JPS61236150A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61236150A
JPS61236150A JP60076564A JP7656485A JPS61236150A JP S61236150 A JPS61236150 A JP S61236150A JP 60076564 A JP60076564 A JP 60076564A JP 7656485 A JP7656485 A JP 7656485A JP S61236150 A JPS61236150 A JP S61236150A
Authority
JP
Japan
Prior art keywords
amorphous silicon
high resistance
resistance
silicon layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60076564A
Other languages
Japanese (ja)
Inventor
Kenji Tokunaga
徳永 謙二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60076564A priority Critical patent/JPS61236150A/en
Publication of JPS61236150A publication Critical patent/JPS61236150A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Abstract

PURPOSE:To provide a required high resistance resulting from large intrinsic resistance amorphous silicon irrespective of making a device minute, and to fabricate the high resistance element easily in the same way as a planar structure resistance, by constituting the high resistance element employing amorphous silicon. CONSTITUTION:In a contact hole, an amorphous silicon layer 17 with a thickness of several hundred Angstrom and about the same planar dimensions as the hole is formed, being connected with an N-type region 11. This amorphous silicon layer 17 constitutes a high load resistance 5 on which an inter-layer insulating film 18 such as PSG is formed, and is connected with a wiring layer 20 such as aluminum via the through hole 19 bored through the insulating film 18. The amorphous silicon layer 17 is as high as 1X10<10>OMEGAcm in intrinsic resistance, in order to attain a required high resistance only by the thickness. Thus, only by putting the amorphous silicon layer 17 vertically between the N-type region 11 and aluminum wiring layer 20, a high resistance 5 can be constituted.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は回路の一部に高抵抗素子を有する半導体装置に
関し、特に高抵抗素子の微細化を図って集積度の向上を
達成した半導体装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a semiconductor device having a high-resistance element in a part of a circuit, and particularly to a semiconductor device in which the high-resistance element is miniaturized to improve the degree of integration. be.

〔背景技術〕[Background technology]

回路の一部に高抵抗素子を有する半導体装置、例えばス
タチック形RAM (SRAM)では、その負荷抵抗と
しての高抵抗素子に、不純物を導入していないイントリ
ンシックな多結晶シリコンを用いている。このイントリ
ンシックな多結晶シリコンは、固存抵抗(比抵抗)が約
4X10’〔Ωcm)程度あり、多結晶シリコン層を長
さ5μm、幅2μm5厚さ0.2μmに形成すると略5
x l Q l lΩの抵抗を得ることができる。
2. Description of the Related Art In a semiconductor device having a high resistance element in a part of a circuit, such as a static RAM (SRAM), intrinsic polycrystalline silicon to which no impurity is introduced is used for the high resistance element as a load resistance. This intrinsic polycrystalline silicon has a fixed resistance (specific resistance) of about 4 x 10' [Ωcm], and when the polycrystalline silicon layer is formed to have a length of 5 μm, a width of 2 μm, and a thickness of 0.2 μm, it is approximately 5 μm.
A resistance of x l Q l lΩ can be obtained.

しかしながら、近年における半導体素子の微細化、高集
積化に伴って抵抗素子の微細化も要求されてくると、前
述の長さ、幅、厚さ等の寸法にも制約を受け、必要な高
抵抗値を得ることが難しくなり、半導体装置の高集積化
に追従することができなくなる。
However, with the miniaturization and high integration of semiconductor devices in recent years, there has been a demand for miniaturization of resistive elements, and the dimensions such as length, width, and thickness mentioned above are also constrained, and the required high resistance It becomes difficult to obtain a value, and it becomes impossible to keep up with the increase in the degree of integration of semiconductor devices.

このようなことから、本出願人は先に半導体基板に深い
細溝を形成してこの溝内に多結晶シリコンを埋設し、こ
の多結晶シリコンの溝深さを利用して高抵抗を得る半導
体装置を提案している(特願昭59−113003号)
。この抵抗素子構造によれば、溝の平面面積に比較して
深さを十分大きなものにできるので、半導体素子の微細
化を図る一方で必要な高抵抗を得ることができる。
For this reason, the present applicant first formed a deep narrow groove in a semiconductor substrate, buried polycrystalline silicon in this groove, and utilized the depth of the polycrystalline silicon groove to create a semiconductor with high resistance. We are proposing a device (Patent Application No. 113003/1989)
. According to this resistor element structure, the depth can be made sufficiently large compared to the planar area of the groove, so that the necessary high resistance can be obtained while miniaturizing the semiconductor element.

しかしながら、この構造では深い細溝を形成する工程や
、この溝内に多結晶シリコンを埋設する工程等が比較的
に複雑でかつ工程数も多いものになっている。
However, in this structure, the process of forming a deep narrow groove, the process of burying polycrystalline silicon in this groove, etc. are relatively complicated and involve a large number of processes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来の平面構造で高抵抗素子を構成する
一方で必要な高抵抗値を得ることができこれにより製造
方法の簡易化を図ると共に素子の微細化および高集積化
を達成することのできる半導体装置を提供することにあ
る。
The purpose of the present invention is to obtain a necessary high resistance value while configuring a high resistance element with a conventional planar structure, thereby simplifying the manufacturing method, and achieving miniaturization and high integration of the element. The object of the present invention is to provide a semiconductor device that can perform the following functions.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、高抵抗素子をアモルファスシリコンを用いて
構成することにより、素子の微細化にかかわらずアモル
ファスシリコンの有する大きな固有抵抗によって必要な
値の高抵抗を得ることができ、かつその製造に際しても
従来の平面構造の抵抗と同様に容易に製造することがで
きる。
In other words, by constructing a high-resistance element using amorphous silicon, it is possible to obtain the necessary high resistance value due to the large specific resistance of amorphous silicon regardless of the miniaturization of the element, and it is possible to obtain the required high resistance value due to the large specific resistance of amorphous silicon, and also to manufacture it without using conventional methods. It can be easily manufactured like a planar structure resistor.

〔実施例〕〔Example〕

第1図及び第2図は本発明をスタチック形RAMに適用
した実施例を示しており、特に第2図に示したメモリセ
ルを構成する4個のMO5型電界効果トランジスタ1,
2.3.4と、負荷用の一対の高抵抗5,6の中、MO
3型電界効果トランジスタ1と高抵抗5の部位の断面構
造を第1図に示している。
1 and 2 show an embodiment in which the present invention is applied to a static RAM, and in particular, four MO5 field effect transistors 1,
2.3.4 and a pair of high resistances 5 and 6 for the load, MO
FIG. 1 shows the cross-sectional structure of the 3-type field effect transistor 1 and the high resistance portion 5. As shown in FIG.

これらの図において、P型シリコン基板10の主面には
N型不純物を導入したN影領域11゜11をソース・ド
レイン領域として形成し、その上面に設けた酸化シリコ
ンからなるゲート絶縁膜12上に多結晶シリコンのゲー
ト13を形成して前記MO3型電界効果トランジスタ1
を構成している。
In these figures, N shadow regions 11°11 doped with N-type impurities are formed on the main surface of a P-type silicon substrate 10 as source/drain regions, and a gate insulating film 12 made of silicon oxide provided on the upper surface thereof is formed. A polycrystalline silicon gate 13 is formed on the MO3 field effect transistor 1.
It consists of

前記MO3型電・界効果トランジスタ1上には熱酸化シ
リコン等の眉間絶縁膜14を形成し、この眉間絶縁膜1
4にはコンタクトホール15を開設して前記N影領域1
1の一部を露呈している。そして、このコンタクトホー
ル15には不純物を導入して低抵抗化した多結晶シリコ
ン層16を延設して前記N影領域11に接続し、これを
配線層として第2図に示した他のMO5型電界効果トラ
ンジスタ2や3に配線接続している。
A glabellar insulating film 14 made of thermally oxidized silicon or the like is formed on the MO3 type field effect transistor 1, and this glabellar insulating film 1
4, a contact hole 15 is formed in the N shadow area 1.
Part of 1 is exposed. Then, a polycrystalline silicon layer 16 introduced with impurities to lower the resistance is extended into the contact hole 15 and connected to the N shadow region 11, and used as a wiring layer to form another MO5 shown in FIG. It is connected to the type field effect transistors 2 and 3 by wiring.

また、前記コンタクトホール15上には、このコンタク
トホール15と略同じ平面寸法でかつ数百人の厚さのア
モルファスシリコン層17を形成してN影領域11に接
続している。このアモルファスシリコン層17は前記負
荷用の高抵抗5を構成しており、その上にはPSG(リ
ンシリケートグラス)等の眉間絶縁膜18を設け、これ
に開設したスルーホール19を介してアルミニウム等の
配線層20に接続している。
Further, an amorphous silicon layer 17 having approximately the same planar dimensions as the contact hole 15 and several hundred layers thick is formed over the contact hole 15 and connected to the N shadow region 11 . This amorphous silicon layer 17 constitutes the high resistance 5 for the load, and a glabella insulating film 18 made of PSG (phosphosilicate glass) or the like is provided on it, and aluminum or the like is passed through a through hole 19 made in this. It is connected to the wiring layer 20 of.

前記アモルファスシリコン層17は、例えばモノシラン
(S i Ha )をグロー放電により分解するCVD
法によって堆積することができる。そして、このように
して形成されたアモルファスシリコン層17は、固有抵
抗がlXl01o(9cm)と多結晶シリコンに比較し
て極めて高く、本例のように厚さ数百人〜数千人に形成
したアモルファスシリコン層17ではその厚さ方向のみ
で必要な高抵抗値を得ることができる。これにより、第
1図においてはN影領域11とアルミニウム配線層20
の上下間にアモルファスシリコン層17を挟むだけで従
来と同じ抵抗値(5X10”Ω)の高抵抗5を構成でき
る。
The amorphous silicon layer 17 is formed by CVD, for example, which decomposes monosilane (S i Ha ) by glow discharge.
It can be deposited by a method. The amorphous silicon layer 17 thus formed has a specific resistance of lXl01o (9 cm), which is extremely high compared to polycrystalline silicon, and is formed to a thickness of several hundred to several thousand layers as in this example. In the amorphous silicon layer 17, the necessary high resistance value can be obtained only in the thickness direction. As a result, in FIG. 1, the N shadow region 11 and the aluminum wiring layer 20
By simply sandwiching the amorphous silicon layer 17 between the upper and lower sides, a high resistance 5 having the same resistance value (5 x 10''Ω) as the conventional one can be constructed.

なお、アモルファスシリコンを500℃以上に加熱する
ことは非晶質の性質上好ましくないため、後工程におい
てもこれ以上での温度の熱処理を避けることが肝要であ
る。
Note that heating amorphous silicon to a temperature of 500° C. or higher is not preferable due to its amorphous nature, so it is important to avoid heat treatment at temperatures higher than this in subsequent steps as well.

以上の構成によれば、スタチック形RAMのメモリセル
の高抵抗をアモルファスシリコン層17で構成している
ので、アモルファスシリコン層17の厚さを利用するだ
けで必要な高い抵抗値を得ることができる。即ち、N影
領域11とアルミニウム配線層20’との間にアモルフ
ァスシリコン層17を挟むことにより、両者間ではアモ
ルファスシリコン層17の厚さに相当する抵抗値を得る
ことができる。この抵抗値はアモルファスシリコン層1
7の厚さの設定により任意の値をとることができ、また
その平面面積によって耐圧等を設定できる。このため、
高抵抗5は微細な形状でも十分にその用を足すことがで
き、この高抵抗5を構成するための平面面積の低減を可
能にして素子の微細化、高集積化に追従することができ
る。
According to the above structure, since the high resistance of the memory cell of the static RAM is formed by the amorphous silicon layer 17, the necessary high resistance value can be obtained simply by utilizing the thickness of the amorphous silicon layer 17. . That is, by sandwiching the amorphous silicon layer 17 between the N shadow region 11 and the aluminum wiring layer 20', a resistance value corresponding to the thickness of the amorphous silicon layer 17 can be obtained between the two. This resistance value is the amorphous silicon layer 1
By setting the thickness of 7, it is possible to take an arbitrary value, and by setting the plane area, the withstand voltage, etc. can be set. For this reason,
The high resistance 5 can be sufficiently used even in a fine shape, and the plane area for constructing the high resistance 5 can be reduced to keep up with the miniaturization and high integration of elements.

一方、アモルファスシリコンは多結晶シリコンと比較し
てバンドギャップが大きいため(アモルファスシリコン
1.5〜1.8eV 、多結晶シリコン1゜2eV )
 、この高抵抗5を通る暗電流を低減することができ、
消費電力や記憶保持の点で有利なものにできる。
On the other hand, amorphous silicon has a larger band gap than polycrystalline silicon (amorphous silicon 1.5-1.8eV, polycrystalline silicon 1°2eV).
, the dark current passing through this high resistance 5 can be reduced,
It can be advantageous in terms of power consumption and memory retention.

また、高抵抗5の製造に際しても、単にアモルファスシ
リコン層の堆積及びそのパターニングを行えばよいため
、深い細溝を形成するような必要もなく、極めて容易に
製造することができる。
Further, when manufacturing the high resistance 5, it is only necessary to deposit an amorphous silicon layer and pattern it, so there is no need to form deep narrow grooves, and the manufacturing can be performed extremely easily.

なお、アモルファスシリコン層17の形成後は高温度の
熱処理を回避しているので、アモルファスシリコン層1
7へのリン(PSG等から出るリン)やその他の不純物
等によるオートドープの影響を考慮する必要はない。
Note that after forming the amorphous silicon layer 17, high-temperature heat treatment is avoided, so that the amorphous silicon layer 1
There is no need to consider the influence of autodoping on 7 due to phosphorus (phosphorus emitted from PSG, etc.) and other impurities.

〔効果〕〔effect〕

(1)回路の一部を構成する高抵抗をアモルファスシリ
コンを用いて形成しているので、多結晶シリコンに比較
してその固有抵抗が大きいことにより、微細な平面面積
でも必要な高抵抗値を得ることができ゛、半導体装置の
微細化、高集積化に対処できる。
(1) Since the high resistance that makes up part of the circuit is formed using amorphous silicon, its specific resistance is higher than that of polycrystalline silicon, making it possible to achieve the necessary high resistance value even in a small plane area. This makes it possible to cope with miniaturization and high integration of semiconductor devices.

(2)アモルファスシリコン層の厚さく上下方向)のみ
で必要な抵抗値を得ることができるので、その厚さを制
御するだけで抵抗値を任意の値に設定することができる
と共に、高抵抗の占有平面面積を低減し、他の配線層や
その他の素子等のレイアウトの自由度を増大することも
できる。
(2) Since the required resistance value can be obtained only by the thickness of the amorphous silicon layer (in the vertical direction), the resistance value can be set to any value simply by controlling the thickness, and the resistance value can be set to any value by simply controlling the thickness. It is also possible to reduce the occupied plane area and increase the degree of freedom in layout of other wiring layers, other elements, etc.

(3)アモルファスシリコン層の平面面積の寸法により
抵抗の耐圧を設定できるので、微細形状でも任意の耐圧
の抵抗を構成できる。
(3) Since the withstand voltage of the resistor can be set depending on the planar area of the amorphous silicon layer, a resistor with an arbitrary withstand voltage can be configured even with a fine shape.

(4)アモルファスシリコンは多結晶シリコンに比較し
てバンドギャップが大きいので、暗電流が少なく消費電
力や記憶保持性の点で有利である。
(4) Since amorphous silicon has a larger band gap than polycrystalline silicon, it has less dark current and is advantageous in terms of power consumption and memory retention.

(5)アモルファスシリコン層の高抵抗を形成後は高温
度の熱処理を回避するので、アモルファスシリコンへの
オートドープを考慮することがな(しかも抵抗値の安定
化を図ることができる。
(5) Since high-temperature heat treatment is avoided after forming a high-resistance amorphous silicon layer, there is no need to consider autodoping into the amorphous silicon (and the resistance value can be stabilized).

(6)高抵抗はこれまでと同様なアモルファスシリコン
層の堆積とパターニング工程で形成できるので、深い細
溝を形成する必要はなく、極めて容易に製造できる。
(6) Since high resistance can be formed by the same amorphous silicon layer deposition and patterning process as in the past, there is no need to form deep narrow grooves, and manufacturing is extremely easy.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor.

たとえば、高抵抗はこれまでの多結晶シリコンの場合と
同様にアモルファスシリコン層の平面方向の抵抗を利用
することも勿論可能である。また、アモルファスシリコ
ンの製造方法も、前述以外にこれまで提案されている種
々の方法が採用で、きる。
For example, high resistance can of course be achieved by utilizing the resistance in the planar direction of the amorphous silicon layer, as in the case of conventional polycrystalline silicon. In addition to the methods described above, various methods that have been proposed so far can be used to manufacture amorphous silicon.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野であるスタチック形RAM
のメモリセル、特にその高抵抗に適用した場合について
説明したが、それに限定されるものではなく、回路の一
部に高抵抗を有する半導体装置の全てに適用できる。
The above explanation will mainly focus on the static RAM, which is the field of application for which the invention was made by the present inventor.
Although the present invention has been described with reference to the case where the present invention is applied to memory cells, particularly those with high resistance, the present invention is not limited thereto, and can be applied to all semiconductor devices having high resistance in a part of the circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体装置の要部の断面図
、 第2図はそのメモリセルの回路図である。 1.2,3.4・・・MO3型電界効果トランジスタ、
5,6・・・高抵抗、10・・・シリコン基板、11・
・・N影領域、13・・・ゲート、  14・・・層間
絶縁膜(酸化シリコン)、15・・・コンタクトホール
、16・・・多結晶シリコン配線層、17・・・アモル
ファスシリコン層、18・・・層間絶縁膜(PSG)、
19・・・スルーホール、20:・・アルミニウム配線
層。
FIG. 1 is a sectional view of a main part of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a circuit diagram of a memory cell thereof. 1.2, 3.4...MO3 type field effect transistor,
5, 6...High resistance, 10...Silicon substrate, 11.
...N shadow region, 13...gate, 14...interlayer insulating film (silicon oxide), 15...contact hole, 16...polycrystalline silicon wiring layer, 17...amorphous silicon layer, 18 ...Interlayer insulation film (PSG),
19...Through hole, 20:...Aluminum wiring layer.

Claims (1)

【特許請求の範囲】 1、回路一部に高抵抗素子を有する半導体装置であって
、前記高抵抗素子にアモルファスシリコンを用いること
を特徴とする半導体装置。 2、高抵抗素子はスタチック形RAMの負荷抵抗である
特許請求の範囲第1項記載の半導体装置。 3、高抵抗素子は膜状に形成したアモルファスシリコン
の厚さ方向の抵抗を用いてなる特許請求の範囲第1項ま
たは第2項記載の半導体装置。
[Scope of Claims] 1. A semiconductor device having a high resistance element in a part of the circuit, characterized in that amorphous silicon is used for the high resistance element. 2. The semiconductor device according to claim 1, wherein the high resistance element is a load resistance of a static RAM. 3. The semiconductor device according to claim 1 or 2, wherein the high resistance element is a resistance in the thickness direction of amorphous silicon formed in the form of a film.
JP60076564A 1985-04-12 1985-04-12 Semiconductor device Pending JPS61236150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60076564A JPS61236150A (en) 1985-04-12 1985-04-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60076564A JPS61236150A (en) 1985-04-12 1985-04-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61236150A true JPS61236150A (en) 1986-10-21

Family

ID=13608730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60076564A Pending JPS61236150A (en) 1985-04-12 1985-04-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61236150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506167A (en) * 1995-04-13 1996-04-09 United Microelectronics Corp. Method of making a high resistance drain junction resistor in a SRAM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506167A (en) * 1995-04-13 1996-04-09 United Microelectronics Corp. Method of making a high resistance drain junction resistor in a SRAM

Similar Documents

Publication Publication Date Title
US4406051A (en) Method for manufacturing a semiconductor device
EP0952614B1 (en) Field effect device with polycrystaline silicon channel
JPH04230069A (en) Method for assembling of resistance strucutre into ic device, ic device structure
JPS6243547B2 (en)
JPS62174968A (en) Semiconductor device
JPS60140854A (en) High-resistant element
JPH02246264A (en) Semiconductor device and manufacture thereof
JPS61236150A (en) Semiconductor device
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JPH0232791B2 (en)
JPS5834938B2 (en) Manufacturing method of semiconductor device
JPS63312674A (en) Thin film semiconductor device
JPS6238865B2 (en)
JP3113202B2 (en) Semiconductor device
JP3157559B2 (en) Semiconductor device and method of manufacturing the same
JPS6124827B2 (en)
KR0147651B1 (en) Bicmos device and its manufacture
JPH0745732A (en) Semiconductor integrated circuit device and manufacture thereof
JPS61181166A (en) Manufacture of mis transistor
JPS588142B2 (en) Semiconductor integrated circuit device and its manufacturing method
JPS6398145A (en) Manufacture of semiconductor device
JPS60233861A (en) Semiconductor device and manufacture thereof
JPH05175453A (en) Dram cell
KR19990006808A (en) Semiconductor device having high resistance element and manufacturing method thereof
JP2000100972A (en) Semiconductor device