JPH0610771B2 - Driving system for unmanned vehicles - Google Patents

Driving system for unmanned vehicles

Info

Publication number
JPH0610771B2
JPH0610771B2 JP60075347A JP7534785A JPH0610771B2 JP H0610771 B2 JPH0610771 B2 JP H0610771B2 JP 60075347 A JP60075347 A JP 60075347A JP 7534785 A JP7534785 A JP 7534785A JP H0610771 B2 JPH0610771 B2 JP H0610771B2
Authority
JP
Japan
Prior art keywords
unmanned vehicle
turning
signal
transition
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60075347A
Other languages
Japanese (ja)
Other versions
JPS61234406A (en
Inventor
達也 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP60075347A priority Critical patent/JPH0610771B2/en
Publication of JPS61234406A publication Critical patent/JPS61234406A/en
Publication of JPH0610771B2 publication Critical patent/JPH0610771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無人車の走行システムに関し、特に誘導線に沿
って誘導走行する無人車を誘導線の交叉点で一方の線か
ら他方の線へ安定的に自動旋回させることが可能な無人
車の走行システムに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a traveling system for an unmanned vehicle, and more particularly, to an unmanned vehicle guided by a guide line from one line to the other line at the intersection of the guide lines. The present invention relates to a traveling system of an unmanned vehicle capable of stably automatically turning.

〔従来技術〕[Prior art]

走行路面に沿って敷設した誘導線に微小低周波電流を供
給し、この誘導線を流れる低周波電流を無人車の車体に
取付けた左右1対のピックアップ装置で検知し、両ピッ
クアップ装置の検知結果の偏差信号を増幅して無人車の
操舵系のステアリングモータを駆動し、誘導線からのず
れを修正することにより無人車を誘導線に沿って安定走
行させる無人車の走行システムは公知である。
A small low-frequency current is supplied to the guide wire laid along the road surface, and the low-frequency current flowing through this guide wire is detected by a pair of left and right pickup devices mounted on the body of the unmanned vehicle, and the detection results of both pickup devices are detected. A traveling system for an unmanned vehicle is known in which a steering motor of a steering system of an unmanned vehicle is amplified by correcting the deviation signal of (1) to correct a deviation from the guiding line to stably drive the unmanned vehicle along the guiding line.

また、このような無人車の走行システムにおいて、誘導
線の交叉点において、一方の線から他方の線へ移行する
場合には従来より、上記一方の誘導線に沿う交叉点近傍
で適宜の旋回指令信号を無人車が受信し、このとき予め
無人車に設けられた関数発生器等のプログラム旋回作動
手段によって発生する旋回指令によりステアリングモー
タを一定の旋回軌跡に沿うように駆動して無人車を他方
の線に旋回移行させ、他方の線に沿う所定の位置から発
生する一定信号を受信したとき旋回移行を終了させる方
式が採られている。例えば、特開昭50-20477号に開示さ
れた自動旋回方式では走行路面上に旋回起動点と旋回終
了点とを示す近接体を設け、かつ無人車側には誘導線を
検知する1対のピックアップ装置とは別の上記近接体セ
ンサを具備させることにより、プログラム旋回作動の起
動と終了とを検知するようにしている。
Further, in such an unmanned vehicle traveling system, at the intersection of the guide lines, when a transition is made from one line to the other, conventionally, an appropriate turn command is issued near the intersection along the one guide line. The unmanned vehicle receives the signal, and at this time, the steering motor is driven along a certain turning locus by a turning command generated by a program turning operation means such as a function generator provided in advance in the unmanned vehicle to move the unmanned vehicle to the other side. The method is adopted in which the turning transition is made to the line No. 2 and the turning transition is ended when a constant signal generated from a predetermined position along the other line is received. For example, in the automatic turning system disclosed in Japanese Patent Laid-Open No. 50-20477, a proximity body indicating a turning start point and a turning end point is provided on a traveling road surface, and a pair of unmanned vehicle side detecting a guide wire is provided. By providing the above-mentioned proximity sensor other than the pickup device, the start and end of the programmed turning operation are detected.

〔解決すべき問題点〕[Problems to be solved]

然しながら、上述した従来の無人車の走行システムによ
る交叉点での自動旋回方式では旋回起動から旋回終了の
過程で特に旋回終了点の検出は、走行路面上の1つの近
接体を、旋回作動する無人車側に設けられた1つのセン
サが接近して検知する単一検知信号に依存した方式を採
っているために各交叉点近傍の走行路面条件や無人車の
走行駆動系や操舵系等の機械系の精度変化に応じて安定
した検知が困難であり、また旋回終了時に誘導線の中央
位置に正確に無人車が位置決めできない不具合がある。
However, in the automatic turning system at the crossing point by the above-described conventional unmanned vehicle running system, the turning end point is detected particularly during the process from turning start to turning end. Machines such as the traveling road surface condition near each intersection and the traveling drive system and steering system of an unmanned vehicle are adopted because a method that depends on a single detection signal that one sensor provided on the vehicle side detects in close proximity is adopted. It is difficult to perform stable detection according to changes in the system accuracy, and there is a problem that the unmanned vehicle cannot be accurately positioned at the central position of the guide wire at the end of turning.

依って、本発明の目的は走行路面上における誘導線の交
叉点において一方の線から他方の線へ旋回移行するとき
に単一の信号により旋回終了を検知することによる不安
定を解消し、円滑にかつ誘導線の中央に無人車が位置決
めされるように改善した無人車の走行システムを提供せ
んとするものである。
Therefore, the object of the present invention is to eliminate the instability caused by detecting the end of turning with a single signal when turning from one line to the other at the crossing point of the guide lines on the traveling road surface, and smoothing is eliminated. It is another object of the present invention to provide an unmanned vehicle traveling system improved so that the unmanned vehicle is positioned in the center of the guide wire.

〔解決手段〕[Solution]

上述の発明目的に鑑みて本発明によれば、走行路面に敷
設した誘導線を左右1対にして設けたピックアップ装置
が感知することによって無人車を誘導走行させる無人車
の走行制御システムにおいて、交叉した一方の誘導線か
ら他方の誘導線へ無人車が自動旋回移行するときに前記
1対のピックアップ装置の出力偏差が略零値に収斂した
ことから前記他方の誘導線に前記無人車が移行整列した
ことを検知し得る第1の検知回路と、前記1対のピック
アップ装置の各出力絶対値の加算値が低レベル値から高
レベル値に上昇したことから前記無人車が脱線状態から
脱線復帰状態を回復したことを検知し得る第2の検知回
路と、 前記第1、第2の検知回路から得る移行整列検知信号と
脱線復帰検知信号との両信号の論理積から前記無人車の
自動旋回移行を終了させる終了信号を発する旋回終了検
知回路とを、無人車に具備させた無人車の走行制御シス
テムが提供され、第1、第2の検知回路から得られる2
状態の信号の論理積に従って旋回終了を決定するので円
滑かつ精度の良好な旋回移行が交叉点で達成されるので
ある。
In view of the above-mentioned object of the invention, according to the present invention, there is provided a traveling control system for an unmanned vehicle, which guides an unmanned vehicle by sensing with a pickup device provided in a pair of left and right guiding lines laid on a traveling road surface. When the unmanned vehicle automatically turns from the one guiding line to the other guiding line, the output deviation of the pair of pickup devices converges to a substantially zero value, so that the unmanned vehicle moves and aligns with the other guiding line. The first detection circuit capable of detecting that the unmanned vehicle has derailed from the derailed state since the added value of the output absolute values of the pair of pickup devices has risen from a low level value to a high level value. A second detection circuit capable of detecting that the unmanned vehicle has recovered, and an automatic turning movement of the unmanned vehicle based on a logical product of both signals of the transition alignment detection signal and the derailment return detection signal obtained from the first and second detection circuits. An unmanned vehicle traveling control system is provided, which comprises an unmanned vehicle and a turn termination detection circuit that issues a termination signal for terminating a line, and is obtained from the first and second detection circuits.
Since the end of turning is determined according to the logical product of the signals of the states, a smooth and accurate turning transition is achieved at the intersection.

以下、本発明を添付図面に示す実施例に基いて詳細に説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第1図は本発明による無人車の走行システムを形成する
諸手段の構成における1実施例のブロック図であり、第
2図は誘導線における無人車の走行軌跡を略示した平面
図である。
FIG. 1 is a block diagram of one embodiment in the configuration of various means forming a traveling system of an unmanned vehicle according to the present invention, and FIG. 2 is a plan view schematically showing a traveling locus of the unmanned vehicle on a guide line.

先ず、第2図を参照すると、走行路面には誘導線a、誘
導線b等が敷設されており、無人車10はこれらの誘導
線a又はbを流れる周波数電流を誘導線の両側に位置す
るように設けられた左右1対のピックアップ装置12,
14によって検知する。また、無人車10には誘導線a
又はbに沿う要所に配置された運行指示ポイントMにお
いて運行指示用マークプレートを検出するプレート検出
センサ16を有し、このプレート検出センサ16からの
マークプレートパターンの読取った結果によって各無人
車10に搭載されたマイクロコンピュータ18が、加
速、減速、停止、旋回等の運行指令を発生し、無人車1
0の駆動機構を主に制御する。他方、無人車10の操舵
機構も上述したマイクロコンピュータ18の運行指示信
号によって後述する交叉点における旋回移行時に制御信
号を受けるが、常時の走行時には、上述した左右1対の
ピックアップ装置12,14の検知信号に基いてステア
リングモータ(図示なし)が正、逆回転され、無人車1
0の走行方向における誘導線からの横変位又はずれが修
正され、正しい走行方向に誘導する構成が設けられてい
る。なお、第2図における20aは無人車10の操舵
輪、20b,20bは駆動輪を示したものである。
First, referring to FIG. 2, a guide wire a, a guide wire b, etc. are laid on the traveling road surface, and the unmanned vehicle 10 positions the frequency current flowing through these guide wires a or b on both sides of the guide wire. A pair of left and right pick-up devices 12,
14 to detect. In addition, the unmanned vehicle 10 has a guide line a
Alternatively, each unmanned vehicle 10 has a plate detection sensor 16 for detecting an operation instruction mark plate at an operation instruction point M arranged at a key position along the line b, and the result of reading the mark plate pattern from the plate detection sensor 16 The microcomputer 18 mounted on the unmanned vehicle 1 generates operation commands such as acceleration, deceleration, stop, turn, etc.
0 drive mechanism is mainly controlled. On the other hand, the steering mechanism of the unmanned vehicle 10 also receives a control signal at the time of turning transition at an intersection described later by the operation instruction signal of the microcomputer 18 described above. The steering motor (not shown) is rotated forward and backward based on the detection signal, and the unmanned vehicle 1
A configuration is provided in which lateral displacements or deviations from the guide line in the 0 traveling direction are corrected and the vehicle is guided in the correct traveling direction. In FIG. 2, reference numeral 20a indicates steered wheels of the unmanned vehicle 10, and 20b and 20b indicate driving wheels.

上述した構成により、誘導線aと誘導線bとの交叉点に
おいては、誘導線a上を進行する無人車10が交叉点の
近傍に達すると、誘導線bへの旋回移行が必要なときに
は、上述した運行指示ポイントMが交叉点近傍に配置さ
れ、この運行指示ポイントMのマークプレートパターン
から無人車10は誘導線bへ旋回移行すべきことを運行指
示として読取る。そして、マイクロコンピュータ18か
ら発生するプログラムステアリングの起動指令、つまり
一定の旋回軌跡をたどる旋回移行作用の起動信号を受信
すると旋回移行が開始させる。
With the configuration described above, at the intersection of the guide line a and the guide line b, when the unmanned vehicle 10 traveling on the guide line a reaches the vicinity of the intersection, when the turning transition to the guide line b is necessary, The operation instruction point M described above is arranged in the vicinity of the intersection, and the unmanned vehicle 10 reads from the mark plate pattern of the operation instruction point M that the vehicle should turn to the guide line b as an operation instruction. Then, when the program steering activation command generated from the microcomputer 18, that is, the activation signal of the turning transition action that follows a fixed turning locus is received, the turning transition is started.

次に第2図に示した単一の操舵輪20aを有した無人車
10に就いて、第1図を参照して通常走行から誘導線a
より誘導線bへの旋回移行を行う走行システムの構成と
作用を説明する。なお、第1図において、第2図と同一
の参照番号は同一の構成要素を示している。
Next, with respect to the unmanned vehicle 10 having the single steered wheel 20a shown in FIG. 2, referring to FIG.
The configuration and operation of the traveling system for performing the turning transition to the guide line b will be described. Note that, in FIG. 1, the same reference numerals as those in FIG. 2 indicate the same components.

第1図において、ピックアップ装置12,14の検知信
号、つまり誘導起電圧信号12a,14aはそれぞれ対
応の増幅検波回路22,24で増幅及び検波整流され
る。両信号12a,14aは増幅検波回路22,24を
通過後に両者の偏差信号は操舵制御部26とゼロクロス
検知回路40、つまり誘導線a又はb(第2図参照)に
対して無人車10がちょうどその中央位置に来て横変位
が略零値になる状態を検知する回路とに印加されてい
る。他方、両信号12a,14aの加算信号が脱線検知
回路38に入力され、無人車10が誘導線a又はbから
脱線して両ピックアップ装置12,14の検知信号のレ
ベル変化に応じて脱線状態の検知を行う。操舵制御部2
6は切換回路28、増幅回路30、駆動回路32、ステ
アリングモータを含んだ操舵機構34、旋回移行時にお
ける一定のステアリング信号、つまりプログラムステア
リング信号又はスピンターン信号を発生する旋回信号発
生回路36等を包含し、後者の旋回信号発生回路36は
切換回路28が旋回移行の起動信号によって切換えられ
たときに上述したステアリング信号を入力するようにな
っている。旋回移行終了検知回路42は、マイクロコン
ピュータ18からオア回路41を介してプログラムステ
アリング又はスピンターンの起動信号18a又は18b
が入力されると作動状態となり、脱線検知回路38及び
ゼロクロス検知回路40の両回路から脱線復帰状態を示
す信号と横変位が略零値になったことを示す信号との両
者が共に入力されたとき旋回移行終了の検知信号をマイ
クロコンピュータ18へ出力する回路である。なお、マ
イクロコンピュータ18は既述のとおり、無人車10の
運行指示を制御するために設けられており、走行路面に
おける運行指示ポイントMで旋回移行を指示するマーク
プレートパターンを読取ると、プログラムステアリング
又はスピンターンの起動信号を発生する。
In FIG. 1, the detection signals of the pickup devices 12 and 14, that is, the induced electromotive voltage signals 12a and 14a are amplified and detected and rectified by the corresponding amplification and detection circuits 22 and 24, respectively. After the two signals 12a and 14a have passed through the amplification detection circuits 22 and 24, the deviation signals of the two signals are the same as those of the unmanned vehicle 10 with respect to the steering control unit 26 and the zero cross detection circuit 40, that is, the guide line a or b (see FIG. 2). It is applied to a circuit that detects the state where the lateral displacement reaches the central position and the lateral displacement becomes substantially zero. On the other hand, the added signal of both signals 12a and 14a is input to the derailment detection circuit 38, the unmanned vehicle 10 derails from the guide line a or b, and the derailment state is generated according to the level change of the detection signals of both pickup devices 12 and 14. Detect. Steering control unit 2
Reference numeral 6 denotes a switching circuit 28, an amplifier circuit 30, a drive circuit 32, a steering mechanism 34 including a steering motor, a turning signal generating circuit 36 for generating a constant steering signal at the time of turning transition, that is, a program steering signal or a spin turn signal. Including the latter, the latter turning signal generating circuit 36 is adapted to input the above-mentioned steering signal when the switching circuit 28 is switched by the start signal for turning transition. The turning transition end detection circuit 42 is a program steering or spin turn start signal 18a or 18b from the microcomputer 18 via the OR circuit 41.
Is inputted, both the derailment detection circuit 38 and the zero-cross detection circuit 40 are inputted with both the signal indicating the derailment recovery state and the signal indicating that the lateral displacement has become substantially zero. At this time, it is a circuit for outputting a detection signal of the end of turning transition to the microcomputer 18. As described above, the microcomputer 18 is provided for controlling the operation instruction of the unmanned vehicle 10. When the mark plate pattern for instructing the turning transition is read at the operation instruction point M on the traveling road surface, the program steering or Generates a spin turn activation signal.

上述した構成を有した走行システムにおいて、操舵制御
部26の切換回路28は誘導線a又はbの一方の線に沿
って走行しているときには増幅検波回路22,24から
のピックアップ装置12,14の偏差信号を受信するよ
うに切換えられており、該偏差信号を増幅回路30で増
幅後に駆動回路32を介して操舵機構34のステアリン
グモータを駆動し、無人車10の操舵輪20a(第2
図)を制御して誘導線a又はbに沿う正しい走行路に沿
って自走するように制御している。
In the traveling system having the above-described configuration, the switching circuit 28 of the steering control unit 26 of the pickup detection device 12, 14 from the amplification detection circuit 22, 24 while traveling along one of the guide lines a or b. The deviation signal is switched to be received, and the deviation signal is amplified by the amplifier circuit 30 and then the steering motor of the steering mechanism 34 is driven through the drive circuit 32 to drive the steering wheel 20a (second wheel) of the unmanned vehicle 10.
(Fig.) Is controlled so that the vehicle is self-propelled along a correct traveling path along the guide line a or b.

誘導線aと誘導線bとの交叉点近傍に達して、運行指示
ポイントM(第2図)のマークプレートパターンから旋
回移行の運行指示であることを読取ると、マイクロコン
ピュータ18がプログラムステアリング又はスピンター
ンの起動信号を発生する。なお、後者のスピンターンは
軌跡に沿って旋回走行することなく、無人車10が縦軸
線を中心に交叉点で旋回する旋回方法であるが、操舵制
御部26の作用には実質的にプログラムステアリングと
同じであり、両者に就いては既に公知である。
When reaching the vicinity of the intersection of the guide line a and the guide line b and reading from the mark plate pattern of the operation instruction point M (FIG. 2) that it is the operation instruction for turning transition, the microcomputer 18 executes the program steering or the spin. Generates a turn activation signal. The latter spin turn is a turning method in which the unmanned vehicle 10 turns at an intersection centering on the vertical axis without turning along the locus. However, the operation of the steering control unit 26 is substantially the same as the program steering. It is the same as, and both are already known.

マイクロコンピュータ18が旋回移行のプログラムステ
アリング又スピンターンの起動信号18a又は18bを
発すると、切換回路28は旋回信号発生回路36に切換
えられ、故に旋回信号が増幅回路30を経て駆動回路3
2に入力され、操舵機構34に対する旋回移行制御が開
始される。すなわち、プログラムステアリングの場合な
ら、第2図の旋回移行軌跡に沿う一定の旋回作用が無人
車10に付与される。このとき、切換回路28に入力さ
れていた2つのピックアップ装置12,14の偏差信号
はこの切換回路28で切断されることは言うまでもな
い。
When the microcomputer 18 issues the program steering signal for turning transition or the activation signal 18a or 18b for spin turn, the switching circuit 28 is switched to the turning signal generating circuit 36, so that the turning signal passes through the amplifier circuit 30 and the driving circuit 3 is driven.
2 is input and the turning transition control for the steering mechanism 34 is started. That is, in the case of the program steering, the unmanned vehicle 10 is given a certain turning action along the turning transition locus shown in FIG. At this time, it goes without saying that the deviation signals of the two pickup devices 12 and 14 input to the switching circuit 28 are disconnected by the switching circuit 28.

他方、プログラムステアリング又はスピンターンの起動
信号18a又は18bはオア回路41を介して旋回移行
終了検知回路42にも入力され、該回路42を作動状態
におく。旋回移行の作用が開始されると、無人車10は
例えば誘導線aから誘導線bに向けて徐々に旋回する。
故に脱線検知回路38はこの旋回過程で一旦信号レベル
の低下を検知し、次いで誘導線bへの接近に従って再び
脱線状態からの復帰を検知し、やがて誘導線bに乗った
ことを信号レベルの上昇によって検知する。依って、こ
の脱線復帰状態によって一方の誘導線aから他の誘導線
bに乗ったことを示す信号レベルに達したとき検知信号
を旋回移行終了検知回路42へ出力する。また、ゼロクロ
ス検知回路40は無人車10が旋回移行軌跡を経て、誘
導線bに対して整列した位置、つまり左右のピックアッ
プ装置12,14の中央に誘導線bが位置する状態に位
置決めされたとき、ピックアップ装置12,14の偏差
信号が略零値になったことを示す信号、すなわちゼロク
ロス信号を同じく旋回移行終了検知回路42に出力す
る。こうして旋回移行終了検知回路42は2種の状態信
号を共に受信すると、旋回移行終了の検知信号を発生す
る。そして、この検知信号はマイクロコンピュータ18
に入力されて旋回移行が終了したことを報知する。この
結果、マイクロコンピュータ18は通常の走行状態を誘
導線bに沿って実施する運行指令を発生し、プログラム
ステアリング起動信号又はスピンターン起動信号をリセ
ットする。この結果、操舵制御部26の切換回路28が再
び通常の走行系に切り換えられる。
On the other hand, the program steering or spin turn activation signal 18a or 18b is also input to the turning transition end detection circuit 42 via the OR circuit 41 to put the circuit 42 into an operating state. When the action of turning transition is started, the unmanned vehicle 10 gradually turns, for example, from the guide wire a toward the guide wire b.
Therefore, the derailment detection circuit 38 once detects a decrease in the signal level in this turning process, and then detects a return from the derailment state again as the guide wire b is approached. Detect by. Therefore, when the derailment recovery state reaches a signal level indicating that one of the guide wires a has been on the other guide wire b, a detection signal is output to the turning transition end detection circuit 42. Further, the zero-cross detection circuit 40 is positioned when the unmanned vehicle 10 is positioned at a position aligned with the guide line b, that is, the guide line b is located at the center of the left and right pickup devices 12 and 14 after passing through the turning transition locus. A signal indicating that the deviation signals of the pickup devices 12 and 14 have become substantially zero, that is, a zero cross signal, is also output to the turning transition end detection circuit 42. Thus, the turning transition end detection circuit 42 generates a turning transition end detection signal when both of the two kinds of status signals are received. This detection signal is sent to the microcomputer 18
Is input to inform that the turning transition has been completed. As a result, the microcomputer 18 generates an operation command for executing a normal traveling state along the guide line b, and resets the program steering start signal or the spin turn start signal. As a result, the switching circuit 28 of the steering control unit 26 is switched to the normal traveling system again.

以上の説明は単一の操舵輪20aを有した無人車10の
場合に就いての旋回移行に関して説明したが、操舵輪を
2輪有する場合には、操舵制御部26が夫々の操舵輪に
就いて設けられる点で異なるにしても、本発明の要旨と
する旋回移行の終了の検知作用については、全く同一で
ある点に注目を要する。
Although the above description has been made regarding the turning transition in the case of the unmanned vehicle 10 having the single steered wheel 20a, when the steered vehicle has two steered wheels, the steering control unit 26 becomes the respective steered wheels. However, it should be noted that the detection operation of the end of the turning transition, which is the gist of the present invention, is completely the same even though it is different in that it is provided.

〔発明の効果〕〔The invention's effect〕

以上の説明による本発明は移行整列検知信号と脱線復帰
検知信号との2種の状態信号の論理積から旋回移行過程
における終了信号を検知し、旋回移行を終了させるよう
にしたから、一方の誘導線から他方の誘導線へ旋回移行
したとき、移行後の誘導線を1対のピックアップ装置の
中央に置いた位置に確実にかつ円滑に位置決めされ、故
にそこから再び通常の走行を開始する時点でハンティン
グ動作を起すことなく、安定に走行を開始できる。ま
た、無人車10の形状、寸法の大小に係わりなく、円滑
な旋回移行を達成できる。
According to the present invention as described above, the end signal in the turning transition process is detected from the logical product of the two kinds of status signals of the transition alignment detection signal and the derailment return detection signal, and the turning transition is ended. When a turning transition is made from one line to the other guide line, the guide line after the transition is surely and smoothly positioned at the position centered on the pair of pickup devices, and therefore, when normal traveling is started again from there. It is possible to start traveling stably without causing hunting operation. In addition, a smooth turning transition can be achieved regardless of the size and size of the unmanned vehicle 10.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による無人車の走行システムを形成する
諸要素、回路の構成における1実施例を示すブロック
図、第2図は一方の誘導線から他方の誘導線への無人車
の旋回移行軌跡と無人車の構成とを略示した平面図。 10…無人車、12,14…ピックアップ装置、20a
…操舵輪、22,24…増幅検波回路、26…操舵制御
部、18…マイクロコンピュータ、38…脱線検知回
路、40…ゼロクロス検知回路、42…旋回移行終了検
知回路、a,b…誘導線。
FIG. 1 is a block diagram showing an embodiment of various elements and circuits forming a traveling system for an unmanned vehicle according to the present invention, and FIG. 2 is a turning transition of an unmanned vehicle from one guide wire to another guide wire. FIG. 3 is a plan view schematically showing a trajectory and a configuration of an unmanned vehicle. 10 ... unmanned vehicle, 12, 14 ... pickup device, 20a
... Steering wheels, 22, 24 ... Amplification detection circuit, 26 ... Steering control section, 18 ... Microcomputer, 38 ... Derailment detection circuit, 40 ... Zero cross detection circuit, 42 ... Turning transition end detection circuit, a, b ... Guide line.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】走行路面に敷設した誘導線を左右1対のピ
ックアップ装置が感知することによって無人車を誘導走
行させる無人車の走行制御システムにおいて、 交叉した一方の誘導線から他方の誘導線へ無人車が自動
旋回移行するときに前記1対のピックアップ装置の出力
偏差が略零値に収斂したことから前記他方の誘導線に前
記無人車が移行整列したことを検知し得る第1の検知回
路と、 前記1対のピックアップ装置の各出力絶対値の加算値が
低レベル値から高レベル値に上昇したことから前記無人
車が脱線状態から脱線復帰状態を回復したことを検知し
得る第2の検知回路と、 前記第1、第2の検知回路から得る移行整列検知信号と
脱線復帰検知信号との両信号の論理積から前記無人車の
自動旋回移行を終了させる終了信号を発する旋回終了検
知回路とを、 無人車に具備させたことを特徴とする無人車の走行シス
テム。
1. A traveling control system for an unmanned vehicle in which an unmanned vehicle is guided to travel when a pair of left and right pickup devices senses a guiding line laid on a traveling road surface. A first detection circuit that can detect that the unmanned vehicle has transitioned and aligned with the other guide line because the output deviation of the pair of pickup devices converges to a substantially zero value when the unmanned vehicle shifts automatically. And a second value that can detect that the unmanned vehicle has recovered from the derailment state to the derailment return state because the added value of the output absolute values of the pair of pickup devices has risen from the low level value to the high level value. A turning circuit that issues an end signal for ending the automatic turning transition of the unmanned vehicle based on a logical product of both the detection circuit and the transition alignment detection signal and the derailment return detection signal obtained from the first and second detection circuits. A completion detection circuit, an unmanned vehicle travel system, characterized in that is provided in the unmanned vehicle.
JP60075347A 1985-04-11 1985-04-11 Driving system for unmanned vehicles Expired - Lifetime JPH0610771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075347A JPH0610771B2 (en) 1985-04-11 1985-04-11 Driving system for unmanned vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075347A JPH0610771B2 (en) 1985-04-11 1985-04-11 Driving system for unmanned vehicles

Publications (2)

Publication Number Publication Date
JPS61234406A JPS61234406A (en) 1986-10-18
JPH0610771B2 true JPH0610771B2 (en) 1994-02-09

Family

ID=13573624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075347A Expired - Lifetime JPH0610771B2 (en) 1985-04-11 1985-04-11 Driving system for unmanned vehicles

Country Status (1)

Country Link
JP (1) JPH0610771B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312104B2 (en) * 1973-05-31 1978-04-26
JPS51130782A (en) * 1975-05-10 1976-11-13 Omron Tateisi Electronics Co Course deviation detector of inductie displacing body
JPS5453784A (en) * 1977-10-07 1979-04-27 Komatsu Ltd Steering control system for unattended vehicle
JPS5592906A (en) * 1978-12-29 1980-07-14 Komatsu Ltd Steering controller of driverless vehicle

Also Published As

Publication number Publication date
JPS61234406A (en) 1986-10-18

Similar Documents

Publication Publication Date Title
JPH0610771B2 (en) Driving system for unmanned vehicles
JPS6233614B2 (en)
GB1578000A (en) Devices for guiding the track of trackless vehicles
JP3275364B2 (en) Reverse traveling control method for automatic guided vehicles
JP2000330635A (en) Automatic guided vehicle
JPH0370802B2 (en)
JPH07210246A (en) Steering controller for automated guided vehicle
JP2775835B2 (en) How to transfer unmanned vehicles
JP3143802B2 (en) Posture control method for unmanned towing vehicle for wagon vehicles
JP2646589B2 (en) How to control unmanned vehicles
JPH10111718A (en) Method and device for controlling travel of automated guided carrier
JP3018658B2 (en) Posture control method for unmanned towing vehicle for wagon vehicles
JPH0661045B2 (en) Driving control method for unmanned vehicles
JPH09269820A (en) Vehicle guiding device
JPH07122825B2 (en) Driving control method of magnetic induction type automatic guided vehicle
JPH0934546A (en) Movable mark plate sensor for automated guided vehicle
JP3261942B2 (en) Automated guided vehicle program steering method
JP2907876B2 (en) Autopilot running device for vehicles
JPH08339226A (en) Automatic guided vehicle controller
JP3030918B2 (en) Travel control method for automatic guided vehicles
JPH0577081B2 (en)
JPH0313768Y2 (en)
JPH04257006A (en) Course out detecting method for unmanned vehicle
JP2001195127A (en) Guide device for automated guided vehicle
JPH05233060A (en) Posture controller for automatic guided vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term