JPS6123516A - Manufacture of complex material heat resistant, high strength, and high conductivity - Google Patents

Manufacture of complex material heat resistant, high strength, and high conductivity

Info

Publication number
JPS6123516A
JPS6123516A JP14381084A JP14381084A JPS6123516A JP S6123516 A JPS6123516 A JP S6123516A JP 14381084 A JP14381084 A JP 14381084A JP 14381084 A JP14381084 A JP 14381084A JP S6123516 A JPS6123516 A JP S6123516A
Authority
JP
Japan
Prior art keywords
billet
extrusion
strength
composite material
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14381084A
Other languages
Japanese (ja)
Inventor
Tomiharu Matsushita
富春 松下
Masataka Noguchi
昌孝 野口
Kenichiro Ouchi
大内 権一郎
Yoshio Asano
浅野 吉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14381084A priority Critical patent/JPS6123516A/en
Publication of JPS6123516A publication Critical patent/JPS6123516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain a high quality complex material heat resistance, high strength, and high electric conductivity by placing aluminum coated copper powder in a copper cylinder to form a billet for extrusion, thence after degressive processing by high temperature hydrostatic pressure extrusion, carrying out cold working. CONSTITUTION:Al coated copper powder 3 is filled in a thick walled copper cylinder 2 and a head 4 having oppening 5 communicating with the open end of the cylinder 2 is connected to said cylinder and a billet 1 for extrusion is obtd. After heating this billet 1 to high temperature, the head part 4 is inserted into a container 6 of a hydrostatic extruding machine so as the head directs to the die side 7 and high temp. hydrostatical extrusion is executed. By this degression process, the extruded material 9 having a dispersion strengthened type copper alloy having a core 11 enwrapped with an outer skin 10 is obtained. The necessary cold processing is performed to give the complex material and further electrode tips or the like are formed. By this method with simplified process, high quality heat resistant, high strength and high conductive complex material is suitably manufactured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高品質の分散強化型銅合金を芯部に配し、該
芯部の回フを銅製外皮で被包した複合材の製造方法に関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to the production of a composite material in which a high-quality dispersion-strengthened copper alloy is arranged in the core, and the core is covered with a copper shell. Regarding the method.

〈従来の技術〉 点溶接用電極チップに用いる素材及び200〜300℃
の高温雰囲気で用いられるモータの巻@C@径=00゜
5〜i LOsm ) 、電子部品や電気部品(例えば
、ダイオード、トランジスタ、リードスイッチ等)のリ
ード線、発wLs用シャフト(軸径:ダ6(lW程度)
などに使用される線材は、いずれも耐熱性、高強度、高
導電性が要求されるが、これらの性質を十分に兼備した
素材は現在のところ開発されていない。
<Prior art> Materials used for spot welding electrode tips and 200-300°C
Motor windings @ C @ diameter = 00 ° 5 ~ i LOsm ) used in high-temperature atmospheres, lead wires for electronic and electrical components (e.g. diodes, transistors, reed switches, etc.), shafts for power source wLs (shaft diameter: Da 6 (about 1W)
All wire rods used in such applications are required to have heat resistance, high strength, and high conductivity, but no material that fully combines these properties has yet been developed.

例えば、点溶接用を極チップ(以下、単に電極チップと
いう。)の材料として、Cu−C!r、 On −Zr
 合金等が電気伝導率(導電率)、熱伝導率及び機械的
強度が共に優れているため一般に使用され、市販に供さ
れているが、強度的に今−歩不足するため、電極チップ
の先端形状の修正、電極チップ交換を多々行なわねばな
らず生産性の低下を余儀なくされていた。
For example, Cu-C! r, On-Zr
Alloys are commonly used and commercially available because they have excellent electrical conductivity, thermal conductivity, and mechanical strength. The shape had to be corrected and the electrode tips had to be replaced frequently, resulting in a decrease in productivity.

そこで、電気伝導率が比較的良好であって、かつ高温強
度が特に優れた分散強化型銅合金がチップ芯部に配設さ
れた複合型電極チップが特願昭47−23426号にお
いて開示され、その品質をよシ向上させ次電極チップの
製造法が特開昭50−14559号公報(以下、従来例
という。)において開示された。この方法は、析出硬化
型銅合金の筒状ケース中に、内部酸化法によって得られ
た分散強化型銅合金の細片を充填して密封し、複合型の
押出しビレットとなし、該ビレットを熱間押出して電極
チップ素材1得、これに所要の機械的加工を施す方法で
ある。
Therefore, a composite electrode chip in which a dispersion-strengthened copper alloy having relatively good electrical conductivity and particularly excellent high-temperature strength is disposed in the chip core was disclosed in Japanese Patent Application No. 47-23426. A method for manufacturing the next electrode chip with improved quality was disclosed in Japanese Patent Application Laid-Open No. 14559/1983 (hereinafter referred to as "prior art"). In this method, a cylindrical case of precipitation hardening copper alloy is filled with strips of dispersion-strengthened copper alloy obtained by internal oxidation method and sealed to form a composite extruded billet, and the billet is heated. In this method, an electrode chip material is obtained by extrusion, and required mechanical processing is performed on this material.

一方、耐熱高強度が要求される線材としては、鋼線に銅
を被覆した複合線材が使用されているが、導電率が40
〜80 * IムC8と低いので、耐熱高強度が要求さ
れる上に9096IムC8以上の高導電性が要求される
線材には、耐熱高強度全犠牲にして、純銅、銅合金が使
用されているのが突情である。
On the other hand, composite wires made of steel wire coated with copper are used as wire materials that require high heat resistance and strength, but the conductivity is 40%.
~80 * Since the ImC8 is low, pure copper and copper alloys are used for wire materials that require high heat resistance and high strength and high conductivity of 9096ImC8 or higher, at the expense of all heat resistance and high strength. It's sudden.

例えば、ダイオード、トランジスター等の電子、電気部
品のリード線端子は、高感度及び軽量化の観点から高強
度、高導電性が要求され、更に、接合、ろう付、溶接、
拡散接合等600〜800℃の高温に曝される工程があ
p1耐熱性も要求されているにも拘らず、現状ではこれ
らの性質を兼備した材料がないところから、銅@を使用
せざるを得ない状況である。
For example, lead wire terminals for electronic and electrical components such as diodes and transistors are required to have high strength and high conductivity from the viewpoint of high sensitivity and weight reduction.
Although processes such as diffusion bonding that are exposed to high temperatures of 600 to 800°C require P1 heat resistance, there is currently no material that has both of these properties, so copper@ has no choice but to be used. This is an unprofitable situation.

〈発明が解決しようとする問題点〉 電極チップの場合、従来例の方法によシ、電極チップの
寿命は従来のOu −Or金合金に比べて向上するが、
内部酸化法によって得た分散強化型銅合金の細片を基に
して、析出硬化型銅合金の外周部の芯部に分散強化型銅
合金を再形成させるため、内部酸化法のもつ品質上の欠
陥がそのまt芯部の分散強化型銅合金に残存することと
なシ、電極チップの寿命に悪影響を及ばずことになる。
<Problems to be Solved by the Invention> In the case of electrode tips, the lifespan of the electrode tips is improved compared to conventional Ou-Or gold alloys by the conventional method;
Based on the dispersion-strengthened copper alloy strips obtained by the internal oxidation method, dispersion-strengthened copper alloy is re-formed in the core of the outer periphery of the precipitation-hardened copper alloy. Since the defects do not remain in the dispersion-strengthened copper alloy of the t-core, they do not adversely affect the life of the electrode tip.

内部酸化法は、周知の通り、銅合金溶製材をアトマイズ
法或いは切削法で粉末状或いは帯状にした後、内部のム
1等の合金成分を酸化させる方法であるが、この方法に
よると内部酸化の安定性が得られにぐいこと、母材溶製
材の不純物除去が難しいことなどから、この方法で作成
された分散強化型銅金においては、高品質のものが得ら
れ難いのである。
As is well known, the internal oxidation method is a method in which the melted copper alloy material is made into a powder or strip shape by atomizing or cutting, and then the alloy components such as aluminum are oxidized inside. It is difficult to obtain high-quality dispersion-strengthened copper-gold produced by this method because of the difficulty in achieving stability and the difficulty in removing impurities from the melted base material.

また、ビレットの押出しにおいて、直接押出し法では、
従来例中にも開示されている様に、外径0.92、内径
(充填部径) J!l’ 34.5 tmのビレットを
押出すと、外径719、芯部径〆9fiとなシ、芯部の
分散強化型銅合金の充填率が改善されるにも拘らず、芯
部の面積割合が14.1%から22.496と増大し、
品質の安定しfc複合−の素材を得ることができない。
In addition, in billet extrusion, in the direct extrusion method,
As disclosed in the conventional example, the outer diameter is 0.92 and the inner diameter (filling part diameter) is J! When extruding a billet of l' 34.5 tm, the outer diameter is 719 and the core diameter is 9fi.Although the filling rate of the dispersion-strengthened copper alloy in the core is improved, the area of the core is The percentage increased from 14.1% to 22.496,
It is not possible to obtain FC composite material with stable quality.

また、ビレットは密閉構造とするに際して、従来例中に
も開示されているように、ビレットを脱ガスするのを常
とするが、本発明者等は経験上、この脱ガス及び密閉手
段としてのろう付、溶接及び圧接等の信頼性に疑問を持
っており、具体的には、脱ガス密閉したビレットを90
0℃に加熱すると加熱時に膨れ変形を生じ、押出しコン
テナ中に挿入できないという作業上のトラブyvfしば
しば経験している。脱ガスを完全に突流するには、高真
空下で長時間脱ガスを行なう必要があるが、工業的生産
性に欠く。
Furthermore, when a billet is made into a sealed structure, it is customary to degas the billet as disclosed in the conventional example, but the present inventors have learned from experience that this degassing and sealing means They have doubts about the reliability of brazing, welding, pressure welding, etc.
When heated to 0° C., the material bulges and deforms during heating, and we often experience the operational trouble of not being able to insert it into an extrusion container. In order to completely release the gas, it is necessary to degas the gas for a long time under high vacuum, but this method lacks industrial productivity.

更に、分散強化型銅合金である芯部を取り巻く外周部は
、析出硬化型の銅合金が使用されているから、を極チッ
プの形成に当フ、強度付与のため、析出工程としての熱
処理を必要とし、製造工程が煩雑となっている。
Furthermore, the outer periphery surrounding the core, which is a dispersion-strengthened copper alloy, uses a precipitation-hardening copper alloy, so in order to give strength to the tip, heat treatment is applied as a precipitation process. This makes the manufacturing process complicated.

一方、耐熱高強度高導電iが要求される線材に、高導電
性のみ満足するOu等の材料を使用すれば、線材は強度
的に耐え得ないから、製造上たわみ、曲がりなどの変形
が生じる。斜上のリード線端子の例では、斯る変形を工
数をかけて矯正しておフ、コス)面で問題となっている
〇 本発明は、斜上の問題点に鑑みて、耐熱性、高強度及び
高導電性を兼備すると共に高品質であり、点溶接用電極
チップ素材や耐熱高強度高導電性線材などに好適に使用
される複合材の簡便容易なる製造方法を提供することを
目的とする。
On the other hand, if a material such as O, which only satisfies high conductivity, is used for a wire that requires heat resistance, high strength, and high conductivity, the wire will not be able to withstand the strength, so deformations such as deflection and bending will occur during manufacturing. . In the example of the lead wire terminal on the slant, such deformation requires a lot of man-hours to correct, which poses a problem in terms of efficiency and cost. In view of the problem of the slant, the present invention has The purpose is to provide a simple and easy manufacturing method for a composite material that has both high strength and high conductivity, and is of high quality, and is suitable for use in electrode tip materials for spot welding, heat-resistant, high-strength, and high-conductivity wire materials, etc. shall be.

〈問題を解決する九めの手段〉 斜上の目的を達成するため、次の手段を講じる。〈Ninth way to solve the problem〉 In order to achieve the purpose of diagonal improvement, the following measures will be taken.

即ち、銅粉の表面にアルミナを付着させた被覆銅粉を厚
肉の銅製筒体の中に投入し押圧充填して押出しビレット
を作成し、該ビレットを加熱した後、分散強化型銅合金
と外皮の銅材とを一体的に接合した押出し材を得て、該
押出し材に冷間加工を施し、目的とする耐熱高強度高導
電性複合材を得る。
That is, a coated copper powder with alumina attached to the surface of the copper powder is put into a thick copper cylinder and press-filled to create an extrusion billet, and after heating the billet, it is made into a dispersion-strengthened copper alloy. An extruded material integrally joined with the copper material of the outer skin is obtained, and the extruded material is subjected to cold working to obtain the desired heat-resistant, high-strength, highly conductive composite material.

〈作 用〉 本発明方法は、銅粉の表面にアルミナを付着させ九被覆
銅粉を用いるから、高品質の原料を容易に得ることがで
き、目的とする複合材の芯部を形成する分散強化型銅合
金の品質を原料面から確保することができ、更に該被覆
銅粉を筒体内に直接投入しプレス等で押圧するから、被
覆銅粉の充填率を管理し易く、汚染防止の管理が容易で
あり、高品質の複合材の製造を作業面からも確保できる
<Function> Since the method of the present invention uses nine-coated copper powder by adhering alumina to the surface of copper powder, high-quality raw materials can be easily obtained, and the dispersion that forms the core of the desired composite material can be easily obtained. The quality of the reinforced copper alloy can be ensured from the raw material perspective, and since the coated copper powder is directly put into the cylinder and pressed with a press, etc., it is easy to control the filling rate of the coated copper powder and control pollution prevention. This makes it easy to manufacture high-quality composite materials from a work perspective.

また、筒体として、銅材を用いるから、複合材の芯部を
取り巻く外皮の原材料として要求される特性、即ち、電
気伝導率及び熱伝導率が共に優れ、しかも経済性に優れ
る。該銅製筒体に被覆銅粉が充填されて押出しビレット
が形成されるが、該ビレットは、脱ガスを行なうことな
く高温加熱されて、高温静水圧押出しに供されるから、
作業上のトラプμは生じずビレットの被覆銅粉充填部と
筒体周側部との面積割合を一定の割合に保存して高押出
比で押出すことが可能となシ、経済性、品質面共に優れ
た押出し材を得ることができる。次に高温静水圧押出し
法によフ押出された押出し材は、冷間加工が施され、寸
法形状を整えると共に加工硬化されるので、寸法形状の
成形加工と硬化加工を同一工程で行うことができ、筒体
に析出硬化型銅合金を用いた場合に必須の硬化熱処理工
程を省略することができ、コスト面でよシ有利となる。
In addition, since copper is used as the cylinder, it has excellent properties required as a raw material for the outer skin surrounding the core of the composite material, that is, both electrical conductivity and thermal conductivity, and is also excellent in economical efficiency. The copper cylinder is filled with coated copper powder to form an extruded billet, and the billet is heated to a high temperature without degassing and subjected to high-temperature isostatic extrusion.
No trap μ occurs during operation, and it is possible to extrude at a high extrusion ratio by keeping the area ratio between the coated copper powder filled part of the billet and the circumferential side of the cylinder at a constant ratio, economical efficiency, and quality. Extruded materials with excellent surface properties can be obtained. Next, the extruded material extruded by high-temperature isostatic extrusion is cold-worked to adjust its dimensions and shape, and is then work-hardened, making it possible to form the dimensions and shape and harden them in the same process. This makes it possible to omit the hardening heat treatment step that is essential when a precipitation hardening type copper alloy is used for the cylinder, which is very advantageous in terms of cost.

〈実施例〉 次に、本発明の実施例を電極チップ素材の製造実施例に
つき詳述すると共に、#熱高強度高導電性線材の製造条
件についても言及する。
<Example> Next, an example of the present invention will be described in detail with reference to an example of manufacturing an electrode chip material, and the manufacturing conditions of a #thermal high-strength high-conductivity wire will also be mentioned.

第1図は、本発明全適用した場合の電極チップの製造工
程図を示してお夛1、該工程図に基づき、本5j!施例
の概I!ヲ先ず説明する。
FIG. 1 shows a manufacturing process diagram of an electrode chip when all of the present invention is applied. Based on the process diagram, Book 5j! Summary of the example I! Let me explain first.

先ず銅製筒体にアルミナ被覆銅粉が充填された押出しビ
レットを作成するが、M?Il覆銅粉は、高純度の電解
銅粉を錯体処理してその表面にアルミナを付着させたも
のであって、事前に準備されたものである。該被覆銅粉
は、第2図に示すように、別途鋼素材より加工、洗浄し
て作成された銅!!!!!筒体(2)中へ充填され、そ
の後膣筒体(2]の開口端に連通ずる開孔(5)ヲ有す
る頭部(4)全接合し、押出しビレット〔1)を得る。
First, an extruded billet is created in which a copper cylinder is filled with alumina-coated copper powder, but M? The Il-coated copper powder is obtained by subjecting high-purity electrolytic copper powder to a complex treatment and adhering alumina to its surface, and is prepared in advance. As shown in Figure 2, the coated copper powder is made of copper that is separately processed and cleaned from a steel material! ! ! ! ! It is filled into the cylinder (2), and then the head (4) having an opening (5) communicating with the open end of the vaginal cylinder (2) is fully joined to obtain an extruded billet [1].

該ビレット(1)は、高温に加熱された後、第3図に示
すように、静水圧押出し機のコンテナ(6)中に頭部(
4)′f、ダイス(7)側にして挿入し、高温静水圧押
出しにより減面加工を行い第4図の如く、分散強化型銅
合金の芯部α11を外皮αqで取シ巻いた押出し材(9
]を得る。該押出し材(9)は、所要の冷間加工が施さ
れ、複合材となシ、更に第5図に示す電極チップa2ヲ
得るぺぐ成形加工が施される。
After the billet (1) is heated to a high temperature, the head (1) is placed in a container (6) of an isostatic extruder, as shown in FIG.
4) 'f, inserted with the die (7) side facing, and subjected to surface reduction processing by high-temperature isostatic extrusion, as shown in Figure 4, an extruded material with a dispersion-strengthened copper alloy core α11 surrounded by an outer skin αq. (9
] is obtained. The extruded material (9) is subjected to the necessary cold working to form a composite material, and further subjected to peg forming to obtain the electrode tip a2 shown in FIG.

以下、各工程につき詳述する。Each step will be explained in detail below.

第2図において、銅製筒体(2)の内部空間である充填
部(2b)に充填された被覆銅粉(3)は、特公昭58
−56660号公報に開示された錯体処理によシ得るこ
とができる。使用される銅粉としては、高−電気伝導率
の高純度のものが好適でアフ、具体的には電解鋼の粉末
を挙げることができる。
In Fig. 2, the coated copper powder (3) filled in the filling part (2b) which is the internal space of the copper cylinder (2) is
It can be obtained by the complex treatment disclosed in Japanese Patent No.-56660. The copper powder used is preferably one of high purity and high electrical conductivity, and specifically, electrolytic steel powder can be mentioned.

斯る被覆銅粉により製造された分散強化型銅合金は、マ
トリックスとして電気伝導率の高い純銅を保持し、分散
強化材としてアルミナが前記マトリックス中に均質に分
散したものとなフ、本発明の目的とする複合材の芯部材
として好適なものである。
The dispersion-strengthened copper alloy manufactured by such a coated copper powder has pure copper with high electrical conductivity as a matrix, and alumina is uniformly dispersed in the matrix as a dispersion-strengthening material. It is suitable as a core member of the intended composite material.

ところで、分散強化型銅合金の製造方法として、既述の
内部酸化法、粉末混合法があるがいずれも高品質のもの
が得られ難いので、本発明方法に使用する被覆銅粉に、
斯る方法によフ得られた分散強化型銅合金の粉末を使用
することは好ましくない。
By the way, as methods for producing dispersion-strengthened copper alloys, there are the aforementioned internal oxidation method and powder mixing method, but it is difficult to obtain high quality products with either method.
It is not preferable to use dispersion-strengthened copper alloy powder obtained by such a method.

本発明に使用する被覆銅粉の特性としては、200メツ
シュ以下100%で、350メツシュ以下98%以上の
微軸粉で、アルミナ含有率は0.6〜1.2511iの
ものが好ましい。0.6 tJ5未満では、押出し材の
強度(硬さ)が低下し、90Hv以上′f:確保するこ
とか困難と々る。一方、L2m′ft越え念ものでは、
アルミナが凝集し、押出し材中での7μミナの均一分散
が困難となシ、硬さの向上が望めずかつ導電率も低下す
る。このことは、アルミナ含有率を種々変えて押出し材
(押出し温度800℃)を作成し、該押出し材に509
6の冷間加工を施して得られた試験材の硬さ、導電率が
調査された結果判明したものである。尚、アルミナ含有
率が0.5〜1.2%の範囲で硬さ■、導電率ノは次の
関係を満足することか見出された。
As for the characteristics of the coated copper powder used in the present invention, it is preferable that the coated copper powder is finely axial powder with 100% of 200 mesh or less, 98% or more of 350 mesh or less, and an alumina content of 0.6 to 1.2511i. If it is less than 0.6 tJ5, the strength (hardness) of the extruded material will decrease, and it will be difficult to maintain 90 Hv or more'f. On the other hand, if it exceeds L2m'ft,
Alumina aggregates, making it difficult to uniformly disperse 7 μm alumina in the extruded material, making it impossible to expect an improvement in hardness, and lowering electrical conductivity. This means that extruded materials with various alumina contents (extrusion temperature 800°C) are created, and the extruded materials have 509
This was discovered as a result of investigating the hardness and electrical conductivity of the test material obtained by subjecting it to the cold working described in No. 6. It has been found that the hardness (2) and the electrical conductivity satisfy the following relationship when the alumina content is in the range of 0.5 to 1.2%.

H(Hv ) = 100 ・X +50/’ (5I
lIAc!S )= −22,7−X + 100但し
、Xはアルミナ含有員(財)である。尚、アルミナ含有
率がL2flfのとき、アは75%エムC8であつ念。
H (Hv) = 100 ・X +50/' (5I
lIAc! S ) = -22,7-X + 100 However, X is the alumina content member (goods). Note that when the alumina content is L2flf, A is 75% M C8.

アルミナ含有量は、斜上の理由から0.6〜1.2%に
規定されるが、品質上安定し、工業的に使用できるもの
として、0.7〜1.1%が望ましい。
The alumina content is specified to be 0.6 to 1.2% for reasons of slanting, but 0.7 to 1.1% is desirable as it is stable in quality and can be used industrially.

前記被覆銅粉を充填する筒体(2)は、第5図における
最終製品の電極チップUにおいて、また耐熱高強度高導
電性複合線材において、分散強化型銅合金である芯部に
同心状に被包された外皮となる    jものである。
The cylindrical body (2) filled with the coated copper powder is concentric with the core portion, which is a dispersion-strengthened copper alloy, in the final product electrode chip U shown in FIG. It is the encapsulated outer skin.

電極チップの場合、外皮(至)の材質は、スポット溶接
時に電極チップを流れる大電流による抵抗発熱が少なく
、また被溶接材の表面の抜熱を促進させる必要から、電
気伝導率及び熱伝導率の高い材料がよく、経済的な材料
として銅材を用い、その内でも前記特性の極めて良好な
高純度のものが好ましい。また、熱伝導を良くするため
、電極チップ■の外皮(至)の面積割合を多くすること
が好ましく、この点を考慮して、筒体周側部(2a)の
肉厚を決定する。
In the case of electrode tips, the material of the outer cover has low electrical conductivity and thermal conductivity because there is little resistance heat generation due to the large current flowing through the electrode tip during spot welding, and it is necessary to promote heat removal from the surface of the welded material. Copper is preferably used as an economical material, and among these, high-purity materials with extremely good properties are preferred. Further, in order to improve heat conduction, it is preferable to increase the area ratio of the outer skin of the electrode tip (2), and the thickness of the circumferential side portion (2a) of the cylinder body is determined in consideration of this point.

複合線材の場合も、外皮には銅材(好ましくは、高導電
性の純銅)が被覆される。銅材1被覆する長所として、
次の点が挙げられる。
Also in the case of a composite wire, the outer sheath is coated with a copper material (preferably highly conductive pure copper). The advantages of coating copper material 1 are:
The following points can be mentioned.

第1K、導電性線材としての導電率と強度を容易に調整
できる。分散強化型銅合金は、量産によってコスト低減
を図ることができるものであル、少量生産することは好
ましくない。一方、押出しビレットO単重は100に程
度であるので、銅製筒体の製作について、100に単位
で寸法を変え、複合線材の外皮の面積割合を調整して、
線材の導電率と強度を調整することは比較的容易に行え
る。
First, the conductivity and strength of the conductive wire can be easily adjusted. Dispersion-strengthened copper alloys can be mass-produced to reduce costs, but it is not preferable to produce them in small quantities. On the other hand, since the extruded billet O unit weight is about 100, when manufacturing the copper cylinder, the dimensions are changed in units of 100, and the area ratio of the outer skin of the composite wire is adjusted.
It is relatively easy to adjust the conductivity and strength of the wire.

第2に、製造工程の短縮全図ることができる。Second, the manufacturing process can be completely shortened.

被覆銅粉を成形する場合、#被覆銅粉全圧粉成形するケ
ースが不可欠である。該ケー7は、一般に成形後除去さ
れるのが通例であるが、銅材を銅粉成形のケース材とし
て用いれば、ケースそのものも製品の一部にすることが
でき、工程短縮の経済効果が生じる。
When molding coated copper powder, it is essential to have a case in which all of the coated copper powder is compacted. The case 7 is generally removed after molding, but if copper material is used as the case material for copper powder molding, the case itself can be made a part of the product, and the economical effect of shortening the process can be achieved. arise.

第3に、抽伸、焼鈍、酸洗などの工程で品質の劣化を防
止できる。複合線材は、外皮が溶製材の銅製であるので
、これらの工程は、銅材を扱う工程で処理でき、アルミ
ナの脱落、局部酸化あるいは局部腐食などの品質劣化を
防止できる。
Thirdly, quality deterioration can be prevented during processes such as drawing, annealing, and pickling. Since the outer sheath of the composite wire rod is made of molten copper, these steps can be performed in the same process as handling copper materials, and quality deterioration such as falling off of alumina, local oxidation, or local corrosion can be prevented.

尚、ビレット製作時の筒体(2)の内径A、は、王妃式
により容易に算出できる。
Incidentally, the inner diameter A of the cylindrical body (2) during billet production can be easily calculated using the Queen's formula.

ここに、A工:ビレット外径 H=押出し材の芯部の面積比 β:被覆銅粉の充填率 上記筒体【2)に既述の被覆銅粉を充填するが、該被覆
銅粉は微細かつ薄片状であるので、見掛は密度は1.0
〜1.7y/adと低く、横断面における面積割合の安
定した押出し材を得るためには、被覆銅粉の充填率を安
定して管理できる値にすることが必要である。
Here, work A: billet outer diameter H = area ratio of core of extruded material β: filling rate of coated copper powder The above-mentioned cylinder [2] is filled with the coated copper powder described above, but the coated copper powder is Because it is fine and flaky, the apparent density is 1.0.
In order to obtain an extruded material with a stable area ratio in the cross section as low as ~1.7 y/ad, it is necessary to set the filling rate of the coated copper powder to a value that can be stably managed.

被覆銅粉の充填率を上げる方法は、ラバープレスなど予
備成形法があるが、これによる予備成形材をビレットに
組み入れる場合、汚れ或いは異材の混入を防ぐことは難
しく、f六組入れ時の寸法管理も煩雑であるので高品質
のビレットを得ることは難しい。本発明においては、筒
体C2)の中に直接被覆銅粉を投入し、プレスで充填率
を管理するので、汚染防止の管理が容易でちゃ、また充
填組込み後のビレットの複合割合も管理し易く高品質の
押出し材の製造が可能となる。
There are preforming methods such as rubber pressing to increase the filling rate of coated copper powder, but when incorporating the preformed material into billets, it is difficult to prevent dirt or foreign materials from getting mixed in, so it is difficult to control dimensions when assembling f6. It is also difficult to obtain high quality billets. In the present invention, since the coated copper powder is directly charged into the cylinder C2) and the filling rate is controlled by a press, it is easy to control contamination prevention and also control the composite ratio of the billet after filling. It becomes possible to easily manufacture high-quality extruded materials.

被覆銅粉の充填率は、65〜8596が好ましい。The filling rate of the coated copper powder is preferably 65 to 8,596.

905etf、越えて充填すると、充填された被覆銅粉
中に残留したガスの排出が困難となシ、押出し材の品質
が保証されない場合を生じる。一方、6096以下では
、押出し時に充填部(gb)の体積収縮が太きく、筒体
周側部(2a)の変形が一様でなぐなシ、押出し材の面
積割合が局部的に異なシ、高品質の押出し材を得ること
ができなくなる。また充填率が小さいと、ビレットの単
重が小さくなp製造コヌトの面で不利となる。
If the amount exceeds 905 etf, it will be difficult to discharge the gas remaining in the filled coated copper powder, and the quality of the extruded material may not be guaranteed. On the other hand, with 6096 or less, the volumetric contraction of the filling part (gb) is large during extrusion, the deformation of the circumferential side part (2a) of the cylinder body is not uniform, and the area ratio of the extruded material is locally different. It becomes impossible to obtain high quality extruded material. In addition, if the filling rate is small, it is disadvantageous in terms of p-manufacturing because the billet has a small unit weight.

充填率の管理手段は、荷重管理する方法が最も簡便であ
る。これに対し、投入する被覆銅粉の重量とプレススト
ロークを管理する方法は充填率の ゛精度を向上させる
ことができるが、作業及び設備が煩雑となる。第6図に
、荷重管理する場合のプレス圧力(t、hd )と充填
率■の関係を示す。本図よシ、例えば、好ましい斜上の
充填率を管理するには、充填率85%で4.5 tea
lad、65%で2−/−を管理すればよいことが判る
The simplest way to manage the filling rate is to manage the load. On the other hand, the method of controlling the weight of the coated copper powder to be introduced and the press stroke can improve the accuracy of the filling rate, but the work and equipment are complicated. FIG. 6 shows the relationship between press pressure (t, hd) and filling rate (■) in the case of load management. As shown in this figure, for example, to manage the preferred filling rate on the slope, 4.5 tea at a filling rate of 85% is required.
It can be seen that it is sufficient to manage 2-/- with lad, 65%.

被覆銅粉(3)が所定の充填率で充填され九筒体(2)
は、第5図の如く、押出しダイス(7)のテーバ面に当
接し、かつ筒体充填部(2b)に連通ずる開孔(5)が
開設さゎえ頭、(4,ヵ8筒体開。mK!接、6接等、
     [よシ接合されて押出しビレット(1)とな
る。
Nine cylinders (2) are filled with coated copper powder (3) at a predetermined filling rate.
As shown in FIG. Open. mK! Close, 6 Close, etc.
[It is joined together to form an extruded billet (1).

該ビレット(1)は、前記開孔(5)を脱ガス密閉する
ことなく加熱される。このように、ビレット(1)全外
気に開放のまま加熱すると、密閉状態で加熱した場合に
脱ガスの信頼性不足故に生じたビレットの膨れ変形を生
じることがないので、押出し機コンテナへの挿入トラ1
/I/l−皆無にすることができる。また、脱ガス密閉
していないビレットを用いても、押出し材には、品質上
問題が生じること杜ない。その理由は、ビレット内部に
残留しているガス体は、600〜1000℃のビレット
加熱によ)膨張高圧化し、ビレット頭部に開設され穴開
孔(5)よフ外部へ流出し、更に、押出し加圧初期に筒
体周側部(’2B)の圧縮変形により高圧化し、前記開
孔(5)よフ外部へ排出されるからである。
The billet (1) is heated without degassing and sealing the openings (5). In this way, if the billet (1) is heated completely open to the outside air, the billet will not bulge and deform, which would occur due to unreliable degassing when heated in a closed state, so it will not be possible to insert the billet into the extruder container. tiger 1
/I/l- can be completely eliminated. Furthermore, even if a billet that is not degassed and sealed is used, there will be no quality problems in the extruded material. The reason for this is that the gas remaining inside the billet expands to high pressure (by heating the billet to 600 to 1000°C), flows out through the hole (5) formed in the billet head, and further, This is because the pressure becomes high due to compressive deformation of the circumferential side portion ('2B) of the cylinder at the initial stage of extrusion pressurization, and is discharged to the outside through the opening (5).

ビレットの加熱温度は、押出し材の導電率及び焼鈍後の
硬さに影響を与えるので轡製造条件としては重要な要件
である。第1表は、ビレット加熱温度と、押出し材を各
温度で焼鈍し次場合の室温硬さくHv)、室温電気伝導
度(%IAO8)との関係を調べた結果である。但し、
測定部位は押出し材の芯部(分散強化型銅合金)である
。尚、この焼鈍温度を、調質温度あるいは使用時の温度
と見なすと、ビレット加熱温度を定めることができる。
The billet heating temperature is an important requirement for billet manufacturing conditions, since it affects the electrical conductivity of the extruded material and the hardness after annealing. Table 1 shows the results of investigating the relationship between billet heating temperature, room temperature hardness (Hv), and room temperature electrical conductivity (%IAO8) after annealing the extruded material at each temperature. however,
The measurement site was the core of the extruded material (dispersion-strengthened copper alloy). Note that the billet heating temperature can be determined by considering this annealing temperature as the refining temperature or the temperature during use.

第1表 第1表より、ビレット加#濡度が500℃以下であれば
焼鈍温度800℃以上の場合、硬さの低下が著しい。一
方、600〜1000℃では焼鈍温度を800℃に上げ
ても硬さ、導電率に著しい低下はない。
Table 1 From Table 1, when the billet wetness is 500°C or less and the annealing temperature is 800°C or more, the hardness decreases significantly. On the other hand, at 600 to 1000°C, there is no significant decrease in hardness or electrical conductivity even if the annealing temperature is increased to 800°C.

よって、チップの用途、使用条件により、ビレット加熱
温度は600〜1000℃の範囲で選択する。
Therefore, the billet heating temperature is selected in the range of 600 to 1000° C. depending on the application and usage conditions of the chip.

尚、分散強化型銅合金は、異材としてコスト高であるの
で、押出しにおいて単重の大きいビレットから工程数を
少なくして製造すること、即ち高押出し比で押出すこと
が要求されるので、ビレットを高温加熱することは、そ
の前提条件として必要である。
Dispersion-strengthened copper alloys are expensive as they are different materials, so they must be manufactured by reducing the number of extrusion steps from a billet with a large unit weight, that is, extruded at a high extrusion ratio. Heating it to a high temperature is necessary as a prerequisite.

斜上の如ぐ加熱されたビレット(1)は、第6図の如く
、開放端を有するビレット頭部(4)をダイX (7)
側にして静水圧押出機のコンテナ(6)中へ挿入し、第
4図の如く、高温静水圧押出しで減面加工を行う。
The heated billet (1) as shown in FIG.
It is inserted sideways into the container (6) of the hydrostatic extruder, and as shown in FIG. 4, the area is reduced by high temperature isostatic extrusion.

ビレット頭部(4)ラダイヌ(7)側にする理由は、一
つには押出し初期の加圧時に筒体周側部(2a)が変形
し、筒体(2)の充填被覆銅粉中の残留ガスを圧縮する
が、その高圧ガスの退路を確保するためであり、今一つ
社、静水圧押出しの圧力媒体(8)の侵入を防ぐ念めで
ある。
One of the reasons why the billet head (4) is placed on the Radyne (7) side is that the peripheral side (2a) of the cylinder is deformed during pressurization at the initial stage of extrusion, and the copper powder in the filling and coating of the cylinder (2) is The residual gas is compressed, but this is to ensure an escape route for the high-pressure gas and to prevent the pressure medium (8) from hydrostatic extrusion from entering.

また、減面加工に高温静水圧押出しを適用するのは、ビ
レット槓断面における被覆銅粉(3)が充填された充填
部(2b)と筒体周側部(2a)との面積割合を一定割
合に保存して、シカも高押出比で押出すことが可能であ
るからである。このことは、製造コヌトの低減、押出し
材の麓品質化の点で重要な意味を持つ。
In addition, applying high-temperature isostatic extrusion to the area reduction process is to maintain a constant area ratio between the filling part (2b) filled with the coated copper powder (3) and the cylinder circumferential side part (2a) in the cross section of the billet. This is because deer can also be extruded at a high extrusion ratio while preserving the ratio. This has important implications in terms of reducing manufacturing costs and improving the quality of extruded materials.

高温静水圧押出しに際しては、その押出し比は、20以
上とするのがよい。押出し比は、製造コスト、押出し材
の品質に影響するが、押出し比20未満では、コヌト面
で不利になると共に、その後に、後述する冷間加工を重
ねても品質の向上は望めない。
In high-temperature isostatic extrusion, the extrusion ratio is preferably 20 or more. The extrusion ratio affects the manufacturing cost and the quality of the extruded material, but if the extrusion ratio is less than 20, it will be disadvantageous in terms of texture, and no improvement in quality can be expected even if the cold working described later is repeated.

尚、押出し材を複合線材の素材として使用する場合、爾
後の抽伸減面率が非常に大きくなることから、線径にも
よるが、一般には押出し比は80〜100と高い目に設
定される。
In addition, when extruded material is used as a raw material for composite wire, the drawing area reduction rate after that is very large, so the extrusion ratio is generally set as high as 80 to 100, although it depends on the wire diameter. .

ところで、特開昭52−65115号公報に、ビレット
外径り50、肉厚1絹の銅ケースに分散強化型銅合金を
配したビレットヲ静水圧押出しして得られた押出し材は
、その外皮に破損のないことが開示されており、静水圧
押出し法は、複合材の押出しに適している旨示唆されて
いるが、押出し比が12.5 、を#a3 LaEヵt
3000b/ff1f fi K v ッ) fi 7
Jl *    ’なしで押出していると判定され、ま
九押出し材の芯部と押出し材外皮面積比の安定性は開示
されていない。
By the way, in JP-A-52-65115, an extruded material obtained by isostatically extruding a billet in which a dispersion-strengthened copper alloy is arranged in a silk copper case with a billet outer diameter of 50 and a wall thickness of 1 is described. It has been disclosed that there is no breakage, and it has been suggested that the isostatic extrusion method is suitable for extruding composite materials.
3000b/ff1f fi K v っ) fi 7
It was determined that extrusion was carried out without Jl*', and the stability of the area ratio between the core of the extruded material and the outer skin of the extruded material was not disclosed.

静水圧押出しによって得られた押出し材は、更に冷間加
工が施工され、目的とする複合材となるゆ冷間加工を施
す目的は、一つには硬さの低い熱間静水圧押出し材を加
工硬化させることにあり、他の一つには寸法形状を整え
ることにある。
The extruded material obtained by isostatic extrusion is further subjected to cold working to produce the desired composite material.One of the purposes of cold working is to make the hot isostatically extruded material with low hardness. One is to work harden the material, and the other is to adjust the size and shape.

熱間静水圧押出しKよって得られた押出し材(9)の芯
部■の分散強化型銅合金の硬度は100Hy以下であシ
、ダイヌ抽伸で10%以上の減面率を加えると、その硬
度は115〜150H1’になる。そして、減面率を8
0%まで与えても、品質上の特性に顕著な変化はない。
The hardness of the dispersion-strengthened copper alloy of the core part (■) of the extruded material (9) obtained by hot isostatic extrusion K is not more than 100 Hy, and when an area reduction rate of 10% or more is added by Dyne drawing, the hardness becomes 115-150H1'. Then, the area reduction rate is 8
Even when applied up to 0%, there is no significant change in quality characteristics.

しかし、85%を越えると、第7図に示す如く、高温加
熱後の硬度が低下する。従って、高温加熱後も硬度低下
を防止したいとき、その冷間加工率は、ダイス抽伸減面
率で10〜80%が好ましい。
However, if it exceeds 85%, the hardness after high temperature heating decreases as shown in FIG. Therefore, when it is desired to prevent a decrease in hardness even after high-temperature heating, the cold working rate is preferably 10 to 80% in terms of die drawing area reduction rate.

前記複合材を電極チップの素材に利用する場合、冷間加
工としては、プレス成形又は抽伸成形がある。プレス成
形は、押出し材を単尺に切断した後、塑性加工によフ成
型・加工硬化を行い、精整して、電極チップa力を得る
ものであシ、一方抽伸成形は、押出し材をダイヌ抽伸し
電極チップ■の外径寸法に成形し加工硬化した後、単尺
に切断し、切削加工又はプレス成形及び精整する方法で
ある。一方、複合材を複合線材として利用する場合は、
電極チップの用途と異な多硬さ要求のない場合が多(,
8096以上の冷間加工を加えて抽伸される。
When the composite material is used as a material for an electrode chip, cold working may include press molding or drawing. In press forming, the extruded material is cut into single lengths, then molded and work hardened by plastic processing, and refined to obtain the electrode tip a force.On the other hand, in drawing forming, the extruded material is This is a method in which the electrode tip is formed into the outer diameter of the Dainu drawing electrode tip (2), work-hardened, then cut into single lengths, and then subjected to cutting or press molding and refinement. On the other hand, when using composite materials as composite wires,
In many cases, there are no requirements for hardness, which is different from the use of electrode tips (,
It is drawn by adding cold working of 8096 or more.

尚、複合線材の製造方法の場合、複合線材中の芯部(分
散強化型銅合金)の面積割合は、60〜95%とするの
がよい。95%を越えれば、外皮の銅の肉厚が外径の1
.596程度となり、これを外径143闘のビレットに
対応させれば、筒体(2)の肉厚が1□5認未満となり
、工業的に取少扱う上で問題となる。また、分散強化型
銅合金のアルミナ含有量が多いと導電性が悪く、これを
向上させるには外皮を厚くしなければならないが、アル
ミナ含有量の最大値はL2511iであル、この場合の
分散強化型銅合金の導電率は約73%エムC8(硬さ1
50ayと良好)であるので、導電率t”901J5以
上確保するには、外皮の純銅の面積割合を40%以上に
する必要がある。
In addition, in the case of the method for manufacturing a composite wire, the area ratio of the core (dispersion-strengthened copper alloy) in the composite wire is preferably 60 to 95%. If it exceeds 95%, the thickness of the copper on the outer skin is 1 of the outer diameter.
.. 596, and if this corresponds to a billet with an outer diameter of 143 mm, the wall thickness of the cylinder (2) will be less than 1□5 mm, which poses a problem for industrial handling. In addition, if the alumina content of the dispersion strengthened copper alloy is high, the conductivity will be poor, and to improve this, the outer skin must be made thicker, but the maximum value of the alumina content is L2511i, and in this case, the dispersion The electrical conductivity of the reinforced copper alloy is approximately 73% M C8 (hardness 1
50ay, which is good), so in order to ensure a conductivity of t"901J5 or more, the area ratio of pure copper in the outer skin needs to be 40% or more.

ところで、電極チップの外皮に析出強化型銅合金を用い
るものでは、析出工程としての熱処理が必須であるが、
この場合、寸法を整える工程と該熱処理工程とは別工程
にならざるをえないが、本発明の場合、寸法形状の成形
と硬化工程とを兼用して同一工程で行えるので、製造工
程のシンプル化ができ、コスト面で有利となる。
By the way, when a precipitation-strengthened copper alloy is used for the outer skin of an electrode chip, heat treatment as a precipitation process is essential.
In this case, the process of adjusting the dimensions and the heat treatment process must be separate processes, but in the case of the present invention, the molding of the dimensions and shape and the curing process can be performed in the same process, simplifying the manufacturing process. It is advantageous in terms of cost.

次に、より具体的な実施例を掲げて説明する。Next, more specific examples will be described.

1、 電極チップの製造実施例 (1)製造方法 ■ 外径146fi、内径85.7siの純銅製筒体に
、アルミナ被覆銅粉(平均粒径5μm1ア〃ミナ含有率
0.79%)を充填率75%で充填し、第2図の如く、
押出しビレットを作成した。
1. Electrode chip manufacturing example (1) Manufacturing method ■ A pure copper cylinder with an outer diameter of 146fi and an inner diameter of 85.7si is filled with alumina-coated copper powder (average particle size of 5 μm, alumina content of 0.79%). Filled at a rate of 75%, as shown in Figure 2.
An extruded billet was created.

■ 該ビレットを800℃に加熱し、第4図の如く、押
出し比50で押出し、外径2ON1芯部径11.5tx
の押出し材を得た。該押出し材の芯部と外皮との面積割
合は、押出し方向で安定しているのが確かめられた。
■ Heat the billet to 800°C and extrude it at an extrusion ratio of 50 as shown in Figure 4 to obtain an outer diameter of 2ON and a core diameter of 11.5tx.
An extruded material was obtained. It was confirmed that the area ratio between the core and the outer skin of the extruded material was stable in the extrusion direction.

■ 該押出し材をダイス抽伸でtt16ym(冷間減面
率3695)にした後、切削加工にて、第5図に示す電
極チップ(DT=*15、DM=ダ9、nN=05、L
=23m)e得た。
■ After drawing the extruded material with a die to tt16ym (cold area reduction rate 3695), cutting it into the electrode tip shown in Fig. 5 (DT=*15, DM=Da9, nN=05, L
=23m)e obtained.

(21寿命比較 ■ 上記の本発明電極チップ(実施例)と、同形状のO
u −Or材製の電極チップ(比較例1)及び内部酸化
法によシ得られたOu −AI!、 0.分散強化型銅
合金粉末を用いたt極チップ(比較例2)との寿命比較
全行つ念。
(21 Life Comparison■ The electrode tip of the present invention (example) described above and the same-shaped O
Electrode tip made of u-Or material (Comparative Example 1) and Ou-AI obtained by internal oxidation method! , 0. A full lifespan comparison was made with a t-pole tip (Comparative Example 2) using dispersion-strengthened copper alloy powder.

■ テスト方法 亜鉛メッキ鋼板(8EO00,8t 、亜鉛付着fi 
40/40 f/lr/)に、下記の条件で7ポツト溶
接試験を行い、5心−ナゲツト限界電流(t:溶接板厚
さ)が12,5KAとなるときを寿命とした。
■ Test method Galvanized steel plate (8EO00, 8t, zinc-coated fi
40/40 f/lr/), a 7-pot welding test was conducted under the following conditions, and the life was defined as the time when the 5-core nugget limit current (t: welded plate thickness) reached 12.5 KA.

記 電   流       12600  A     
           ’通電時間     12サイ
クル 加圧力   200 Kg 打点速度    1 回/秒 ■結 果 第8図は、テスト結果であフ、5Fナゲツト限界電流(
11)と連続打点数の関係を示す。図中、○は本発明の
実施例、△は比較例1、・は比較例2を示す。
Recording current 12600 A
'Electrification time 12 cycles Pressure force 200 Kg Dot speed 1 time/sec ■Results Figure 8 shows the test results, 5F nugget limit current (
11) and the relationship between the number of consecutive RBIs. In the figure, ◯ indicates an example of the present invention, △ indicates Comparative Example 1, and . indicates Comparative Example 2.

第8図のsJナゲツト限界電流値=12.5KAの時点
での各電極チップの打点回数(寿命)は、下肥の通りで
ある。
The number of dots (lifetime) of each electrode tip at the time when the sJ nugget limit current value=12.5KA in FIG. 8 is as shown in the table below.

記 実施例   5000回 比較例I     H2O回 比較例2    2800回 (3)芯部径についての若干の考察 電極チップの初期先端径メロ鱈で連続打点し、寿命に達
した時の先端径はIt 9 tmであったことから、芯
部径DMはy4〜X 9 m+が望ましい。y9より大
径としても、打点寿命あ増加はなく、経済面で不利とな
る。一方、y4工〕小径では、外周部の銅材の強度が低
いことから、電極チップ先端に発生し次加圧力による面
圧を負担できず、芯部の分散強化型合金に過剰の負荷が
作用し、先端の変形が著しく低寿命となる。
Examples 5,000 times Comparative Example I H2O times Comparative Example 2 2,800 times (3) Some considerations regarding the core diameter Initial tip diameter of the electrode tip The tip diameter when the life is reached after continuous dotting with Sero cod is It 9 tm, the core diameter DM is preferably y4 to X 9 m+. Even if the diameter is larger than y9, there is no increase in the life of the dot, which is economically disadvantageous. On the other hand, in the case of [Y4 work] small diameter, the strength of the copper material on the outer periphery is low, so it cannot bear the surface pressure caused by the subsequent pressurizing force generated at the tip of the electrode tip, and excessive load acts on the dispersion-strengthened alloy in the core. However, the deformation of the tip will significantly shorten the life.

2、複合線材の製造実施例 (1)  製造方法 ■ 外径145闘、内径128絹の純銅性筒体にアルミ
ナ被覆銅粉(アルミナ含有率、実施例人: 0.79弗
、実施例B : 0.87%)を充填率75%(実施例
ム、B共通)で充填し押出しビレットを作成した。
2. Manufacturing Example of Composite Wire Rod (1) Manufacturing Method■ Alumina-coated copper powder (alumina content, Example: 0.79 F, Example B: 0.87%) at a filling rate of 75% (common to Examples M and B) to prepare an extruded billet.

■ 該ビVツ) ? 800℃に加熱し、押出し比91
で押出し、外径15鱈の押出し材を得た。
■ The corresponding bit Vtsu)? Heated to 800℃, extrusion ratio 91
An extruded material having an outer diameter of 15 mm was obtained.

■ 該押出し材をダイス抽伸にて夏0.77tmに減面
加工した。この場合、実施例A、B共分散強化型銅合金
の面積比率は75.0%であった。
(2) The extruded material was subjected to die drawing to reduce the area to 0.77 tm. In this case, the area ratio of the codispersion strengthened copper alloys of Examples A and B was 75.0%.

(ffi)  性能テスト ■ 導電率及び引張強さと温度との関係分散強化型銅合
金は、冷間加工によp加工硬化し、任意の温度で焼鈍す
れば軟化するが、この場合、引張強さと導電率は焼鈍温
度によシ一定の値となる。第9図及び第10図は、木冥
施例に係る複合線材の焼鈍温度(焼鈍時間:30分)と
常温忙おける引張強さ、導電率との関係を示す図である
。本発明突施例ム、Bは、800℃での焼鈍で、引張強
さ30匍−以上、導電率95%以上と非常に良好である
。このことは、複合線材をダイオード等の電子部品のリ
ード線として用いた場合、700℃程度の拡散接合工程
があるので、爾後のリード線の性能を硲保する上で重要
な意味を有する。また、第9.10図よ)焼鈍温度の調
整によシ、所要の特性を複合材に付与可能なことが判る
(ffi) Performance test■ Relationship between electrical conductivity and tensile strength and temperature Dispersion-strengthened copper alloys are p-work hardened by cold working and softened by annealing at an arbitrary temperature. The electrical conductivity has a constant value depending on the annealing temperature. FIGS. 9 and 10 are diagrams showing the relationship between the annealing temperature (annealing time: 30 minutes) and the tensile strength and conductivity at room temperature of the composite wire according to the wood-based example. Exemplary embodiment B of the present invention was annealed at 800° C. and had very good tensile strength of 30 cm or more and electrical conductivity of 95% or more. This has an important meaning in ensuring the subsequent performance of the lead wire, since when the composite wire is used as a lead wire for an electronic component such as a diode, there is a diffusion bonding process at about 700°C. It can also be seen that the desired properties can be imparted to the composite material by adjusting the annealing temperature (see Figure 9.10).

第11図は、第9図と第10図より、常温における引張
強さと導電率との関係を示した図である。同図中、比較
のためCu (無酸素銅)、C!u −Ag合金(ムg
 : 0.027%)、(3u−Zn 合金(Zn :
 0.1〜0.296 )、Cu −Cd合金(Cd 
: 0.7〜1.2第)のデータも示した。
FIG. 11 is a diagram showing the relationship between tensile strength and electrical conductivity at room temperature based on FIGS. 9 and 10. In the same figure, for comparison, Cu (oxygen-free copper), C! u-Ag alloy (mug
: 0.027%), (3u-Zn alloy (Zn:
0.1~0.296), Cu-Cd alloy (Cd
: 0.7 to 1.2) data are also shown.

同mxtt、Ou −Zr及びOu −Cdは強度が良
好なるも、導電率が低い。Cu及びOu−〜は強度、導
電率が本突流例を上回っているが、第12図に示す焼鈍
温度と硬さとの関係から、高導電性のCu 、 Cu 
−Agは、軟化温度が低く、Cuは200℃、Ou−勾
は350℃で急速な強度劣化を生じるのが判る。本発明
突施例は、強度及び導電率とも良好であル、シかも既述
の通り、高温特性も良好である。
Although mxtt, Ou-Zr and Ou-Cd have good strength, they have low electrical conductivity. Although Cu and Ou-~ have higher strength and electrical conductivity than this rush example, from the relationship between annealing temperature and hardness shown in Fig. 12, highly conductive Cu, Cu
It can be seen that -Ag has a low softening temperature, and rapid strength deterioration occurs at 200°C for Cu and 350°C for Ou. The special embodiments of the present invention have good strength and conductivity, and as already mentioned, they also have good high-temperature properties.

■ 700℃での曲げテスト 本発明突施例B及び同じ線径のCu (タフピッチC!
u ) @材と金、片持ち状に固着し、先端に15Fの
11ルを取シ付け、700℃で30分間保持した。その
結果を第13図に示す、、′尚、同図中りは、Ii夕を
取り付ける前の固着端から先端までの長さく調)を示す
■ Bending test at 700°C Example B of the present invention and Cu of the same wire diameter (Tough pitch C!
u) The @ material and the gold were fixed in a cantilevered manner, a 15F 11L was attached to the tip, and the material was held at 700°C for 30 minutes. The results are shown in Fig. 13. The middle part of the figure shows the length from the fixed end to the tip before attaching the Ii plate.

本夾施例Bは、700℃の温度覆工を受けると導電率が
96%IAO8程度と非常に良好になシ、しかも第13
図より、曲げ強度はOuに対し大きく改善されているの
が判る。
In Example B, when subjected to temperature lining at 700°C, the conductivity was very good at about 96% IAO8, and the 13th
From the figure, it can be seen that the bending strength is greatly improved compared to Ou.

〈発明の効果〉 以上の通り、本発明方法によれば、複合材の芯部を形成
する分散強化型銅合金材質を高品質とすることができ、
更に、複合材の製造工程も単純化することができて、し
かも品質を低下させることがない。このように本発明方
法は、点溶接用電極チップや耐熱高強度高導電性線材な
どに好適に利用される複合材の高品質かつ簡便容易なる
製造方法として極めて優れ念ものである。
<Effects of the Invention> As described above, according to the method of the present invention, the dispersion-strengthened copper alloy material forming the core of the composite material can be made of high quality,
Furthermore, the manufacturing process of the composite material can be simplified without degrading quality. As described above, the method of the present invention is extremely excellent as a high-quality, simple, and easy manufacturing method for composite materials that are suitably used for spot welding electrode tips, heat-resistant, high-strength, and high-conductivity wires, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る電極チップの製造工程の概略を
示す工程図、第2図は、本発明に使用する押出しビレッ
トの一実施例を示す断面図、第5図は、ビレットを押出
し機コンテナに挿入した状態を示す断面図、第4図は、
ビレット押出し中の状aを示す断rjjJ図、第5図は
、電極チップの一実施例を示す断面図、第6図は、プレ
ス圧力と充填率の関係?示す図、第7図は、抽伸減面率
と硬さとの関係を示す図、第8図は、本発明に係る電極
チップと他の方法による電極チップとの寿命比較を示す
図、第9図は、本発明に係る複合線材の焼鈍温度と常温
における引張強さとの関係を示す図、第10図は、複合
線材の焼鈍温度と常温における導電率との関係を示す図
、第11図は、導電率と引張強さとの関係を示す図、第
12図は、焼鈍温度と硬さとの関係を示す図、第15図
は、線材の高温曲げ試験結果を示す図である。 (1)・・・ビレット、C2)・・・筒体、(3)・・
・被覆銅粉、(4)・・・頭部、(5)・・・開孔、(
7)・・・ダイス、(9)・・・押出し材、σQ・・・
外皮、■・・・芯部、■・・・電極チップ。 栴97        第70自 第77図 導電J4(zIAc幻 第72図 o   2υ  1m   々p   、/w   1
m   7mλ儒ら4Hシバtで) 第13図
Fig. 1 is a process diagram showing an outline of the manufacturing process of an electrode chip according to the present invention, Fig. 2 is a sectional view showing an example of an extruded billet used in the present invention, and Fig. 5 is a process diagram showing an example of an extruded billet used in the present invention. Figure 4 is a sectional view showing the state inserted into the machine container.
Figure 5 is a cross-sectional view showing an example of the electrode chip, and Figure 6 is the relationship between press pressure and filling rate. FIG. 7 is a diagram showing the relationship between the drawing area reduction rate and hardness, FIG. 8 is a diagram showing a lifespan comparison between the electrode tip according to the present invention and an electrode tip made by another method, and FIG. 10 is a diagram showing the relationship between the annealing temperature and the tensile strength at room temperature of the composite wire according to the present invention, FIG. 10 is a diagram showing the relationship between the annealing temperature of the composite wire and the electrical conductivity at room temperature, and FIG. FIG. 12 is a diagram showing the relationship between electrical conductivity and tensile strength, FIG. 12 is a diagram showing the relationship between annealing temperature and hardness, and FIG. 15 is a diagram showing the results of a high-temperature bending test of wire rods. (1)...Billet, C2)...Cylinder, (3)...
・Coated copper powder, (4)...Head, (5)...Open hole, (
7)...Dice, (9)...Extruded material, σQ...
Outer skin, ■... core, ■... electrode tip. Shi97 70th self figure 77 conductivity J4 (zIAc phantom figure 72 o 2υ 1m tep , /w 1
m 7 m λ 4 H Shiba t) Fig. 13

Claims (1)

【特許請求の範囲】 1、銅粉の表面にアルミナを付着させた被覆銅粉を厚肉
の銅製筒体の中に投入し押圧充填して押出しビレツトを
作成し、該ビレツトを加熱した後、高温静水圧押出しに
よつて減面加工して、芯部の分散強化型銅合金と外皮の
銅材とを一体的に接合した押出し材を得て、該押出し材
に冷間加工を施して複合材とすることを特徴とする耐熱
高強度高導電性複合材の製造方法。 2、被覆銅粉のアルミナ含有率を重量%で0.6〜1.
2%とし、被覆銅粉の充填率を65〜85%とし、押出
しビレツトの加熱温度を600〜1000℃とし、押出
し比を20以上として高温静水圧押出しを行なう特許請
求の範囲第1項記載の耐熱高強度高導電性複合材の製造
方法。 3、抽伸減面率を10〜80%とする冷間加工を施す特
許請求の範囲第1項記載の耐熱高強度高導電性複合材の
製造方法。 4、被覆銅粉を厚肉の銅製筒体の中に投入し押圧充填し
た後、該筒体の開口に連通する開孔が形成されたビレッ
ト頭部を筒体開口端に接合して押出しビレツトを作成し
、該押出しビレツトの開孔端をダイス側にして高温静水
圧押出しを行なう特許請求の範囲第1項記載の耐熱高強
度高導電性複合材の製造方法。 5、複合材が点溶接用電極チップ素材である特許請求の
範囲第1項記載の耐熱高強度高導電性複合材の製造方法
。 6、複合材が耐熱高強度高導電性線材である特許請求の
範囲第1項記載の耐熱高強度高導電性複合材の製造方法
[Claims] 1. Coated copper powder with alumina adhered to the surface of the copper powder is introduced into a thick copper cylinder and press-filled to create an extrusion billet, and after heating the billet, The area is reduced by high-temperature isostatic extrusion to obtain an extruded material in which the core dispersion-strengthened copper alloy and the outer copper material are integrally joined, and the extruded material is cold-worked to create a composite material. A method for producing a heat-resistant, high-strength, highly conductive composite material, characterized in that it is made into a material. 2. The alumina content of the coated copper powder is 0.6 to 1% by weight.
2%, the filling rate of the coated copper powder is 65 to 85%, the heating temperature of the extrusion billet is 600 to 1000°C, and the extrusion ratio is 20 or more. A method for manufacturing a heat-resistant, high-strength, highly conductive composite material. 3. The method for producing a heat-resistant, high-strength, highly conductive composite material according to claim 1, which comprises performing cold working with a drawing area reduction rate of 10 to 80%. 4. After putting the coated copper powder into a thick-walled copper cylindrical body and press-filling it, the billet head, which has an opening communicating with the opening of the cylindrical body, is joined to the open end of the cylindrical body and extruded into a billet. 2. The method for producing a heat-resistant, high-strength, highly conductive composite material according to claim 1, wherein the extruded billet is subjected to high-temperature isostatic extrusion with the open end of the billet facing the die side. 5. The method for producing a heat-resistant, high-strength, highly conductive composite material according to claim 1, wherein the composite material is a material for spot welding electrode tips. 6. The method for producing a heat-resistant, high-strength, highly conductive composite material according to claim 1, wherein the composite material is a heat-resistant, high-strength, and highly conductive wire material.
JP14381084A 1984-07-10 1984-07-10 Manufacture of complex material heat resistant, high strength, and high conductivity Pending JPS6123516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14381084A JPS6123516A (en) 1984-07-10 1984-07-10 Manufacture of complex material heat resistant, high strength, and high conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14381084A JPS6123516A (en) 1984-07-10 1984-07-10 Manufacture of complex material heat resistant, high strength, and high conductivity

Publications (1)

Publication Number Publication Date
JPS6123516A true JPS6123516A (en) 1986-02-01

Family

ID=15347498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14381084A Pending JPS6123516A (en) 1984-07-10 1984-07-10 Manufacture of complex material heat resistant, high strength, and high conductivity

Country Status (1)

Country Link
JP (1) JPS6123516A (en)

Similar Documents

Publication Publication Date Title
CN105132736B (en) Disperse carbon/carbon-copper composite material and preparation method thereof
US7732059B2 (en) Heat exchanger tubing by continuous extrusion
US4315777A (en) Metal mass adapted for internal oxidation to generate dispersion strengthening
CN1167531C (en) Soldering iron tip and method of making the same
US20100021334A1 (en) Method of manufacturing composite copper material
JPS58213840A (en) Metal composition suitable for producing semi-solid semi-liquid state and manufacture
EP0535593B1 (en) Method of manufacturing sintered aluminum alloy parts
CN101447259B (en) Manufacture methods of contact wire and rod blank
CN1651586A (en) Abrasion resistant, heat resistant high silicone aluminium alloy and its shaping technology
EP2929061B1 (en) Heat resistant aluminium base alloy and fabrication method
US20200362441A1 (en) Aluminum alloy wire and method for producing aluminum alloy wire
CN110317970A (en) A kind of Cu-Cr-Zr alloy, preparation method and applications
CN103154289B (en) High-strength magnesium alloy wire rod and manufacture method, high-strength magnesium alloy part and high-strength magnesium alloy spring
JPH11286702A (en) Manufacture of alumina dispersion-strengthened copper powder
JPH07178568A (en) Electrode for resistance welding and its manufacture
JP2018012869A (en) Conductive wire of aluminum alloy and manufacturing method of conductive member of aluminum alloy
CN1339613A (en) Technological process for producing chromium-zirconium-copper rod material containing oxide dispersed and reinforced copper
KR20140143219A (en) Magnesium alloy member and method for manufacturing same
JPS6123516A (en) Manufacture of complex material heat resistant, high strength, and high conductivity
JPS61163223A (en) Manufacture of copper-chromium alloy product
US4112197A (en) Manufacture of improved electrical contact materials
JP3364073B2 (en) Manufacturing method of press-formed product
JPH11286732A (en) Manufacture of alumina-dispersed strengthened copper
JPH04339575A (en) Manufacture of resistance welding electrode
JP2837630B2 (en) Method and apparatus for manufacturing press-formed product