JPS61235680A - Reducing heat treatment furnace - Google Patents

Reducing heat treatment furnace

Info

Publication number
JPS61235680A
JPS61235680A JP7590885A JP7590885A JPS61235680A JP S61235680 A JPS61235680 A JP S61235680A JP 7590885 A JP7590885 A JP 7590885A JP 7590885 A JP7590885 A JP 7590885A JP S61235680 A JPS61235680 A JP S61235680A
Authority
JP
Japan
Prior art keywords
hydrogen gas
gas supply
valve
furnace
supply path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7590885A
Other languages
Japanese (ja)
Inventor
雅行 原田
広瀬 喜興
敏夫 鈴木
島村 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7590885A priority Critical patent/JPS61235680A/en
Publication of JPS61235680A publication Critical patent/JPS61235680A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は還元性熱処理炉に関し、更に詳しくは水素ガス
を主体とする還元性雰囲気で加熱するようにした熱処理
炉に関するものである。尚、ここでいう熱処理炉とは、
狭義の熱処理炉に限らず、炉内に材料を収容して加熱す
ることにより材料を加工又は処理する炉を意味し、鉄や
銅系金属等の粉末を焼結する焼結炉や各種加熱炉等を包
含するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reducing heat treatment furnace, and more particularly to a heat treatment furnace that is heated in a reducing atmosphere mainly containing hydrogen gas. Furthermore, the heat treatment furnace referred to here is
Not limited to a heat treatment furnace in the narrow sense, it refers to a furnace that processes or processes materials by storing and heating them in the furnace, and includes sintering furnaces and various heating furnaces that sinter powders such as iron and copper metals. etc.

〔従来技術〕[Prior art]

例えば、鉄、銅、超合金等、純金属や合金の粉末を焼結
する場合は、粉末表面の酸化が特に問題となるため、還
元性雰囲気あるいは中性雰囲気の焼結炉が用いられてい
る。雰囲気としては水素ガス、分解アンモニアガス、あ
るいはプロパン、ブタン、メタン等の炭化水素ガス単体
、又はこれらのガスと空気との混合ガスが用いられてい
る。これらのガスの内、水素ガスは空気と混合したとき
の爆発範囲が4.1%〜74.2%と他種の可燃性ガス
と比較して広く、その取り扱いには特に注意を要する。
For example, when sintering pure metal or alloy powders such as iron, copper, and superalloys, oxidation of the powder surface is a particular problem, so a sintering furnace with a reducing atmosphere or neutral atmosphere is used. . The atmosphere used is hydrogen gas, decomposed ammonia gas, a single hydrocarbon gas such as propane, butane, or methane, or a mixture of these gases and air. Among these gases, hydrogen gas has a wide explosive range of 4.1% to 74.2% when mixed with air, which is wider than other types of flammable gases, and special care must be taken when handling it.

従って、従来から水素ガス雰囲気の焼結炉においては、
炉内を水素ガス雰囲気にする前にまず窒素ガス等の不活
性ガスを炉内に送り込んで酸素量を少なくした後、水素
ガスを送り込んで還元性雰囲気にするように構成されて
いる。
Therefore, in conventional sintering furnaces with hydrogen gas atmosphere,
Before creating a hydrogen gas atmosphere in the furnace, an inert gas such as nitrogen gas is first introduced into the furnace to reduce the amount of oxygen, and then hydrogen gas is introduced to create a reducing atmosphere.

ところが、このような焼結炉においても水素ガスポンヘ
中の水素ガスが無くなって炉内への水素ガスの供給がと
だえた場合、焼結炉中が加圧状態でなくなるので外気が
炉内に侵入し、爆発範囲内に達して爆発を生ずるという
問題があった。また、電気トラブルや地震等の不測の事
態が生じて水素ガス供給路に設けられている電磁弁によ
り水素ガスの供給が停止した場合にも同様の問題を生じ
、そのため運転中は常時監視している必要があり、無人
運転が不可能であった。
However, even in such a sintering furnace, if the hydrogen gas in the hydrogen gas pump runs out and the supply of hydrogen gas to the furnace stops, the sintering furnace will no longer be pressurized and outside air will enter the furnace. However, there was a problem in that it could reach the explosion range and cause an explosion. In addition, a similar problem will occur if the hydrogen gas supply is stopped due to an unexpected situation such as an electrical problem or earthquake, and the solenoid valve installed in the hydrogen gas supply path will cause a similar problem. unmanned operation was impossible.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の問題点を解決するためになされた
ものであって、炉内への水素ガスの供給が停止した場合
に自動的に炉内雰囲気を不活性ガスに置換するようにし
た還元性熱処理炉の捉供を目的とするものである。
The present invention has been made to solve the above-mentioned conventional problems, and the present invention automatically replaces the atmosphere in the furnace with an inert gas when the supply of hydrogen gas to the furnace is stopped. It is intended to serve as a trap for reducing heat treatment furnaces.

〔発明の構成〕[Structure of the invention]

本発明の還元性熱処理炉は、水素ガスを主体とする還元
性雰囲気で加熱するように水素ガスの供給路と置換用の
不活性ガスの供給路を接続させた熱処理炉において、水
素ガス供給路にその供給圧を検知する圧力検知手段を設
けろとともに、この圧力検知手段からの信号により前記
不活1′+[ガス供給路における炉内に不活性ガスを供
給する弁を開くように構成し、水素ガス供給路の圧力が
低重すると自動的に炉内に不活+’tガスを供給して水
素ガスと置換するようにしたことを特徴とするものであ
る。
The reducing heat treatment furnace of the present invention is a heat treatment furnace in which a hydrogen gas supply route and a replacement inert gas supply route are connected so as to heat in a reducing atmosphere mainly containing hydrogen gas. A pressure detection means for detecting the supply pressure is provided in the inert gas supply path, and a valve for supplying inert gas into the furnace in the inert gas supply path is opened in response to a signal from the pressure detection means; The present invention is characterized in that when the pressure in the hydrogen gas supply path becomes low, inert +'t gas is automatically supplied into the furnace to replace the hydrogen gas.

〔実施例〕〔Example〕

以下、本発明の1−記焼結炉に適用した一実施例を図に
基づいて説明する。焼結材料を収容して図示しない焼結
炉本体内に装入されるマツ7月月にガス流入管2とガス
吐出管3が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment applied to the sintering furnace according to item 1 of the present invention will be described below with reference to the drawings. A gas inflow pipe 2 and a gas discharge pipe 3 are provided in a pine tree that accommodates sintered material and is charged into a sintering furnace main body (not shown).

このマツフル1は焼結炉の一部を構成するものである。This Matsufuru 1 constitutes a part of a sintering furnace.

前記ガス流入管2には可撓管4を介してガス供給管5が
接続されており、このガス供給管5に水素ガス供給路6
と不活性ガス供給路7及び安全用の不活性ガス供給路1
0が接続されている。
A gas supply pipe 5 is connected to the gas inflow pipe 2 via a flexible pipe 4, and a hydrogen gas supply pipe 6 is connected to the gas supply pipe 5.
and inert gas supply line 7 and safety inert gas supply line 1
0 is connected.

前記水素ガス供給路6は、水素ガスボンへ60からネッ
クハルプロ1、−次減圧弁62、スi〜ノブバルブ63
、二次減圧弁64、ボールハルプロ5、流量計66及び
電磁弁67を経て前記ガス供給管5に接続されている。
The hydrogen gas supply path 6 is connected from a hydrogen gas cylinder 60 to a neck hull pro 1, a pressure reducing valve 62, and a knob valve 63.
, a secondary pressure reducing valve 64, a ball hull pro 5, a flow meter 66, and a solenoid valve 67, and are connected to the gas supply pipe 5.

前記不活性ガス供給路7は途中までアルゴンガス供給路
8と窒素ガス供給路9に分岐されており、アルゴンガス
供給路8はアルゴンガスボンへ80からネックバルブ8
1、−次減圧弁82、ストップバルブ83、二次減圧弁
84及びボールバルブ85を経た後、また窒素ガス供給
路9は窒素ガスボンへ90からネックバルブ91、−次
減圧弁92、ストップバルブ93、二次減圧弁94及び
ボールバルブ95を経た後、互いに合流し、フィルター
75、流量計76及び電磁弁77を経て前記ガス供給管
5に接続されている。前記安全用の不活性ガス供給路1
0は前記窒素ガス供給路9の途中、即ちストップバルブ
93と二次減圧弁94の間から分岐され、減圧弁14、
ボールバルブ15及び電磁弁17を経て前記ガス供給管
5に接続されている。前記電磁弁17は、通常の電磁弁
とは逆に電源がオンで閉となり、オフで開となるタイプ
のものが用いられている。またこの電磁弁17には、前
記水素ガス供給路6のボールバルブ65と流量計66の
間に介装された圧力検知手段としての圧力スイフチ18
に接続され、圧力が設定値以下に低下すると電磁弁17
が開くように構成されている。さらに、この電磁弁17
には感震リレー19が接続されている。
The inert gas supply passage 7 is branched halfway into an argon gas supply passage 8 and a nitrogen gas supply passage 9, and the argon gas supply passage 8 is connected to an argon gas cylinder from 80 to a neck valve 8.
1. After passing through the secondary pressure reducing valve 82, the stop valve 83, the secondary pressure reducing valve 84 and the ball valve 85, the nitrogen gas supply path 9 is connected to the nitrogen gas cylinder from 90 to the neck valve 91, the secondary pressure reducing valve 92, and the stop valve 93. , a secondary pressure reducing valve 94 and a ball valve 95, the gases merge together, and are connected to the gas supply pipe 5 via a filter 75, a flow meter 76, and a solenoid valve 77. Said safety inert gas supply path 1
0 is branched from the middle of the nitrogen gas supply path 9, that is, between the stop valve 93 and the secondary pressure reducing valve 94, and is connected to the pressure reducing valve 14,
It is connected to the gas supply pipe 5 via a ball valve 15 and a solenoid valve 17. The solenoid valve 17 is of a type that is closed when the power is turned on and opened when the power is turned off, contrary to a normal solenoid valve. Further, this solenoid valve 17 includes a pressure switch 18 as a pressure detection means interposed between the ball valve 65 of the hydrogen gas supply path 6 and the flow meter 66.
When the pressure drops below the set value, the solenoid valve 17
is configured to open. Furthermore, this solenoid valve 17
A seismic relay 19 is connected to.

前記マツフル1のガス吐出管3は可撓管12を介して燃
焼放出管20に接続され、その先端にはバイロフトバー
ナライン21とイグナイター22が臨むように構成され
ている。
The gas discharge pipe 3 of the Matsufuru 1 is connected to a combustion discharge pipe 20 via a flexible pipe 12, and is configured such that a viroft burner line 21 and an igniter 22 face the tip thereof.

以上の構成において、焼結処理を行うには、まず安全の
ため別途保管されている水素ガスボンへ60を搬入し接
続するとともに漏れの検査を行い、次にマンフル1内に
材料をセントした後このマツフル1を図示しないリフタ
ーにて図示しない焼結炉本体の加熱室に装入し設置する
。次いで、窒素ガス供給路9のネックバルブ91、−次
減圧弁92、ストップバルブ93、ボールバルブ95を
順次閉とする。尚、二次減圧弁94・84・64・14
は予め所定圧に設定されており、開となっている。次に
、電磁弁77を開くとともに流量計76にて流量を所定
値にセットし、窒素ガスをマツフル1内に所定時間、例
えば1時間導入してマツフル1内の空気を窒素ガスに置
換する。その後、水素ガスの導入に先立ってパイロソト
ハーナライン21を作動させるとともにイグナイター2
2で点火し、燃焼放出管20から放出される水素ガスを
燃焼するようにしておいて、水素ガス供給路6のネック
ハルプロ1、−次減圧弁62、ストップハルプロ3、ボ
ールハルプロ5を順次開くとともに流量計66にて流量
を所定値にセントし、水素ガスをマツフルl内に導入す
る。また、ボールバルブ15を開にして安全用の不活性
ガス供給路10を作動可能な状態にしておく。この状態
で焼結炉本体を加熱作動し、所定のプログラムに沿って
所定時間加熱して材料を焼結する。その後、再び窒素ガ
スをマンフル1内に導入するように上記各弁を操作する
とともに水素ガスの供給を停止すべく水素ガス供給路6
の各弁を操作する。所定時間窒素ガスを導入してマツフ
ル1内の水素ガスを窒素ガスに置換した後、すべての弁
を閉じ、マツフルlを取り出し、マツフル1から焼結し
た材料を取り出すのである。
In the above configuration, in order to perform the sintering process, first transport the 60 into the hydrogen gas cylinder stored separately for safety, connect it and check for leaks, then place the material into the manifold 1, and then Matsufuru 1 is charged and installed in a heating chamber of a sintering furnace body (not shown) using a lifter (not shown). Next, the neck valve 91, secondary pressure reducing valve 92, stop valve 93, and ball valve 95 of the nitrogen gas supply path 9 are sequentially closed. In addition, secondary pressure reducing valve 94, 84, 64, 14
is set to a predetermined pressure in advance and is open. Next, the electromagnetic valve 77 is opened and the flow rate is set to a predetermined value using the flow meter 76, and nitrogen gas is introduced into the matsufuru 1 for a predetermined period of time, for example, one hour, to replace the air within the matsufuru 1 with nitrogen gas. After that, before introducing hydrogen gas, the pyrosotoharna line 21 is activated and the igniter 2 is activated.
2 to ignite the hydrogen gas released from the combustion discharge pipe 20, and then connect the neck hull pro 1, -next pressure reducing valve 62, stop hull pro 3, and ball hull pro 5 of the hydrogen gas supply path 6. are sequentially opened, the flow rate is set to a predetermined value using the flow meter 66, and hydrogen gas is introduced into the Matsufuru l. Further, the ball valve 15 is opened to make the safety inert gas supply path 10 operable. In this state, the sintering furnace main body is heated and heated for a predetermined time according to a predetermined program to sinter the material. Thereafter, the above-mentioned valves are operated to introduce nitrogen gas into the manifold 1 again, and the hydrogen gas supply path 6 is operated to stop the supply of hydrogen gas.
Operate each valve. After introducing nitrogen gas for a predetermined period of time to replace the hydrogen gas in the Matsufuru 1 with nitrogen gas, all valves are closed, the Matsufuru 1 is taken out, and the sintered material is taken out from the Matsufuru 1.

この間、水素ガスポンへ60中の水素ガスが無くなった
場合には、水素ガス供給圧が低下するため、これを圧力
スイフチ18が検知して安全用の不活性ガス供給路10
の電磁弁17を開き、マツフル1内に窒素ガスが導入さ
れ、水素ガスが順次窒素ガスに置換される。その置換の
割合を測定した結果、マツフル1の体積の少なくとも3
倍、望ましくは5倍以上通気すれば、水素ガスが4%以
下となり、爆発範囲を下回るため、安全となることが判
明した。また、電源が切れた場合も電磁弁17が開とな
り、地震の場合は感震リレー19からの信号で同しく電
磁弁17が開となるため、十記と同様に安全である。
During this time, if the hydrogen gas in the hydrogen gas pump 60 runs out, the hydrogen gas supply pressure will drop, so the pressure switch 18 will detect this and the safety inert gas supply path 10 will be
The solenoid valve 17 is opened, nitrogen gas is introduced into the matsuful 1, and the hydrogen gas is sequentially replaced with nitrogen gas. As a result of measuring the substitution ratio, at least 3 of the volume of Matsuful 1
It has been found that if the gas is vented twice, preferably five times or more, the hydrogen gas will be less than 4%, which is below the explosive range, and therefore safe. Further, the solenoid valve 17 is opened even if the power is cut off, and in the case of an earthquake, the solenoid valve 17 is also opened by a signal from the seismic relay 19, so it is as safe as the above.

具体例を示すと、マツフル内に鉄粉10kgをセットし
て窒素ガスをマツフルの容積100βに対して5001
通気し、その後水素ガスに切り換えて1000℃に昇温
した後、第1に水素ガス供給路6のボールハルプロ5を
閉じた場合、第2に電源をオフした場合、第3に地震の
ような振動を与えた場合についてそれぞれ実験したとこ
ろ、いずれの場合も安全用の不活性ガス供給路10の電
磁弁17が開き、マツフル内に窒素ガスが導入された。
To give a specific example, 10 kg of iron powder is set in a Matsufuru, and nitrogen gas is applied at a rate of 5,001 kg per the volume of the Matsufuru, 100β.
After venting, then switching to hydrogen gas and raising the temperature to 1000°C, firstly, if the ball hull pro 5 of the hydrogen gas supply path 6 is closed, secondly, if the power is turned off, and thirdly, if there is an earthquake, etc. In each case, the electromagnetic valve 17 of the safety inert gas supply path 10 opened and nitrogen gas was introduced into the Matsufuru.

窒素ガス導入後、マツフルの蓋を開放したが何等問題は
生じなかった。
After introducing nitrogen gas, the lid of the Matsufuru was opened, but no problems occurred.

〔発明の効果〕〔Effect of the invention〕

本発明の還元性熱処理炉によれば、以−Fのように、炉
内に水素ガスを供給する水素ガス供給路にその供給圧を
検知する圧力検知手段を設けるとともに、この圧力検知
手段からの信号により炉内に不活性ガスを供給する弁を
開くように構成しているので、何らかの異常によって水
素ガスの供給が減少ないし停止した場合に、炉内に不活
性ガスを自動的に導入して炉内の水素ガスを不活性ガス
と置換して水素ガス濃度を爆発範囲以下にすることがで
き、安全を確保できる。従って、無人運転も可能になる
等の効果を奏するものである。
According to the reducing heat treatment furnace of the present invention, a pressure detection means for detecting the supply pressure is provided in the hydrogen gas supply path for supplying hydrogen gas into the furnace, and a pressure detection means for detecting the supply pressure is provided as shown in -F below. The valve that supplies inert gas into the furnace is configured to open in response to a signal, so if the supply of hydrogen gas decreases or stops due to some abnormality, inert gas can be automatically introduced into the furnace. By replacing the hydrogen gas in the furnace with inert gas, the hydrogen gas concentration can be brought below the explosive range, ensuring safety. Therefore, there are effects such as enabling unmanned operation.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の配管系統図である。 6は水素ガス供給路、7は不活性ガス供給(13゜10
は安全用の不活性ガス供給路、17は電磁ブ↑、18は
圧力スイフチである。
The figure is a piping system diagram of one embodiment of the present invention. 6 is a hydrogen gas supply path, 7 is an inert gas supply path (13°10
is an inert gas supply path for safety, 17 is an electromagnetic switch ↑, and 18 is a pressure switch.

Claims (1)

【特許請求の範囲】[Claims] 1、水素ガスを主体とする還元性雰囲気で加熱するよう
に水素ガスの供給路と置換用の不活性ガスの供給路を接
続させた熱処理炉において、水素ガス供給路にその供給
圧を検知する圧力検知手段を設けるとともに、この圧力
検知手段からの信号により前記不活性ガス供給路におけ
る炉内に不活性ガスを供給する弁を開くように設けたこ
とを特徴とする熱処理炉。
1. In a heat treatment furnace in which a hydrogen gas supply path and a replacement inert gas supply path are connected so that heating is performed in a reducing atmosphere mainly composed of hydrogen gas, the supply pressure is detected in the hydrogen gas supply path. A heat treatment furnace characterized in that a pressure detection means is provided, and a valve for supplying inert gas into the furnace in the inert gas supply path is opened in response to a signal from the pressure detection means.
JP7590885A 1985-04-10 1985-04-10 Reducing heat treatment furnace Pending JPS61235680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7590885A JPS61235680A (en) 1985-04-10 1985-04-10 Reducing heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7590885A JPS61235680A (en) 1985-04-10 1985-04-10 Reducing heat treatment furnace

Publications (1)

Publication Number Publication Date
JPS61235680A true JPS61235680A (en) 1986-10-20

Family

ID=13589904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7590885A Pending JPS61235680A (en) 1985-04-10 1985-04-10 Reducing heat treatment furnace

Country Status (1)

Country Link
JP (1) JPS61235680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031487A (en) * 2013-08-06 2015-02-16 Jfeスチール株式会社 Atmosphere heat treatment furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015031487A (en) * 2013-08-06 2015-02-16 Jfeスチール株式会社 Atmosphere heat treatment furnace

Similar Documents

Publication Publication Date Title
US6581623B1 (en) Auto-switching gas delivery system utilizing sub-atmospheric pressure gas supply vessels
GB1497894A (en) Mixing of gases
CN101321980B (en) Self-regulating valve for controlling gas flow in high pressure systems
US4483461A (en) Flash-back arrestor for dissolved acetylene cylinders
US3905745A (en) Method of preventing formation of harmful combustion gases in combustion furnace
TW422727B (en) Safety system for gas purifier
GB961415A (en) Underground gas storage process
JPS61235680A (en) Reducing heat treatment furnace
JPH02500095A (en) Method of regulating the amount of explosive gas mixture to be filled into the material processing chamber
US2938577A (en) Method and apparatus for preventing backfire in gas burner systems
GB1319764A (en) Flow control valve device
US2418175A (en) higginbotham
JPS60152621A (en) Method and device for hardening without oxidation
GB1479432A (en) Safety device for the compensation of leaks or losses of inert gas pressure contained inside vessel tanks
EP0349176A3 (en) Fluid flow control arrangement
JPS6039608B2 (en) Pulverized coal high pressure gas pipe transportation equipment
CN111514496A (en) Open space suppressor
JPH0656766B2 (en) Fuel cell device
JPS5750774A (en) Fuel cell protecting apparatus
Poor et al. Furnace Atmospheres for Heat Treating
JPS55112930A (en) Fuel supply controlling device
ES431093A1 (en) Safety systems for minimising fire and explosion hazard in the presence of combustible gases
DeCoursey et al. Effects of water vapor content on the inflammable limits of ammonia‐oxygen‐nitrogen mixtures
RU58044U1 (en) INSTALLATION FOR PREVENTION OF EXPLOSION OF FLAMMABLE GAS MIXTURES
CN207313661U (en) A kind of lateritic nickel ore sinters apparatus of oxygen supply