JPS61235658A - Air-conditioning and hot-water supply heat pump device - Google Patents

Air-conditioning and hot-water supply heat pump device

Info

Publication number
JPS61235658A
JPS61235658A JP7703285A JP7703285A JPS61235658A JP S61235658 A JPS61235658 A JP S61235658A JP 7703285 A JP7703285 A JP 7703285A JP 7703285 A JP7703285 A JP 7703285A JP S61235658 A JPS61235658 A JP S61235658A
Authority
JP
Japan
Prior art keywords
hot water
air conditioning
heating
heat pump
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7703285A
Other languages
Japanese (ja)
Inventor
道夫 大坪
大熊 圭子
山崎 起助
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7703285A priority Critical patent/JPS61235658A/en
Publication of JPS61235658A publication Critical patent/JPS61235658A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ヒートポンプを用いた冷暖房および貯湯槽
の水を加熱することができるようにした冷暖房・給湯ヒ
ートポンプ装置に関し、給湯加熱運転と空気調和運転の
同時運転時の切り換え時間制御をある設定値の運転割合
で行う、l−うにしtコ冷暖房・給湯ヒー“)・ボンゴ
装置に関するものであろ1゜〔従来の技術] 従来、ヒー何・ポンプを使用した冷暖Jj3装置として
第5図(こ示17たものがある。同図において、1は圧
縮機、2は冷暖房切換用の四方弁、:(n、 3hは室
内熱交換器、4はji7逆式の冷媒膨張機構で、冷房、
暖房時の流ね力向に対応した膨張管4a、 4hから構
成されている。5(ま室外#4交換器であり、才た8a
、 [lhはL配室内熱交換器3a、 3hの四方弁2
連結側に設けた電磁弁である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air-conditioning/hot-water supply heat pump device that uses a heat pump to heat water in a hot-water storage tank. This is related to a heating/cooling system, hot water heater), and bongo equipment that performs switching time control during simultaneous operation at a certain set value operating ratio. There is a cooling/heating JJ3 device using a pump as shown in Figure 5 (17). In the figure, 1 is a compressor, 2 is a four-way valve for switching between air conditioning and heating, :(n, 3h is an indoor heat exchanger, 4 is is a ji7 reverse type refrigerant expansion mechanism, cooling,
It is composed of expansion pipes 4a and 4h corresponding to the direction of flow force during heating. 5 (It is an outdoor #4 exchanger, and it is 8a
, [lh is L distribution indoor heat exchanger 3a, 3h four-way valve 2
This is a solenoid valve installed on the connection side.

上記のように構成されな従来のヒー“トポンプ装置にお
いて、複数の部屋を冷房する場合は、圧縮機1から吐出
した高温高圧の冷媒ガスは第5図の実線矢印のように流
れて四方弁2がら室外熱交換器5に至り、ここで冷却さ
ねて凝縮する1、そして、aわ1;シた高圧の液冷媒は
膨張管4aを通ることで減圧される。このとき室内熱交
換器3a、 3bの二方filNi弁6a、Rhは各々
負荷が発生ずることで開くlコめ、膨張管48からの低
圧の液冷媒は室内熱交換器3a、 3hで蒸発(7室内
空気から熱を奪いガス化する。この低圧冷媒ガスは四方
弁2を通り圧縮機1に吸い込まね、再び圧縮されて叶き
出すサイクルが繰り返される。
In the conventional heat pump device configured as described above, when cooling multiple rooms, the high temperature and high pressure refrigerant gas discharged from the compressor 1 flows as shown by the solid line arrow in FIG. The high-pressure liquid refrigerant reaches the outdoor heat exchanger 5, where it is cooled and condensed. , 3b's two-way filNi valves 6a and Rh open when a load occurs, and the low-pressure liquid refrigerant from the expansion tube 48 is evaporated in the indoor heat exchangers 3a and 3h (7), which removes heat from the indoor air. This low-pressure refrigerant gas passes through the four-way valve 2, is sucked into the compressor 1, is compressed again, and the cycle is repeated.

また、暖房運転時にあっては、圧縮機1から111出し
た高温高圧の冷媒ガスは第5図の破線矢印のように流れ
て四方弁2から室内熱交換器3a、 3bに至り、ここ
で放熱して凝縮することに」、り室内を暖房する。さら
1こ凝縮した高圧の液冷媒1ま膨張管4bを通ることで
減圧され、この低圧の液冷媒は室外熱交換M5に至り、
外気で加熱されることで蒸発する。蒸発した低圧ガスは
四方弁2を通り、圧IIPi機1に吸い込まれ、再び圧
縮されて吐出するサイクルが繰り返される。
In addition, during heating operation, the high temperature and high pressure refrigerant gas discharged from the compressor 1 111 flows as shown by the broken line arrow in Fig. 5 and reaches the indoor heat exchangers 3a and 3b from the four-way valve 2, where the heat is radiated. It then condenses and heats the room. The condensed high-pressure liquid refrigerant 1 is further depressurized by passing through the expansion tube 4b, and this low-pressure liquid refrigerant reaches the outdoor heat exchanger M5.
Evaporates when heated by outside air. The evaporated low pressure gas passes through the four-way valve 2, is sucked into the pressure IIPi machine 1, is compressed again and discharged, and the cycle is repeated.

第6図は、従来の冷暖房・給湯ヒートポンプ装置の例を
示すもので、第5図と同一符号は同一・または相当部分
を示す。また7は貯湯槽であり、その内部には貯湯槽加
熱コイルが設けられ、この加熱コイル8は電磁弁6bを
介して室内熱交換器3aと電磁弁6aとの直列回路に並
列に接続されている。9は貯湯槽6の市水取入口、10
は貯湯槽7に連結した給湯用蛇口である。
FIG. 6 shows an example of a conventional heating/cooling/hot water supply heat pump device, and the same reference numerals as in FIG. 5 indicate the same or corresponding parts. Further, 7 is a hot water storage tank, and a hot water storage tank heating coil is provided inside the tank, and this heating coil 8 is connected in parallel to the series circuit of the indoor heat exchanger 3a and the solenoid valve 6a via a solenoid valve 6b. There is. 9 is the city water intake of hot water tank 6, 10
is a hot water supply faucet connected to the hot water storage tank 7.

上記の、1うに構成されたヒートポンプ装置において、
給湯加熱を行なう時には、電磁弁6aを閉じ、電磁弁6
hを開く。これにより圧Mllから吐出される高温高圧
の冷媒ガス(よ、第6図中の破線矢印のように流れ、四
方弁2から電磁弁6hを通って加熱コイル8(と至抄、
ここで放熱して凝縮することにより貯湯槽6内の水を加
熱する。凝縮した高温高圧の液冷媒は膨張管4hを通る
乙とで減圧され、室外熱交換器5に至り、外気で加熱さ
れて蒸発する。そしてこの低圧ガスは四方弁2を通り圧
148機1へ吸い込まれて再び圧縮されるサイクルを繰
り返すことで給湯加熱を行なう。
In the above heat pump device configured as 1,
When heating hot water, close the solenoid valve 6a and close the solenoid valve 6a.
Open h. As a result, the high-temperature, high-pressure refrigerant gas discharged from the pressure Mll flows as shown by the broken line arrow in FIG.
Here, the water in the hot water storage tank 6 is heated by radiating heat and condensing it. The condensed high-temperature, high-pressure liquid refrigerant is depressurized as it passes through the expansion tube 4h, reaches the outdoor heat exchanger 5, is heated by the outside air, and evaporates. Then, this low pressure gas passes through the four-way valve 2, is sucked into the pressure 148 machine 1, and is compressed again, repeating the cycle to heat the hot water.

また、暖房運転時には電磁弁6aが開に、電磁ブ1−6
bが閉になり、さらに冷房運転時(こは電磁弁6hが開
に、tt!磁弁6aが閉になって第6図の破線矢印また
は実線矢印に示す冷媒の流れを生じさせることで暖房ま
たは冷房を行なうものであり、その動作は第5図におい
て述べたものと同様である。
Also, during heating operation, the solenoid valve 6a is opened, and the solenoid valve 1-6 is opened.
b is closed, and further during cooling operation (here, the solenoid valve 6h is opened, and the tt! solenoid valve 6a is closed, causing the flow of refrigerant shown by the broken line arrow or solid line arrow in Fig. 6, thereby heating. Or it performs air conditioning, and its operation is the same as that described in FIG.

〔発明が解決しようとする問題点1 以上述べたように、従来のヒートポンプ装置により給湯
加熱を行なう場合は、第6図に示すように室内熱交換器
3a、 3bの一方を加熱コイルに置き換え、この加熱
コイルを貯湯槽に装着し、冷媒回路を暖房運転すること
で貯湯槽内の水を加熱する方式であるため、冷房時の廃
熱を回収して給湯加熱するなどの経済的な運転ができな
い。また、インバータを有していないため、圧縮機の回
転数制御ができないことによる運転上の問題点があった
[Problem to be Solved by the Invention 1] As mentioned above, when hot water is heated by a conventional heat pump device, one of the indoor heat exchangers 3a and 3b is replaced with a heating coil as shown in FIG. This heating coil is attached to the hot water tank and the water in the hot water tank is heated by heating the refrigerant circuit, which enables economical operation such as recovering waste heat from cooling to heat hot water. Can not. Furthermore, since it does not have an inverter, there are operational problems due to the inability to control the rotational speed of the compressor.

この発明は、上述したような従来のものの問題点を解決
しようとするものであり、経済的な冷暖房・給湯ヒート
ポンプ装置を提供することを目的としている。
This invention attempts to solve the problems of the conventional ones as described above, and aims to provide an economical air-conditioning/heating/hot-water supply heat pump device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷暖房・給湯ヒートポンプ装置は、圧縮
機の吐出側に三方弁のような切換弁を設け、この切換弁
を介して圧#i機からの高温高圧の冷媒を貯湯槽内の加
熱コイルに導き、貯湯槽内の水を加熱ずろことで凝縮し
た冷媒を圧縮機に戻す回路方式とし、さらに圧縮機の容
量制御用のインバータ、および空気調和(以下空調とい
う)負荷と給湯加熱が同時に発生した時には空調運転と
給湯運転をある設定値の運転割合で時1t11制御する
タイマ付き制御装置を備えたものである。
The air conditioning/hot water supply heat pump device according to the present invention is provided with a switching valve such as a three-way valve on the discharge side of the compressor, and the high temperature and high pressure refrigerant from the pressure #i machine is transferred to the heating coil in the hot water storage tank through the switching valve. The system uses a circuit system that heats the water in the hot water storage tank and returns the condensed refrigerant to the compressor, and also uses an inverter to control the capacity of the compressor, as well as an air conditioning (hereinafter referred to as air conditioning) load and hot water heating at the same time. The system is equipped with a control device with a timer that controls the air conditioning operation and the hot water supply operation at an operating ratio of a certain set value at the time of 1t11.

〔作 用〕[For production]

この発明においては、タイマ付き制御装置によって、空
調負荷と給湯加熱が同時に発生(7た時に、空調運転と
給湯加熱運転をある設定値で時間割1flllずろこと
ができるので、インバータの周波数をあまり高くするこ
となく、低周波数での経済的な運転ができるものである
In this invention, the control device with a timer allows the air conditioning operation and the hot water heating operation to be shifted by 1 full time with a certain set value when the air conditioning load and hot water heating occur simultaneously (7). This allows for economical operation at low frequencies without any problems.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図について説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図はこの発明にかかる冷暖房・給湯ヒー)・ポンプ
装置の構成図を示すもので、第5図、第6図と同一符号
は相当部分を示(7,11ば圧縮機1から吐出される高
温高圧冷媒の流路切り換えを行なう三方弁で、その流入
ボートaは圧縮811の吐出側に接続され、上記三方弁
11の一方の吐出ボー l−bは四方弁2に接続されて
いる。また上記三方弁11の他方の吐出ボートCは加熱
コイル8の一端に接続され、加熱コイル8の他端は別々
の電磁弁12.13を介して膨張機構4の両端側に接続
されている。14は圧縮機1の容量制御用インバータ、
15は」−起工方弁11.電磁弁12.13およびンパ
ータ14を制御するタイマ付き制御装置であり、このタ
イマ付き制御装置15には貯湯槽7の下部水温を検出す
る検出器16からの検出信号が入力されるようになって
いる。
Fig. 1 shows a configuration diagram of an air conditioning/heating/hot water heating/pump device according to the present invention, and the same reference numerals as in Figs. The inlet port a is connected to the discharge side of the compressor 811, and one discharge port lb of the three-way valve 11 is connected to the four-way valve 2. The other discharge boat C of the three-way valve 11 is connected to one end of the heating coil 8, and the other end of the heating coil 8 is connected to both ends of the expansion mechanism 4 via separate electromagnetic valves 12 and 13. 14 is an inverter for capacity control of the compressor 1;
15” - Groundbreaking method 11. This is a control device with a timer that controls the solenoid valves 12 and 13 and the pumper 14, and a detection signal from a detector 16 that detects the water temperature in the lower part of the hot water tank 7 is input to the control device 15 with the timer. There is.

そして、タイマ付き制御装置15からは上記三方弁11
.電磁弁12,13およびインバータ14に対し制御信
号が供給されるようになっている。
Then, from the timer control device 15, the three-way valve 11 is
.. Control signals are supplied to the solenoid valves 12 and 13 and the inverter 14.

次に、上記のように構成された本実施例の動作について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

(a)lffl房時 圧縮機」から吐出された高温高圧の冷媒は、三方弁11
の流入および吐出ボートa、bから四方弁2の破線矢印
の経絡を経由し、室内熱交換器3aおよび3hの一方よ
た(よ両方に至り、ここで凝縮された後、膨張機構4で
減圧され、さらに室外熱交換器5において蒸発し、この
蒸発した冷媒ガスは四方弁2を通り圧縮機1に戻る。
(a) The high-temperature, high-pressure refrigerant discharged from the lffl compressor is
The inflow and discharge boats a and b pass through the meridian indicated by the broken line arrow of the four-way valve 2 to one side (and both sides) of the indoor heat exchangers 3a and 3h, where they are condensed and then decompressed by the expansion mechanism 4. The refrigerant gas is then evaporated in the outdoor heat exchanger 5, and this evaporated refrigerant gas passes through the four-way valve 2 and returns to the compressor 1.

(h)冷房時 この場合に1よ、圧縮機1から吐出した冷媒lよ、三方
弁11流人および吐出ボートロ、hから四方弁2の実線
矢印の経路を経由し、室外熱交換器5に至り、ここで外
気と熱交換して凝縮し、さらに膨張機構4で減圧された
後、室内熱交換器3aおよび3bの一方もしくは両方に
至り、蒸発する。
(h) During cooling In this case, 1, the refrigerant l discharged from the compressor 1 flows through the three-way valve 11 and the discharge boat, and passes from h to the four-way valve 2 through the route indicated by the solid line arrow, and then to the outdoor heat exchanger 5. There, the air exchanges heat with the outside air and condenses. After being further depressurized by the expansion mechanism 4, it reaches one or both of the indoor heat exchangers 3a and 3b and evaporates.

この蒸発したガス冷媒は四方弁2を経由(7て再び圧縮
機1に戻る。
This evaporated gas refrigerant passes through the four-way valve 2 (7) and returns to the compressor 1 again.

(c)冷房給湯時 この場合には、圧縮機1から吐出1ノた冷媒は、三方弁
11の流入および吐出ボートa、hから貯湯槽加熱コイ
ル8に至り、ここで凝縮し、乙わにより貯湯槽7内の水
を加熱する。そして@縮した液冷媒は電磁弁J3を経て
膨張機構4に至り、減圧された後、室内熱交換器3aお
よび3bのいずれか一方または両方に至り、ここで室内
の熱を吸収して蒸発し、このガス冷媒は、四方弁2の実
線矢印を経由して再び圧縮機1に戻る。このJ:うにし
て、冷房と同時に給湯加熱することになる。
(c) During cooling hot water supply In this case, the refrigerant discharged from the compressor 1 reaches the hot water storage tank heating coil 8 through the inflow and discharge boats a and h of the three-way valve 11, where it condenses and then The water in the hot water tank 7 is heated. The compressed liquid refrigerant then passes through the electromagnetic valve J3, reaches the expansion mechanism 4, is depressurized, and then reaches one or both of the indoor heat exchangers 3a and 3b, where it absorbs indoor heat and evaporates. , this gas refrigerant returns to the compressor 1 via the solid line arrow of the four-way valve 2. By doing this, hot water supply and heating will be done at the same time as air conditioning.

(d)給湯加熱時 この場合には、圧縮機1から吐出された冷媒(ま、三方
弁11の流入および吐出ポー1−a、bから貯湯槽加熱
コイル8に至り、乙とで凝縮して貯湯槽7内の水を加熱
する。そして凝縮した液冷媒は電磁弁12から膨張機構
4を通って室外熱交換器5に至り、ここで蒸発する。蒸
発したガス冷媒は四方弁2を経由して再び圧縮機1に戻
る。
(d) When heating hot water In this case, the refrigerant discharged from the compressor 1 (well, it reaches the hot water tank heating coil 8 from the inflow and discharge ports 1-a, b of the three-way valve 11, and condenses with The water in the hot water storage tank 7 is heated.Then, the condensed liquid refrigerant passes from the solenoid valve 12 through the expansion mechanism 4 to the outdoor heat exchanger 5, where it evaporates.The evaporated gas refrigerant passes through the four-way valve 2. and returns to compressor 1 again.

以上は各運転時における冷媒の流れについて述べたが、
暖房期にあっては、通常暖房最優先となり、かつ暖房負
荷に応じた暖房運転がなされる。
The above describes the flow of refrigerant during each operation, but
During the heating season, heating is usually given top priority and heating operation is performed according to the heating load.

一般に住宅の暖房負荷は、第2図に示すように朝6時か
ら9時頃までに第1のピークがあり、そして日中(12
時から155時頃は天候に応じて幾分かの第2のピーク
があり、さらに夕方から夜間(17時から24時頃)に
かけて第3のピークがある。そして24時以降は負荷が
なくなる。
Generally speaking, the heating load of a house has its first peak between 6:00 and 9:00 in the morning, and then during the day (12:00), as shown in Figure 2.
There is a second peak from 5:00 to 5:00 p.m. depending on the weather, and a third peak from evening to night (from 5:00 p.m. to 11:00 p.m.). After 24:00, the load disappears.

第3図はインバータの運転周波数と給湯加熱能力の関係
を示す図であり、この発明の場合の制御を第4図の運転
70−チャートを参照しながら説明する。なお、第4図
の制御手順のゴログラムは制御装置の内部メモリーに格
納されている。
FIG. 3 is a diagram showing the relationship between the operating frequency of the inverter and the hot water heating capacity, and the control in the case of the present invention will be explained with reference to the operation 70-chart in FIG. 4. It should be noted that the gorogram of the control procedure shown in FIG. 4 is stored in the internal memory of the control device.

第4図において、まず始めにステップS1でインバータ
周波数最大でも (空調負荷/ヒーI・ポンプ能力)の
設定割合で空調負荷を賄えない場合、ス子・ツブS2へ
いき設定割合に関係なく、空調優先運転を行う。例えば
(空調負荷/ヒートポンプ能力)の設定割合が80%で
空調負荷が7000keal/hの時ヒートポンプ能力
ば7000 / 0. l’l−8750kcal/h
必要になる。これば、第3図よりインバータ周波数が9
011zでも足りない能力なのでインバータ周波数が9
01[z、8000kcal / hで運転し、空調負
荷の7000keal / hを優先17残りの100
0kcal / hで給湯加熱運転を行う。この時給湯
加熱運転と空調運転の割合ば1000: 7000= 
1 :  7になって時分割して運転している。
In Fig. 4, first, in step S1, if the air conditioning load cannot be covered by the set ratio of (air conditioning load/heat I/pump capacity) even at the maximum inverter frequency, the system goes to Sukko/Tsubu S2 regardless of the set ratio. Performs air conditioning priority operation. For example, when the setting ratio of (air conditioning load/heat pump capacity) is 80% and the air conditioning load is 7000 keal/h, the heat pump capacity is 7000/0. l'l-8750kcal/h
It becomes necessary. If this is done, the inverter frequency will be 9 from Figure 3.
Even 011z does not have enough capacity, so the inverter frequency is 9
01 [z, operate at 8000kcal/h, prioritize 7000keal/h of air conditioning load 17 remaining 100
Hot water heating operation is performed at 0kcal/h. At this time, the ratio of hot water heating operation and air conditioning operation is 1000: 7000 =
1:7, so we are driving on a time-sharing basis.

次に、ステップS1で賄えると判定された場合、ステッ
プS3へいきインバータ周波数最小でも(空調負荷/ヒ
ートポンプ能力)の設定割合で空調負荷に対して過大で
あれば、ステップS4へいき設定割合に関係なく、イン
バータ周波数最小で空調優先運転を行う。例えば(空調
負荷/ヒートポンプ能力)の設定割合が80%で空調負
荷が1000kcal/hの時ヒートポンプ能力は10
00/ O,l’i= 1250kcal/h必要にな
る。これは、第3図よりインバータ周波数が30H2で
も過大な能力なので、インバータ周波数は30 H2,
2000kcal / hで運転し、空調負荷の100
0kcal / hを優先し残りの1000kCal/
hで給湯加熱運転を行う。この時急騰加熱運転と空調運
転の割合は1000: 1000= 1. :  1に
なって時分割して運転している。
Next, if it is determined that it can be covered by step S1, go to step S3, and if the set ratio of (air conditioning load/heat pump capacity) is too high for the air conditioning load even at the minimum inverter frequency, go to step S4. air conditioning priority operation at the minimum inverter frequency. For example, when the setting ratio of (air conditioning load/heat pump capacity) is 80% and the air conditioning load is 1000 kcal/h, the heat pump capacity is 10%.
00/O,l'i= 1250kcal/h is required. This is because, as shown in Figure 3, even the inverter frequency is 30H2, this is an excessive capacity, so the inverter frequency is 30H2,
Operates at 2000kcal/h, 100% of air conditioning load
Prioritize 0kcal/h and the remaining 1000kcal/h
Hot water heating operation is performed at h. At this time, the ratio of rapid heating operation and air conditioning operation is 1000:1000=1. : 1 and is operating on a time-sharing basis.

さらに、ステップ31.ステップS3で上記の運転モー
ドに入らなかった場合、ステップS5へいき設定割合に
なるようなインバータ周波数に制御する。例えば(空調
負荷/ヒートポンプ能力)の設定割合が80%で空調負
荷が4000kcal / hの時ヒートポンプ能力は
4000 / 0.8 = 5000kcal / h
必要になる。これは、第3図よりインバータ周波数が5
0112の時の能力なので、この周波数で給湯加熱運転
と空調運転の割合を0.2: 0.8= 1 : 4と
して時分割して運転する。
Furthermore, step 31. If the above operation mode is not entered in step S3, the inverter frequency is controlled to the set ratio in step S5. For example, when the setting ratio of (air conditioning load/heat pump capacity) is 80% and the air conditioning load is 4000 kcal/h, the heat pump capacity is 4000/0.8 = 5000 kcal/h.
It becomes necessary. From Figure 3, this means that the inverter frequency is 5.
Since the capacity is 0112, the water supply heating operation and air conditioning operation are time-divided at this frequency with the ratio of 0.2:0.8=1:4.

なお、上記の説明は空調負荷を暖房負荷とした場合につ
いての例で行ったが、冷房負荷の場合は冷房廃熱による
給湯加熱が行われるので、結果的に給湯加熱量が異なる
が、空調負荷を基準とした制御方式には変更はない。
Note that the above explanation was based on an example where the air conditioning load is a heating load, but in the case of a cooling load, hot water heating is performed using cooling waste heat, so the amount of hot water heating differs as a result, but the air conditioning load There is no change in the control method based on .

以上述べましたように、この実施例では、空調運転と給
湯加熱運転が同時に起った場合に、空調運転と給湯加熱
運転をある設定値の運転割合に時間制御しているので、
圧縮機を賽量制御するインバータの周波数をあまり高く
することなく低周波数での経済的な運転を行うことがで
きる。また、上記設定値の運転割合が保持できなくなっ
た場合には空1g優先運転を行うようにしたので、使用
者の要求に応じることができる。
As mentioned above, in this embodiment, when air conditioning operation and hot water heating operation occur at the same time, the air conditioning operation and hot water heating operation are time-controlled to the operating ratio of a certain set value.
It is possible to economically operate the compressor at a low frequency without increasing the frequency of the inverter that controls the amount of consumption of the compressor. In addition, when the operating ratio at the set value cannot be maintained, the empty 1g priority operation is performed, so that the user's request can be met.

なお、上記実施例では、室内熱交換器が2台ある場合に
ついて説明したが、これは3台以−トの場合でも同様に
適用できる。また、三方弁11の変わりに二方弁2個の
組み合わせたものでもよいほか、三方弁11を流量調整
可能な電動弁としてもよい。
In the above embodiment, the case where there are two indoor heat exchangers has been described, but the same can be applied to the case where there are three or more indoor heat exchangers. Further, instead of the three-way valve 11, a combination of two two-way valves may be used, or the three-way valve 11 may be an electrically operated valve that can adjust the flow rate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、タイマ付き制
御装置によって、空調負荷と給湯加熱が同時に発生した
時に、空調運転と給湯加熱運転をある設定値で時間制御
することができるので、インバータの周波数をあまり高
くすることなく、低周波数での経済的な運転ができると
いう効果が得られる。
As explained above, according to the present invention, when the air conditioning load and the hot water heating operation occur simultaneously, the timer-equipped control device can time-control the air conditioning operation and the hot water heating operation using a certain set value. The effect of economical operation at a low frequency can be obtained without increasing the frequency too much.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による冷暖房・給湯ヒートポンプ装置
の一実施例を示す構成図、第2図は一般住宅の暖房負荷
発生のパターン図、第3図はこの発明におけるインバー
タ周波数と定格加熱能力との関係を示す図、第4図はこ
の発明における冷暖房・給湯ヒートポンプ装置の運転制
御フローを示す図、第5図は従来の冷暖房用ヒートポン
プ装置を示す構成図、第6図は同じ〈従来の冷暖房・給
湯ヒートポンプ装置を示す構成図である。 1 圧縮機、2・四方弁、3a、 3b・・室内熱交換
器、4 膨張機構、5 室外熱交換器、7 貯湯槽、1
1 三方弁(切換弁)、8 ・加熱コイル、1.2,1
g  ・電磁弁、14・インバータ、15タイマ付き制
陣装置、16 貯湯槽下部水温度検出器。 なお、図中同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄(外2名) 牙 2 図 0      1y      72     B  
     2ψ(〃チ剤J 牙 3 図 1>八−7ff1l ミIRCHz3 く:=x;=) ぐ:=×;=〉 手続補正書(自発) 昭和60年10月1 日 1、事件の表示   特願昭60−77032号2、発
明の名称   冷暖房・給湯ヒートポンプ装置3、補正
をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社住 所    東
京都千代田区丸の内二丁目2番3号5.11111正の
対象 (1)明細書の発明の詳細な説明の欄 補正の内賽 111明細書第12頁14行目「急騰加熱」とあるを「
給湯加熱」と補正する。
Fig. 1 is a configuration diagram showing an embodiment of the air conditioning/hot water supply heat pump device according to the present invention, Fig. 2 is a pattern diagram of heating load generation in a general house, and Fig. 3 is a diagram showing the relationship between inverter frequency and rated heating capacity in the present invention. 4 is a diagram showing the operation control flow of the heat pump device for air conditioning and hot water supply in the present invention, FIG. 5 is a block diagram showing a conventional heat pump device for air conditioning, and FIG. 6 is a diagram showing the same FIG. 1 is a configuration diagram showing a hot water supply heat pump device. 1 Compressor, 2. Four-way valve, 3a, 3b... Indoor heat exchanger, 4 Expansion mechanism, 5 Outdoor heat exchanger, 7 Hot water storage tank, 1
1 Three-way valve (switching valve), 8 ・Heating coil, 1.2,1
g - Solenoid valve, 14 - Inverter, 15 Control device with timer, 16 Water temperature detector at the bottom of the hot water tank. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Fang 2 Figure 0 1y 72 B
2ψ (〃Chi agent J tusk 3 Fig.1>8-7ff1l MiIRCHz3 ku:=x;=) gu:=×;=> Procedural amendment (voluntary) October 1, 1985 1. Indication of case Patent application 1986-77032 No. 2, Title of the invention Air-conditioning/hot water heat pump device 3, Relationship to the amended case Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Address: 2-2-3 Marunouchi, Chiyoda-ku, Tokyo 5.11111 Correct subject matter (1) Detailed explanation of the invention in the specification Section for amendments 111 Specification, page 12, line 14, ``Surge heating'' There is
"Hot water heating" is corrected.

Claims (3)

【特許請求の範囲】[Claims] (1)インバータにより容量制御可能にした圧縮機、冷
暖房切換四方弁、室内熱交換器、可逆流式の膨張機構、
および室外熱交換器を閉ループに連結して冷媒回路を構
成する冷暖房・給湯ヒートポンプ装置において、上記圧
縮機と上記四方弁間に設けられ圧縮機から吐出される冷
媒流路を貯湯槽内の加熱コイルに切換える切換弁と、上
記加熱コイルを上記膨張機構の両端側に切換え接続する
電磁弁と、空気調和負荷と給湯加熱が同時に発生した時
には空気調和運転と給湯加熱運転をある設定値の運転割
合で時間制御するタイマ付き制御装置とを備えたことを
特徴とする冷暖房・給湯ヒートポンプ装置。
(1) Compressor whose capacity can be controlled by an inverter, four-way air conditioning/heating switching valve, indoor heat exchanger, reversible flow expansion mechanism,
In an air conditioning/hot water heat pump device in which a refrigerant circuit is configured by connecting an outdoor heat exchanger in a closed loop, the refrigerant flow path provided between the compressor and the four-way valve and discharged from the compressor is connected to the heating coil in the hot water storage tank. and a solenoid valve that switches and connects the heating coil to both ends of the expansion mechanism, and when air conditioning load and hot water heating occur simultaneously, air conditioning operation and hot water heating operation are operated at a set value. 1. A heat pump device for heating, cooling, and hot water supply, characterized by comprising a control device with a timer for time control.
(2)タイマ付き制御装置は、空気調和負荷が増加して
インバータの周波数が最大の運転でも空気調和運転と給
湯加熱運転の運転割合のある設定値を保持できなくなっ
た時には、この運転割合の設定を解除してインバータの
周波数が最大の運転をしつつ空気調和負荷を賄い、残り
の時間で給湯加熱運転をすることが可能なものである特
許請求の範囲第1項記載の冷暖房・給湯ヒート・ポンプ
装置。
(2) When the air conditioning load increases and the operating ratio of air conditioning operation and hot water heating operation cannot be maintained at a certain set value even when the inverter frequency is at its maximum, the control device with a timer will set the operating ratio. The cooling/heating/hot water heating system according to claim 1 is capable of disabling the inverter to operate at the maximum frequency while covering the air conditioning load, and performing hot water heating operation in the remaining time. pump equipment.
(3)タイマ付き制御装置は、空気調和負荷が減少して
インバータの周波数が最小の運転でも空気調和運転と給
湯加熱運転の運転割合のある設定値を保持できなくなっ
た時には、この運転割合の設定を解除してインバータの
周波数が最小の運転をしつつ空気調和負荷を賄い、残り
の時間で給湯加熱をすることが可能なものである特許請
求の範囲第1項または第2項記載の冷暖房・給湯ヒート
ポンプ装置。
(3) When the air conditioning load decreases and the operating ratio of air conditioning operation and hot water heating operation cannot be maintained at a certain set value even when the inverter frequency is at its minimum, the control device with a timer will set the operating ratio. The heating/cooling system according to claim 1 or 2, which is capable of covering the air conditioning load while operating the inverter at the minimum frequency and heating and supplying hot water in the remaining time. Hot water heat pump equipment.
JP7703285A 1985-04-11 1985-04-11 Air-conditioning and hot-water supply heat pump device Pending JPS61235658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7703285A JPS61235658A (en) 1985-04-11 1985-04-11 Air-conditioning and hot-water supply heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7703285A JPS61235658A (en) 1985-04-11 1985-04-11 Air-conditioning and hot-water supply heat pump device

Publications (1)

Publication Number Publication Date
JPS61235658A true JPS61235658A (en) 1986-10-20

Family

ID=13622412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7703285A Pending JPS61235658A (en) 1985-04-11 1985-04-11 Air-conditioning and hot-water supply heat pump device

Country Status (1)

Country Link
JP (1) JPS61235658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136368A1 (en) * 2012-03-15 2013-09-19 三菱電機株式会社 Refrigeration cycling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136368A1 (en) * 2012-03-15 2013-09-19 三菱電機株式会社 Refrigeration cycling device
CN104246395A (en) * 2012-03-15 2014-12-24 三菱电机株式会社 Refrigeration cycling device
JPWO2013136368A1 (en) * 2012-03-15 2015-07-30 三菱電機株式会社 Refrigeration cycle equipment
CN104246395B (en) * 2012-03-15 2016-08-24 三菱电机株式会社 Refrigerating circulatory device
US9644876B2 (en) 2012-03-15 2017-05-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Similar Documents

Publication Publication Date Title
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
JPH07208821A (en) Air conditioner
JPS6155018B2 (en)
JP2989491B2 (en) Air conditioner
JPH0432669A (en) Heat pump system controlling method therefor
JPS61235658A (en) Air-conditioning and hot-water supply heat pump device
JP3304866B2 (en) Thermal storage type air conditioner
JPS61107066A (en) Air-conditioning and hot-water supply heat pump device
JPS61223463A (en) Air-conditioning and hot-water supply heat pump device
JPS61107065A (en) Air-conditioning and hot-water supply heat pump device
JPS611968A (en) Air-conditioning and hot-water supply heat pump device
JPH10205932A (en) Air conditioner
JP3791019B2 (en) Air conditioner
JPS611967A (en) Air-conditioning and hot-water supply heat pump device
JPH06213478A (en) Air-conditioning machine
JPS60240969A (en) Air-conditioning-hot-water supply heat pump device
JP2002031371A (en) Air conditioner
JP3227643B2 (en) Heat recovery type air conditioner
JPS60240968A (en) Air-conditioning-hot-water supply heat pump device
JPH08334274A (en) Air conditioner
JPS61184366A (en) Heat pump type hot-water supply device
KR100308759B1 (en) Heating air conditioner
JP3126757B2 (en) Refrigerant heating air conditioner
JPS61101767A (en) Air-conditioning and hot-water supply heat pump device
JPH09119726A (en) Binary refrigerator