS. 1(a) to (d) are cross-sectional views for explaining an example of the method of manufacturing a semiconductor laser of the present invention, and FIGS. 2(a) to (C) are cross-sectional views of the present invention. 1 is a cross-sectional view showing the structure of a semiconductor laser, a double heterostructure, and a disordered double heterostructure obtained by the method. In these figures, 1 is a substrate made of semi-insulating GaAs, and 2 is a p- A
IXGax-, lower cladding layer made of As, 3 is MQW
layers, 3a is a GaAs layer, 3b is AllGa, -.

As層、3cはAI、Gap−、As層、3dは無秩序
化により生成されたAI、’Ga+−、’As層、3′
は無秩序化されたMQW層、4はp−A 1 x G 
a I −X A Sからなる上クラッド層、5はp−
GaAsからなるキャップ層、6はp +−Zn拡散領
域、7はn”−SL拡散領域、8は絶縁膜、9はp電極
、10はn電極、11はV溝である。
As layer, 3c is AI, Gap-, As layer, 3d is AI generated by disordering, 'Ga+-, 'As layer, 3'
is the disordered MQW layer, 4 is p-A 1 x G
a Upper cladding layer consisting of I-X A S, 5 is p-
A cap layer made of GaAs, 6 a p + -Zn diffusion region, 7 an n''-SL diffusion region, 8 an insulating film, 9 a p electrode, 10 an n electrode, and 11 a V groove.

次に、製造工程について説明する。Next, the manufacturing process will be explained.

まず、第2図(a)に示すように、基板1上に下クラッ
ド層2からキャップ層5までを分子線エピタキシー法に
より順次成長させる。なお、この時、第1の不純物とし
てのBeを活性層となるMQW層3内のGaAs層3a
、AI、Ga、−。
First, as shown in FIG. 2(a), layers from the lower cladding layer 2 to the cap layer 5 are sequentially grown on the substrate 1 by molecular beam epitaxy. At this time, Be as the first impurity is added to the GaAs layer 3a in the MQW layer 3 which becomes the active layer.
,AI,Ga,-.

As層3bにあらかじめドーピングしておく。The As layer 3b is doped in advance.

次に、第2図(b)に示すように、電極形成部を残すよ
うにキャップ層5を選択的にエツチングしたのち、MQ
W層3の直上までV溝11を形成する。
Next, as shown in FIG. 2(b), after selectively etching the cap layer 5 so as to leave the electrode forming portion, the MQ
A V-groove 11 is formed up to just above the W layer 3.

次に、第2図(C)に示すように、V溝11からMQW
層3まで到達するように第2の不純物としてのStの注
入を行った後、アニールを行う。
Next, as shown in FIG. 2(C), from the V groove 11 to the MQW
After St is implanted as a second impurity so as to reach layer 3, annealing is performed.

この時、MQW層3のうちSiの注入が行われた領域は
、いわゆる” Co−DOPE”効果によりMQW構造
がそのまま残る。そして、St拡散領域7外では、Be
を単独に拡散した場合と同様に、GaAs層3aとA 
1 z G a I−z A s層3bの相互拡散によ
り無秩序化が起こり、両層の中間的組成のAI、’ G
ap−、’ As層3dが生成される(o<z’ <z
)。上記のSiの拡散は■溝11の形状になされるため
、保存されるMQW領域はごく狭い幅に絞られることに
なる。
At this time, in the region of the MQW layer 3 where Si has been implanted, the MQW structure remains as is due to the so-called "Co-DOPE" effect. And, outside the St diffusion region 7, Be
Similarly to the case where A is diffused alone, the GaAs layer 3a and A
1 z G a I - z A disorder occurs due to interdiffusion of the s layers 3b, and AI with an intermediate composition of both layers, 'G
ap-,' As layer 3d is generated (o<z'<z
). Since the above-mentioned diffusion of Si is performed in the shape of the groove 11, the MQW region to be saved is narrowed down to a very narrow width.

そして、最後に第2図(d)に示すように、Zn拡散領
域6を形成した後、絶縁膜8.p側電極9およびn側電
極10を形成すれば素子が完成する。
Finally, as shown in FIG. 2(d), after forming the Zn diffusion region 6, the insulating film 8. The device is completed by forming the p-side electrode 9 and the n-side electrode 10.

次に動作について説明する。Next, the operation will be explained.

このようにして得られた半導体レーザでは、GaAs層
3aとAI、Ga+−、Ass層bからなる活性層の幅
が、■溝11の先端から拡散されたSt拡散領域7によ
って制限されており、十分幅の狭い活性層を容易に実現
できる。そして、このレーザに順バイアスをかけると、
Zn拡散領域6から注入された電流は、St拡散領域7
内の無秩序化されておらず、ビルトインポテンシャルの
低い活性層へ両側から選択的に注入される。この活性層
は、従来例で示したもののように、垂直方向に対して電
流、光を閉じ込める機能があるほか、横方向についても
、その両側が無秩序化されて屈折率が低くなっているた
め導波領域として機能する。また、光の増幅領域も制限
されることから、光を有効に閉じ込めることができ、安
定なレーザ発振が可能となっている。
In the semiconductor laser thus obtained, the width of the active layer consisting of the GaAs layer 3a and the AI, Ga+-, Ass layer b is limited by the St diffusion region 7 diffused from the tip of the groove 11; A sufficiently narrow active layer can be easily realized. Then, if we apply a forward bias to this laser,
The current injected from the Zn diffusion region 6 flows into the St diffusion region 7.
selectively injected from both sides into the active layer, which is not disordered and has a low built-in potential. This active layer has the function of confining current and light in the vertical direction, as shown in the conventional example, and also in the lateral direction, because both sides are disordered and the refractive index is low. Functions as a wave area. Furthermore, since the light amplification region is also limited, the light can be effectively confined, making stable laser oscillation possible.

なお、上記実施例ではGaAs系の半導体レーザを用い
て説明したが、InP系等の他の材料からなる半導体レ
ーザについても適用できる。
Although the above embodiments have been described using a GaAs-based semiconductor laser, the present invention can also be applied to semiconductor lasers made of other materials such as InP-based.

また、第1の不純物としてのBeを、あらかじめ活性層
内にドーピングした場合について説明したが、イオン注
入により結晶成長後にドーピングしてもよい。
Furthermore, although the case has been described in which Be is doped into the active layer in advance as the first impurity, it may be doped after crystal growth by ion implantation.

また、第1の不純物としてBe、第2の不純物としてS
tを用いたが、”Co−DOPE″効果が得られるもの
であれば、上記以外の組み合わせのものを用いてもよい
Also, Be as the first impurity and S as the second impurity.
Although t is used, combinations other than those described above may be used as long as the "Co-DOPE" effect can be obtained.

(発明の効果) この発明は以上説明したとおり、半絶縁性基板上に下ク
ラッド層、第1の不純物を含むMQW層、上クラッド層
を順次形成する工程と、この上クラッド層に溝を形成し
、この溝からMQW層まで第2の不純物を注入する工程
と、MQW層の第2の不純物の注入されていない領域の
みが無秩序化される温度でアニールを行う工程とを含む
ので、MQW構造の活性層の一部のみを容易に無秩序化
でき、幅が狭く低しきい値であり、電子デバイスとの集
積化に適した半導体レーザを再現性よく得られるという
効果がある。
(Effects of the Invention) As explained above, the present invention includes a step of sequentially forming a lower cladding layer, an MQW layer containing a first impurity, and an upper cladding layer on a semi-insulating substrate, and forming a groove in the upper cladding layer. However, since it includes a step of implanting a second impurity from this trench to the MQW layer, and a step of annealing at a temperature such that only the region of the MQW layer where the second impurity is not implanted becomes disordered, the MQW structure can be improved. It is possible to easily disorder only a part of the active layer of the semiconductor laser, and it is possible to obtain a semiconductor laser with good reproducibility, which has a narrow width and a low threshold value, and is suitable for integration with electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体レーザの製造方法の一実施例
を説明するための断面図、第2図はこの発明によって得
られた半導体レーザの構造を示す断面図、第3図は従来
の半導体レーザの構造を示す断面図である。 図において、1は半絶縁性GaAsからなる基板、2は
p−AlxGa1−xAsからなる下クラッド層、3は
MQW層、3aはGaAs層、3bはA1.Ga+−、
As層、3CはAI、Ga、−。 As層、3dは無秩序化により生成されたA I 、’
G a r −z ’ A s層、3′は無秩序化され
たMQW層、4はp−AlxGap−XAsからなる上
クラッド層、5はp−GaAsからなるキャップ層、6
はp”−Zn拡散領域、7はn”−St拡散領域、8は
絶縁膜、9はp電極、10はn電極、11はV溝である
。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第1図 +1J、n’蝿壱に 第2図 3d:’!a与イヒにより生成ざ太たAh’Ga+−z
’As/W(a)    「== ]− 1□□−− し くb)1 [ 3図 □−□□□□
FIG. 1 is a cross-sectional view for explaining an embodiment of the semiconductor laser manufacturing method of the present invention, FIG. 2 is a cross-sectional view showing the structure of the semiconductor laser obtained by the present invention, and FIG. FIG. 2 is a cross-sectional view showing the structure of a laser. In the figure, 1 is a substrate made of semi-insulating GaAs, 2 is a lower cladding layer made of p-AlxGa1-xAs, 3 is an MQW layer, 3a is a GaAs layer, 3b is A1. Ga+-,
As layer, 3C is AI, Ga, -. As layer, 3d is A I ,' generated by disordering.
3' is a disordered MQW layer, 4 is an upper cladding layer made of p-AlxGap-XAs, 5 is a cap layer made of p-GaAs, 6
7 is a p''-Zn diffusion region, 7 is an n''-St diffusion region, 8 is an insulating film, 9 is a p electrode, 10 is an n electrode, and 11 is a V groove. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 + 1J, n' Toichi Figure 2 3d:'! Ah'Ga+-z generated by a
'As/W(a) "== ]-1□□-- Shikub)1 [Figure 3□-□□□□

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性基板上に下クラッド層、第1の不純物を含む
MQW層、上クラッド層を順次形成する工程と、この上
クラッド層に溝を形成し、この溝から前記MQW層まで
第2の不純物を注入する工程と、前記MQW層の第2の
不純物の注入されていない領域のみが無秩序化される温
度でアニールを行う工程とを含むことを特徴とする半導
体レーザの製造方法。
a step of sequentially forming a lower cladding layer, an MQW layer containing a first impurity, and an upper cladding layer on a semi-insulating substrate; forming a groove in the upper cladding layer; and forming a groove with a second impurity from the groove to the MQW layer. A method for manufacturing a semiconductor laser, comprising the steps of: implanting a second impurity; and performing annealing at a temperature at which only a region of the MQW layer where the second impurity is not implanted becomes disordered.
JP11080388A 1988-05-07 1988-05-07 Manufacture of semiconductor laser Pending JPH01281784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11080388A JPH01281784A (en) 1988-05-07 1988-05-07 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11080388A JPH01281784A (en) 1988-05-07 1988-05-07 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01281784A true JPH01281784A (en) 1989-11-13

Family

ID=14545050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11080388A Pending JPH01281784A (en) 1988-05-07 1988-05-07 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01281784A (en)

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
US4456999A (en) Terrace-shaped substrate semiconductor laser
JP3421140B2 (en) Method of manufacturing semiconductor laser device and semiconductor laser device
JPH01281784A (en) Manufacture of semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS637691A (en) Semiconductor laser device
JP2869875B2 (en) Manufacturing method of optical integrated circuit
JPH07235725A (en) Semiconductor laser element and its manufacture
JP3777027B2 (en) Semiconductor laser device
JPH0669595A (en) Semiconductor laser and manufacture thereof
JP2605478B2 (en) Method of manufacturing semiconductor laser device
JPH04103186A (en) Semiconductor laser and manufacture thereof
JPH0828553B2 (en) Semiconductor laser
JP2550711B2 (en) Semiconductor laser
JP3217461B2 (en) Method for manufacturing semiconductor laser device
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH01282883A (en) Semiconductor laser device
JPH0555685A (en) Lateral direction injection laser and its manufacture
JPS6129183A (en) Semiconductor laser
JPH01166592A (en) Semiconductor laser element
JPH06350188A (en) Semiconductor laser element
JP2006120668A (en) Semiconductor laser
JPH02174286A (en) Manufacture of semiconductor laser
JPH0642581B2 (en) Semiconductor laser device