JPS61234406A - Running system for unattended truck - Google Patents

Running system for unattended truck

Info

Publication number
JPS61234406A
JPS61234406A JP60075347A JP7534785A JPS61234406A JP S61234406 A JPS61234406 A JP S61234406A JP 60075347 A JP60075347 A JP 60075347A JP 7534785 A JP7534785 A JP 7534785A JP S61234406 A JPS61234406 A JP S61234406A
Authority
JP
Japan
Prior art keywords
unmanned vehicle
signal
transition
turning
guide line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60075347A
Other languages
Japanese (ja)
Other versions
JPH0610771B2 (en
Inventor
Tatsuya Watabe
達也 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP60075347A priority Critical patent/JPH0610771B2/en
Publication of JPS61234406A publication Critical patent/JPS61234406A/en
Publication of JPH0610771B2 publication Critical patent/JPH0610771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To position an unattended truck at the center of a guide line at the end of the swing motion by detecting an end signal in the process of the transition to the swing motion from the AND of two kinds of state signals. CONSTITUTION:Detection signals 12a, 14a are outputted from pickup devices 12, 14 provided respectively at both front sides of the unattended truck. Then a derailment detection circuit 38 outputs a signal representing the derailing restoration state based on an add signal between both the signals 12a and 14a. Moreover, a zero cross detection circuit 40 outputs a signal that a deviation signal between both the signals 12a and 14a is nearly zero, that is, a zero cross signal. When a swing motion transition end detecting circuit 42 receives two kinds of the state signals outputted respectively from the circuits 38 and 40, the circuit 42 generates a detection signal for the end of transition of swing motion to inform the end of transition of the swing motion to a microcomputer 18. Thus, the unattended truck is positioned at the center of the guide line at the end of the swing motion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無人車の走行システムに関し、特に誘導線に沿
って誘導走行する無人車を誘導線の交叉点で一方の線か
ら他方の線へ安定的に自動旋回させることが可能な無人
車の走行シヌテムに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a driving system for an unmanned vehicle, and in particular, the present invention relates to a driving system for an unmanned vehicle, and in particular, the present invention relates to a driving system for an unmanned vehicle. This invention relates to a driving system for an unmanned vehicle that can stably turn automatically.

〔従来技術〕[Prior art]

走行路面に沿って敷設した誘導線に微小低周波電流を供
給し、この誘導線を流れる低周波電流を無人車の車体に
取付けた左右1対のピックアップ装置で検知し、両ピッ
クアップ装置の検知結果の偏差信号を増幅して無人車の
操舵系のヌテアリングモータを駆動し、誘導線からのず
れを修正することによシ無人車を誘導線に沿って安定走
行させる無人車の走行システムは公知である。
A minute low-frequency current is supplied to a guide wire laid along the road surface, and the low-frequency current flowing through the guide wire is detected by a pair of left and right pickup devices attached to the body of an unmanned vehicle.The detection results of both pickup devices are A driving system for an unmanned vehicle that amplifies the deviation signal to drive the steering motor of the steering system of the unmanned vehicle and corrects the deviation from the guiding line so that the unmanned vehicle can stably travel along the guiding line is well known. It is.

また、このような無人車の走行システムにおいて、誘導
線の交叉点において、一方の線から他方の線へ移行する
場合には従来より、上記一方の誘導線に沿う交叉点近傍
で適宜の旋回指令信号を無八本が受信し、このとき予め
無人車に設けられた関数発生器等のプログラム旋回作動
手段によって発生する旋回指令によシステアリングモー
タを一定の旋回軌跡に沿うように駆動して無人車を他方
の線に旋回移行させ、他方の線に沿う所定の位置から発
生する一定信号を受信したとき旋回移行を終了させる方
式が採られている。例えば、特開昭50−20477号
に開示された自動旋回方式では走行路面上に旋回起動点
と旋回終了点とを示す近接体を設け、かつ無人車側には
誘導線を検知する1対のピックアップ装置とは別の上記
近接体センサを具備させることにより、グロ少うム旋画
作動ノ起動と終了とを検知するようにしている。
In addition, in such an unmanned vehicle driving system, when transitioning from one line to another at an intersection of guide lines, conventionally, an appropriate turning command is issued near the intersection along one of the guide lines. The signal is received by Muhahon, and at this time, the steering motor is driven along a certain turning trajectory according to a turning command generated by a program turning operation means such as a function generator installed in advance in the unmanned vehicle. A method is adopted in which the vehicle is made to turn to the other line, and the turning transfer is completed when a certain signal generated from a predetermined position along the other line is received. For example, in the automatic turning system disclosed in Japanese Patent Application Laid-Open No. 50-20477, a proximate object is provided on the road surface to indicate the turning start point and turning end point, and a pair of guiding lines are installed on the unmanned vehicle side. By providing the above-described proximity sensor separate from the pickup device, the start and end of the gromming rotation operation can be detected.

〔解決すべき問題点〕[Problems to be solved]

然しなから、上述した従来の無人車の走行システムによ
る交叉点での自動旋回方式では旋回起動から旋回終了の
過程で特に旋回終了点の検出は、走行路面上の1つの近
接体を、旋回作動する無人車側に設けられた1つのセン
サが接近して検知すに各交叉点近傍の走行路面条件や無
人車の走行駆動系や操舵系等の機械系の精度変化に応じ
て安定した検知が困難であシ、また旋回終了時に誘導線
の中央位置に正確に無人車が位置決めできない不具合が
ある。
However, in the automatic turning method at the intersection point using the conventional unmanned vehicle driving system described above, it is difficult to detect the turning end point in the process from the start of the turn to the end of the turn. When a single sensor installed on the unmanned vehicle approaches the vehicle and detects it, stable detection is possible depending on the driving road surface conditions near each intersection and changes in the accuracy of the unmanned vehicle's driving system, steering system, and other mechanical systems. This is difficult, and there is also the problem that the unmanned vehicle cannot be accurately positioned at the center of the guide line at the end of a turn.

依って、本発明の目的は走行路面上における誘導線の交
叉点において一方の線から他方の線へ旋回移行するとき
に単一の信号により旋回終了を検知することによる不安
定を解消し、円滑Kがっ誘導線の中央に無人車が位置決
めされるように改善した無人車の走行システムを提供せ
んとするものである。
Therefore, an object of the present invention is to eliminate the instability caused by detecting the end of a turn using a single signal when transitioning from one line to another at the intersection of guide lines on the running road surface, and to smoothly It is an object of the present invention to provide an improved driving system for an unmanned vehicle so that the unmanned vehicle is positioned in the center of a K-shaped guide line.

〔解決手段〕[Solution]

上述の発明目的に鑑みて本発明によれば、走行路面に敷
設した誘導線を左右1対にして設けたビ、クアップ装置
が感知することによって無人車を誘導走行させる無人車
の走行制御システムにおいて、交叉した一方の誘導線か
ら他方の誘導線へ無人車が自動旋回移行するときに前7
記1対のピックアップ装置の出力偏差が略零値に収斂し
たことから前記他方の誘導線に前記無人車が移行整列し
たことを検知し得る第1の検知回路と、前記1対のピッ
クアップ装置の各出力絶対値の加算値から前記無人車の
脱線復帰状態を検知し得る第2の検知回路と、前記第1
、第2の検知回路から得る移行整列検知信号と脱線復帰
検知信号との論理積から前記無人車の自動旋回移行を終
了させる終了信号、  を発する旋回終了検知回路とを
無人車に具備させたことを特命とする無人車の走行制御
システムが提供され、第1、第2の検知回路から得られ
る2状態の信号の論理積に従って旋回終了を決定するの
で円滑かつ精度の良好な旋回移行が交叉点で達成される
のである。
In view of the above-mentioned object of the invention, the present invention provides a driving control system for an unmanned vehicle in which the unmanned vehicle is guided to travel by sensing guide lines laid on the driving road surface by a pair of left and right guide wires. , when the unmanned vehicle automatically turns from one crossed guide line to the other guide line, the front 7
a first detection circuit capable of detecting that the unmanned vehicle has moved to the other guide line since the output deviation of the pair of pickup devices has converged to a substantially zero value; a second detection circuit capable of detecting a derailment recovery state of the unmanned vehicle from an added value of each output absolute value;
The unmanned vehicle is equipped with a turning completion detection circuit that issues a termination signal for terminating the automatic turning transition of the unmanned vehicle from the logical product of the transition alignment detection signal obtained from the second detection circuit and the derailment return detection signal. A driving control system for an unmanned vehicle is provided with a special mission of This is achieved by

以下、本発明を添付図面に示す実施例に基いて詳細に説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第1図は本発明による無人車の走行システムを形成する
諸手段の構成における1実施例のプロッh箇−(h 譬
り硼I訃糧4曾伯1r士、1訃1 kre A書^土行
軌跡を略伝した平面図である。
FIG. 1 shows a plot of one embodiment of the configuration of various means forming the driving system of an unmanned vehicle according to the present invention. FIG. 2 is a plan view schematically illustrating a row locus.

先ず、第2図を参照すると、走行路面には誘導線a1誘
導線す等が敷設されており、無人車1゜はこれらの誘導
線a又はbを流れる周波数電流を誘導線の両側に位置す
るように設けられた左右1対のピックアップ装置12.
14によって検知する。また、無人車10には誘導線a
又はbに沿う要所に配置された運行指示ポイン)Mにお
いて運行指示用マークプレートを検出するグレート検出
センナ16を有し、このプレート検出センサ】6からの
マークプレートパターンの読取った結果によって各無人
車】0に搭載されたマイクロコンピュータ18が、加速
、減速、停止、旋回等の運行指令を発生し、無人車JO
の駆動機構を主に制御する。他方、無人車10の操舵機
構も上述したマイクロコンピュータ18の運行指示信号
によって後述する交叉点における旋回移行時に制御信号
を  。
First, referring to Fig. 2, there are guide wires a1 and the like laid on the road surface, and the unmanned vehicle 1 is able to transmit the frequency current flowing through these guide wires a and b to the guide wires located on both sides of the guide wires. A pair of left and right pickup devices 12.
Detected by 14. In addition, the unmanned vehicle 10 has a guide line a.
Or, it has a grate detection sensor 16 that detects the mark plate for operation instruction at the operation instruction point (M) placed at an important point along the operation instruction point (b), and each unmanned vehicle is detected by the result of reading the mark plate pattern from this plate detection sensor. The microcomputer 18 installed in the unmanned vehicle JO generates operation commands such as acceleration, deceleration, stop, and turning.
Mainly controls the drive mechanism. On the other hand, the steering mechanism of the unmanned vehicle 10 also outputs a control signal at the time of turning transition at an intersection point, which will be described later, in response to the operation instruction signal from the microcomputer 18 mentioned above.

受けるが、常時の走行時には、上述した左右1対のピッ
クアップ装置12.14の検知信号に基いてステアリン
グモー41 (IiZyw41 N atx  4+’
:;++され、無人車10の走行方向における誘導線か
らの横変位又はずれが修正され、正しい走行方向に誘導
する構成が設けられている。なお、第2図における20
mは無人車10の操舵輪、20b。
However, during normal driving, the steering motor 41 (IiZyw41 N atx 4+'
:;++ is provided, and a configuration is provided in which lateral displacement or deviation from the guide line in the running direction of the unmanned vehicle 10 is corrected, and the unmanned vehicle 10 is guided in the correct running direction. In addition, 20 in Figure 2
m is a steering wheel of the unmanned vehicle 10, and 20b.

20bは駆動輪を示したものである。20b indicates a driving wheel.

上述した構成により、誘導線aと誘導線すとの交叉点に
おいては、誘導線a上を進行する無人車10が交叉点の
近傍に達すると、誘導線すへの旋回移行が必要なときに
は、上述した運行指示ポイン)Mが交叉点近傍に配置さ
れ、この運行指示ポイントMのマークプレートパターン
から無人車】0“は誘導線すへ旋回移行すべきことを運
行指示として読取る。そして、マイクロコンピュータ1
8から発生するプログラムステアリングの起動指令、つ
まシ一定の旋回軌跡をたどる旋回移行作用の起動信号を
受信すると旋回移行が開始させる。
With the above-described configuration, at the intersection of the guide line a and the guide line S, when the unmanned vehicle 10 traveling on the guide line a reaches the vicinity of the intersection, when it is necessary to make a turning transition to the guide line A, The above-mentioned operation instruction point) M is placed near the intersection, and from the mark plate pattern of this operation instruction point M, it is read as an operation instruction that the unmanned vehicle 0'' should turn to the guide line. 1
When the program steering activation command generated from 8 and the activation signal for the turning transition action that follows a constant turning trajectory are received, the turning transition is started.

次に第2図に示した単一の操舵輪20&を有した無人車
10に就いて、第1図を参照して通常走行から誘導線a
よシ誘導線すへの旋回移行を行う走行システムの構成と
作用t−説明する。なお、第1図において、第2図と同
一の参照番号は同一の構成要素を示している。
Next, regarding the unmanned vehicle 10 having the single steering wheel 20 shown in FIG. 2, with reference to FIG.
The structure and operation of a traveling system that performs a turning transition to a guide line will be explained. Note that in FIG. 1, the same reference numbers as in FIG. 2 indicate the same components.

第1図において、ピックアップ装置12.14の検知信
号、つまり誘導起電圧信号12a、14aはそれぞれ対
応の増幅検波回路22.24で増幅及び検波整流される
。両信号12a、14aは増幅検波回路22.24を通
過後に両者の偏差信号は操舵制御部26とゼロクロス検
知回路40、つまシ誘導線a又はb(第2図参照)に対
して無人車10がちょうどその中央位置にきて横変位が
略零値になる状態を検知する回路とに印加されている。
In FIG. 1, the detection signals of the pickup devices 12.14, that is, the induced electromotive voltage signals 12a and 14a, are amplified, detected and rectified by the corresponding amplification and detection circuits 22 and 24, respectively. After both signals 12a and 14a pass through the amplification and detection circuits 22 and 24, the difference signals between the two are sent to the steering control unit 26, the zero-cross detection circuit 40, and the unmanned vehicle 10 with respect to the guide line a or b (see FIG. 2). The voltage is applied to a circuit that detects a state in which the lateral displacement reaches approximately zero value at exactly the center position.

他方、両信号12a、14mの加算信号が脱線検知回路
38に入力され、無人車10が誘導線a又はbから脱線
して両♂ツクアップ装置12゜14の検知信号のレベル
変化に応じて脱線状態の検知を行う。操舵制御部26は
切換回路28、増幅回路30.駆動回路32、ステアリ
ングモータを含んだ操舵機構34、旋回移行時における
一定のステアリング信号、りまシブログラムステアリン
グ信号又はスピンターン信号を発生する旋回信号発生回
路36等を包含し、後者の旋回信号発生回路36は切換
回路28が旋回移行の起動信号によって切換えられたと
きに上述したステアリング信号を入力するようになって
いる。旋回移行終了検知回路42は、マイクロコンピュ
ータ18からオア回路を介してプログラムステアリング
又はスピンターンの起動信号18m又は18bが入力さ
れると作動状態となり、脱線検知回路38及びゼロクロ
ス検知回路400両回路から脱線復帰状態を示す信号と
横変位が略零値になったことを示す信号との両者が共に
入力されたとき旋回移行終了の検知信号をマイクロコン
ピュータ18へ出力する回路である。なお、マイクロコ
ンピュータ18、  は既述のとおシ、無人車10の運
行指示を制御するために設けられておシ、走行路面にお
ける運行指示ポイントMで旋回移行を指示するマークプ
レート/母ターンを読取ると、プログラムステアリング
又はスピンターンの起動信号を発生する。
On the other hand, the sum signal of both signals 12a and 14m is input to the derailment detection circuit 38, and the unmanned vehicle 10 derails from the guide line a or b and is in a derailed state according to the level change of the detection signal of both male pickup devices 12 and 14. Detection is performed. The steering control section 26 includes a switching circuit 28, an amplifier circuit 30. It includes a drive circuit 32, a steering mechanism 34 including a steering motor, a turning signal generation circuit 36 that generates a constant steering signal at the time of transition to a turn, a RimaShi program steering signal or a spin turn signal, etc. The circuit 36 is configured to input the above-mentioned steering signal when the switching circuit 28 is switched by the turning transition activation signal. The turn transition end detection circuit 42 becomes activated when the program steering or spin turn start signal 18m or 18b is input from the microcomputer 18 via the OR circuit, and the derailment detection circuit 38 and zero cross detection circuit 400 detect derailment. This circuit outputs a detection signal indicating the end of turning transition to the microcomputer 18 when both a signal indicating the return state and a signal indicating that the lateral displacement has reached approximately zero value are input. As described above, the microcomputer 18 is provided to control the operation instructions of the unmanned vehicle 10, and reads the mark plate/mother turn that instructs turning transition at the operation instruction point M on the driving road surface. Then, a program steering or spin turn activation signal is generated.

上述した構成を有した走行システムにおいて、の一方の
線に沿って走行しているときには増幅検波回路22.2
4からのピックアップ装置12゜】4の偏差信号を受信
するように切換えられておシ、該偏差信号を増幅回路3
0で増幅後に駆動回路32を介して操舵機構34のステ
アリングモータを駆動し、無人車10の操舵輪20a(
第2図)を制御して誘導線a又はbに沿う正しい走行路
に沿って自走するよう罠制御している。
In the traveling system having the above-described configuration, when traveling along one of the lines, the amplification and detection circuit 22.2
The pickup device 12゜ from 4 is switched to receive the deviation signal from 4, and the deviation signal is sent to the amplification circuit 3.
After amplification at 0, the steering motor of the steering mechanism 34 is driven via the drive circuit 32, and the steering wheel 20a of the unmanned vehicle 10 (
Fig. 2) is controlled so that the vehicle travels on its own along the correct travel path along guide line a or b.

誘導線aと誘導線すとの交叉点近傍に達して、運行指示
ポイン)M(第2図)のマークプレートパターンから旋
回移行の運行指示であることを読取ると、マイクロコン
ピュータ】8がプログラムステアリング又はスピンター
ンの起動信号を発生する。なお、後者のスピンターンは
軌跡に沿って旋回走行することなく、無人車10が縦軸
線を中心に交叉点で旋回する旋回方法であるが、操舵制
御部26の作用には実質的にプログラムステアリングと
同じであシ、両者に就いては既に公知である。
When it reaches the vicinity of the intersection of guide line a and guide line S and reads from the mark plate pattern of the operation instruction point M (Fig. 2) that it is an operation instruction to transition to a turn, the microcomputer 8 starts the program steering. Or generate a spin turn activation signal. Note that the latter spin turn is a turning method in which the unmanned vehicle 10 turns around the longitudinal axis at an intersection point without turning along a trajectory, but the operation of the steering control unit 26 is essentially based on program steering. Both are already known.

マイクロコンピータ18が旋回移行のプログラムステア
リング又ヌビンターンの起動信号18 m又は18bを
発すると、切換回路28は旋回信号発生回路36に切換
えられ、故に旋回信号が増幅回路30を経て駆動回路3
2に入力され、操舵機構34に対する旋回移行制御が開
始される。すなわち、プログラムステアリングの場合な
ら、第2図の旋回移行軌跡に沿う一定の旋回作用が無人
車10に付与される。このとき、切換回路28に入力さ
れていた2つのピックアップ装置12.14の偏差信号
はこの切換回路28で切断されることは言うまでもない
When the microcomputer 18 issues a program steering for turning transition or a start signal 18m or 18b for a nuvin turn, the switching circuit 28 is switched to the turning signal generating circuit 36, so that the turning signal passes through the amplifier circuit 30 to the drive circuit 3.
2, and turning transition control for the steering mechanism 34 is started. That is, in the case of program steering, a certain turning action along the turning transition locus shown in FIG. 2 is applied to the unmanned vehicle 10. At this time, it goes without saying that the deviation signals of the two pickup devices 12 and 14 that have been input to the switching circuit 28 are cut off by the switching circuit 28.

他方、プログラムステアリング又はスピンターンの起動
信号18a又は18bはオア回路を介して旋回移行終了
検知回路42にも入力され、該回路42を作動状態にお
く。旋回移行の作用が開始されると、無人車10は例え
ば誘導線aから誘導線すに向けて徐々に旋回する。故に
脱線検知回路38はこの旋回過程で一旦信号レベルの低
下を検知し、次いで誘導線すへの接近に従って再び脱線
状態からの復帰を検知し、やがて誘導線すに乗っって、
この脱線復帰状態によって一方の誘導線aから他の誘導
線すに乗ったことを示す信号レベルに達したとき検知信
号を旋回移行終了検知回路42へ出力する。また、ゼロ
クロス検知回路40は無人車10が旋回移行軌跡を経て
、誘導線すに対して整列した位置、つまシ左右のピック
アップ装置12.14の中央に誘導線すが位置する状態
に位置決めされたとき、ピックアップ装置12.14の
偏差信号が略零値になったことを示す信号、すなわちゼ
ロクロス信号を同じく旋回移行終了検知回路42に出力
する。こうして旋回移行終了検知回路42は2種の状態
信号を共に受信すると、旋回移行終了の検知信号を発生
する。そして、この検知信号はマイクロコンピュータ1
8に入力されて旋回移行が終了したことを報知する。こ
の結果、マイクロコンピュータ18は通常の走行状態を
誘導線すに沿って実施する運行指令を発生し、プログラ
ムステアリング起動信号又はヌピンターン起動信号’k
 IJ上セツトる。この結果、操舵制御部26の切換回
路28が再び通常の走行系に切り換えられる。
On the other hand, the program steering or spin turn activation signal 18a or 18b is also inputted to the turning transition end detection circuit 42 via the OR circuit, and puts the circuit 42 into an operating state. When the turning transition action is started, the unmanned vehicle 10 gradually turns, for example, from the guide line a toward the guide line A. Therefore, the derailment detection circuit 38 once detects a drop in the signal level during this turning process, then detects the return from the derailed state again as the train approaches the guide wire, and eventually gets on the guide wire,
When the derailment recovery state reaches a signal level indicating that one guide line a has been boarded by another guide line, a detection signal is output to the turning transition end detection circuit 42. Furthermore, the zero-cross detection circuit 40 is positioned so that the unmanned vehicle 10 has undergone a turning transition locus and is aligned with the guide line, and the guide line is located in the center of the pick-up devices 12 and 14 on the left and right sides of the tab. At this time, a signal indicating that the deviation signal of the pickup device 12, 14 has reached approximately zero value, that is, a zero cross signal, is also output to the turning transition end detection circuit 42. In this way, when the turning transition end detection circuit 42 receives both of the two types of status signals, it generates a turning transition end detection signal. This detection signal is then transmitted to the microcomputer 1.
8 to notify that the turning transition has ended. As a result, the microcomputer 18 generates a driving command for carrying out the normal driving condition along the guide line, and generates a programmed steering start signal or a nupin turn start signal 'k.
Set up IJ. As a result, the switching circuit 28 of the steering control section 26 is switched again to the normal driving system.

以上の説明は単一の操舵輪20mを有した無人車10の
場合に就いての旋回移行に関して説明したが、操舵輪t
−2輪有する場合には、操舵制御部26が夫々の操舵輪
に就いて設けられる点で異なるにしても、本発明の要旨
とする旋回移行の終了の検知作用については、全く同一
である点に注目を要する。
The above explanation has been made regarding the turning transition in the case of the unmanned vehicle 10 having a single steering wheel of 20 m, but the steering wheel t
- In the case of two wheels, although the steering control unit 26 is provided for each steering wheel, the function of detecting the end of turning transition, which is the gist of the present invention, is completely the same. requires attention.

〔発明の効果〕〔Effect of the invention〕

以上の説明による本発明は2種の状態信号の論理積から
旋回移行過程における終了信号を検知し、旋回移行を終
了させるようにしたから、一方の誘導線から他方の誘導
線へ旋回移行したとき、移行後の誘導線を1対のピック
アップ装置の中央に置いた位置に確実にかつ円滑に位置
決めされ、故にそこから再び通常の走行を開始する時点
でハンティング動作を起すことなく、安定に走行を開始
で^る7寸た、俺人東10の形状、寸湊のナホに信わり
なく、円滑な旋回移行を遠戚できる。
According to the present invention as explained above, the end signal in the turning transition process is detected from the logical product of two types of status signals, and the turning transition is completed, so that when the turning transition is made from one guide line to the other guide line. After the transition, the guide wire is reliably and smoothly positioned at the center of the pair of pickup devices, and therefore, when the vehicle starts normal travel again, it can run stably without any hunting action. The shape of Orejin Higashi 10, which was 7 cm at the start, is a distant relative of the smooth turning transition that is unbelievable to the small Naho.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による無人車の走行システムを形成する
諸要素、回路の構成における1実施例を示すブロック図
、第2図は一方の誘導線から他方の誘導線への無人車の
旋回移行軌跡と無人車の構成と金略伝した平面図。 】O・・・無人車、12.14・・・ビ、クナッグ装置
、20ト・・操舵輪、22.24・・・増幅検波回路、
26・・・操舵制御部、18・・・マイクロコンピュー
タ、38・・・脱線検知回路、4o・・・ゼロクロス検
知回路、42・・・旋回移行終了検知回路、a、b・・
・誘導線。
Fig. 1 is a block diagram showing one embodiment of the configuration of various elements and circuits forming the unmanned vehicle traveling system according to the present invention, and Fig. 2 is a turning transition of the unmanned vehicle from one guide line to the other guide line. A plan view showing the trajectory, configuration and details of the unmanned vehicle. ]O...Unmanned vehicle, 12.14...B, Knagg device, 20T...Steering wheel, 22.24...Amplification detection circuit,
26... Steering control unit, 18... Microcomputer, 38... Derailment detection circuit, 4o... Zero cross detection circuit, 42... Turn transition end detection circuit, a, b...
・Guiding wire.

Claims (1)

【特許請求の範囲】[Claims] 1、走行路面に敷設した誘導線を左右1対のピックアッ
プ装置が感知することによって無人車を誘導走行させる
無人車の走行制御システムにおいて、交叉した一方の誘
導線から他方の誘導線へ無人車が自動旋回移行するとき
に前記1対のピックアップ装置の出力偏差が略零値に収
斂したことから前記他方の誘導線に前記無人車が移行整
列したことを検知し得る第1の検知回路と、前記1対の
ピックアップ装置の各出力絶対値の加算値から前記無人
車の脱線復帰状態を検知し得る第2の検知回路と、前記
第1、第2の検知回路から得る移行整列検知信号と脱線
復帰検知信号との論理積から前記無人車の自動旋回移行
を終了させる終了信号を発する旋回終了検知回路とを無
人車に具備させたことを特徴とする無人車の走行制御シ
ステム。
1. In an unmanned vehicle driving control system that guides an unmanned vehicle by sensing guide lines laid on the road surface by a pair of pickup devices on the left and right, the unmanned vehicle moves from one crossed guide line to the other guide line. a first detection circuit capable of detecting that the unmanned vehicle has shifted and aligned with the other guiding line since the output deviation of the pair of pickup devices has converged to approximately zero value when transitioning to automatic turning; a second detection circuit that can detect the derailment recovery state of the unmanned vehicle from the sum of the absolute output values of the pair of pickup devices, and a transition alignment detection signal obtained from the first and second detection circuits and the derailment recovery 1. A driving control system for an unmanned vehicle, characterized in that the unmanned vehicle is equipped with a turning completion detection circuit that issues a termination signal for terminating the automatic turning transition of the unmanned vehicle based on a logical product with a detection signal.
JP60075347A 1985-04-11 1985-04-11 Driving system for unmanned vehicles Expired - Lifetime JPH0610771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075347A JPH0610771B2 (en) 1985-04-11 1985-04-11 Driving system for unmanned vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075347A JPH0610771B2 (en) 1985-04-11 1985-04-11 Driving system for unmanned vehicles

Publications (2)

Publication Number Publication Date
JPS61234406A true JPS61234406A (en) 1986-10-18
JPH0610771B2 JPH0610771B2 (en) 1994-02-09

Family

ID=13573624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075347A Expired - Lifetime JPH0610771B2 (en) 1985-04-11 1985-04-11 Driving system for unmanned vehicles

Country Status (1)

Country Link
JP (1) JPH0610771B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508273A (en) * 1973-05-31 1975-01-28
JPS51130782A (en) * 1975-05-10 1976-11-13 Omron Tateisi Electronics Co Course deviation detector of inductie displacing body
JPS5453784A (en) * 1977-10-07 1979-04-27 Komatsu Ltd Steering control system for unattended vehicle
JPS5592906A (en) * 1978-12-29 1980-07-14 Komatsu Ltd Steering controller of driverless vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508273A (en) * 1973-05-31 1975-01-28
JPS51130782A (en) * 1975-05-10 1976-11-13 Omron Tateisi Electronics Co Course deviation detector of inductie displacing body
JPS5453784A (en) * 1977-10-07 1979-04-27 Komatsu Ltd Steering control system for unattended vehicle
JPS5592906A (en) * 1978-12-29 1980-07-14 Komatsu Ltd Steering controller of driverless vehicle

Also Published As

Publication number Publication date
JPH0610771B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JPS61234406A (en) Running system for unattended truck
GB1578000A (en) Devices for guiding the track of trackless vehicles
JP3275364B2 (en) Reverse traveling control method for automatic guided vehicles
JP2000330635A (en) Automatic guided vehicle
KR0160302B1 (en) Control system for unmanned carrier vehicle
KR100198023B1 (en) Steering angle control apparatus of a manless car
JPH10111718A (en) Method and device for controlling travel of automated guided carrier
JP2646589B2 (en) How to control unmanned vehicles
JPH0313768Y2 (en)
JP2658488B2 (en) Operation control device for unmanned vehicles
JPH05233060A (en) Posture controller for automatic guided vehicle
JP2001195127A (en) Guide device for automated guided vehicle
JPH0934546A (en) Movable mark plate sensor for automated guided vehicle
JPH08258705A (en) Unmanned carrier car
JPH0245809A (en) Automatic traveling vehicle
JPH0348307A (en) Device for steering magnetic guidance unmanned carrier vehicle
JPH07122825B2 (en) Driving control method of magnetic induction type automatic guided vehicle
JPWO2023073882A5 (en)
JP2566814Y2 (en) Automatic guided vehicle
JPS6031615A (en) Method for controlling unmanned carrier car
JPS63311416A (en) Method for resetting unmanned vehicle to original point position
JPH06149375A (en) Device for guiding automated guided vehicle
JPH0381806A (en) Method for running unmanned carrier vehicle
JPS62164115A (en) Running control equipment for moving vehicle
JPH06250735A (en) Steering speed controller for unmanned carriage

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term