JPS6123372A - Cryogenic apparatus - Google Patents
Cryogenic apparatusInfo
- Publication number
- JPS6123372A JPS6123372A JP59143304A JP14330484A JPS6123372A JP S6123372 A JPS6123372 A JP S6123372A JP 59143304 A JP59143304 A JP 59143304A JP 14330484 A JP14330484 A JP 14330484A JP S6123372 A JPS6123372 A JP S6123372A
- Authority
- JP
- Japan
- Prior art keywords
- cryogenic
- support
- supports
- container
- leg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000003507 refrigerant Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 abstract description 2
- 229910052734 helium Inorganic materials 0.000 description 9
- 239000001307 helium Substances 0.000 description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/08—Mounting arrangements for vessels
- F17C13/086—Mounting arrangements for vessels for Dewar vessels or cryostats
- F17C13/087—Mounting arrangements for vessels for Dewar vessels or cryostats used for superconducting phenomena
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/04—Cooling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/81—Containers; Mountings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0128—Shape spherical or elliptical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0391—Thermal insulations by vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/068—Special properties of materials for vessel walls
- F17C2203/0687—Special properties of materials for vessel walls superconducting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0153—Details of mounting arrangements
- F17C2205/018—Supporting feet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は超電導」イル等を収容する極低温装置に関する
。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cryogenic apparatus housing a superconducting coil or the like.
第5図および第6図は従来の極低温装置の一例を示す。 FIGS. 5 and 6 show an example of a conventional cryogenic apparatus.
超電導線を筒状に巻回した超電導コイル(1)は極低温
容器(2)内に入れら′れた液体ヘリウムなどの極低温
冷媒(3)に浸漬され、極低温容R’ (2)’は過度
な極低温冷媒(3)の蒸発を防止するため真空容器(4
)の中に入れである。極低温容器(2)はこの極低温容
器(2)の側部に固着した座(5a)を真空容器(4)
丙に両端部を固着した金属または秋合材などの一対の支
柱(5)のほぼ中央に固定し、真空容器(4)と極低温
容器(2)との隙間には対流によって極低温容器′(2
)へ外部から熱が侵入するのを防止するため、図示して
ない排気装置によって真空に保たれている。真空容器(
4)はその下部に固着された脚部(6)によって支持さ
れている。A superconducting coil (1) made of superconducting wire wound into a cylindrical shape is immersed in a cryogenic refrigerant (3) such as liquid helium placed in a cryogenic container (2), and the cryogenic volume R' (2) is immersed in a cryogenic refrigerant (3) such as liquid helium. ' is a vacuum container (4) to prevent excessive evaporation of the cryogenic refrigerant (3).
). The cryogenic container (2) connects the seat (5a) fixed to the side of the cryogenic container (2) to the vacuum container (4).
It is fixed approximately at the center of a pair of supports (5) made of metal or synthetic wood, both ends of which are fixed to the center, and the cryogenic container' (2
) is kept in a vacuum by an exhaust device (not shown) to prevent heat from entering from the outside. Vacuum container (
4) is supported by legs (6) fixed to its lower part.
しかしながら、かかる構造のものは支柱(5)がその両
端とも真空容器(4)の壁に直接固着されそのほぼ中央
を極低温容器(2)の座(5a)に固定しであるため支
柱(5)の熱伝導によって外気に接している真空容器(
4)の壁から極低温容器(2)へ熱が侵入する。この極
低温容器(2)へ侵入する熱量は極低温装置の規模にも
よるが、例えば1秒間当シ数ジV−ルにもなり極低温容
器(2)内の液体ヘリウムの蒸発は1時間当り数tにも
なる。このため、高価な液体ヘリウムを度々補充しなけ
ればならず、また大型のヘリウム冷凍液化機が必要とな
るなどの欠点があった。However, in such a structure, the support (5) is fixed directly to the wall of the vacuum vessel (4) at both ends, and its almost center is fixed to the seat (5a) of the cryogenic vessel (2). vacuum container (
4) Heat enters the cryocontainer (2) through the walls of the cryocontainer (2). The amount of heat that enters this cryogenic container (2) depends on the scale of the cryogenic equipment, but for example, it can be as many as 1 g/sec, and the liquid helium in the cryogenic container (2) will evaporate in one hour. The number of hits can be as high as t. As a result, expensive liquid helium must be frequently replenished, and a large helium freezing and liquefaction machine is required.
本発明は外部から支柱を通って極低温容器へ侵入する侵
入熱が少ない構造にした極低温装置を提供することを目
的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a cryogenic apparatus having a structure in which less heat intrudes into the cryogenic container from the outside through the struts.
上記目的を達成するために、本発明においては真空容器
の脚部を中空に形成して真空容器内に開口させ、極低温
容器の支柱を脚部め中部にその壁との間に間隙を設けて
位置させて極低温容器を支持することにより、支柱の全
長を従来のものよシ長くすることを可能にし、外部から
の熱の侵入を低減できるようにした。In order to achieve the above object, in the present invention, the legs of the vacuum container are formed hollow and open into the vacuum container, and the pillars of the cryogenic container are provided with a gap between the legs and the wall in the middle. By supporting the cryogenic container by positioning it in a vertical position, it is possible to increase the overall length of the support column compared to conventional ones, thereby reducing heat intrusion from the outside.
以下本発明を図面に示す一実施例について説明する。第
1図および第2図において、超電導コイル(1)は極低
温容器(2)内に収納されて極低温冷媒(3)に浸漬さ
れ、極低温容器(2)は真空容器(4)内に入れられて
いる。真空容器(4)を支持する脚部(6)はパイプ状
に形成され、上部は真空容器(4)内に開口し、下部は
架台(7)によって密閉され、内部を真空に保持されて
いる。脚部(6)の中で架台(7)に取り付けた支柱(
8)は脚部(6)の側壁と間隔を設けられて上方に延長
し、その上部は極低温容器(2)の側部に固着した座(
9)に固定されている。なお支柱(8)は極低温容器(
2)の自重および地震時の荷重に耐える強度に構成され
ている。An embodiment of the present invention shown in the drawings will be described below. In Figures 1 and 2, a superconducting coil (1) is housed in a cryogenic container (2) and immersed in a cryogenic refrigerant (3), and the cryogenic container (2) is placed in a vacuum container (4). It is included. The legs (6) supporting the vacuum container (4) are formed into a pipe shape, and the upper part opens into the vacuum container (4), and the lower part is sealed by a pedestal (7) to maintain a vacuum inside. . The support (
8) extends upward with a space provided between the side wall of the leg (6), and the upper part thereof is a seat (8) fixed to the side of the cryogenic container (2).
9) is fixed. Note that the pillar (8) is a cryogenic container (
2) It is constructed to be strong enough to withstand its own weight and the load during an earthquake.
上記のように、支柱(8)は真空容器(4)内のみなら
ず脚部(6)の中をも通って延長しているので、従来の
真空容器(4)に設けた支柱の長さより長く、例えば2
倍以上に長くとることができる。支柱の熱伝導によって
外部から極低温容器(2)へ侵入する侵入熱の量は伝導
部分の材料と断面積が同じなら長さに反比例するので、
支柱(8)の長さを従来のものよシ仮に2倍以上にする
ことによって、真空容器(4)から支柱(8)を通して
極低温容器(2)へ侵入する熱は半分以下になし得る。As mentioned above, the strut (8) extends not only inside the vacuum container (4) but also through the legs (6), so the length of the strut (8) is longer than that of the conventional vacuum container (4). long, e.g. 2
It can last more than twice as long. The amount of heat that enters the cryogenic container (2) from the outside through heat conduction through the struts is inversely proportional to the length if the material and cross-sectional area of the conductive part are the same.
By making the length of the strut (8) more than double that of the conventional one, the heat that enters the cryogenic container (2) from the vacuum vessel (4) through the strut (8) can be reduced to less than half.
第3図および第4図は他の実施例であって、第1図およ
び第2図と異なるところは、極低温容器(2)の支持座
(9)を支柱(8′)を介して脚部(6)の中まで下げ
、この支持座(9)に支柱(8)を取り付け、この支柱
(8)の上端部(8a)を真空容器(4)の上部に設け
たフランジ部(4a)に取り付けたものである。かくす
ることにより、支柱(8) 、 (8’)の合計の長さ
は前記一実施例よシ長くなって、極低温容器(2)への
侵へ熱を一層少なくすることができる。Figs. 3 and 4 show other embodiments, and the difference from Figs. A flange part (4a) is attached to the supporting seat (9), and the upper end (8a) of the support seat (8) is attached to the upper part of the vacuum container (4). It was attached to. By doing this, the total length of the struts (8) and (8') is longer than in the previous embodiment, and it is possible to further reduce the amount of heat eroded into the cryogenic container (2).
以上のように本発明によれば、極低温容器を真空容器内
に支持するに当って真空容器を支持するための脚部を中
空に形成して真空容器と連通させ、この脚部の中にその
側壁と間隔をもたせて設けた支柱により極低温容器を支
持するようにしたので、極低温容器への外部からの熱侵
入が大きく減少して、極低温容器内の液体ヘリウムなど
の極低温冷媒の蒸発量が大巾に減少し、高価な液体ヘリ
ウムなどの補充量が少なくなシ、またはヘリウム冷凍液
化機を小さくすることができて、省エネルギとなシ、経
済的であるなどのすぐれた効果がある。As described above, according to the present invention, when supporting a cryogenic container in a vacuum container, the legs for supporting the vacuum container are formed hollow and communicated with the vacuum container, and the legs are provided inside the legs. Since the cryogenic container is supported by supports that are spaced apart from the side walls, heat intrusion into the cryogenic container from the outside is greatly reduced, and the cryogenic refrigerant such as liquid helium inside the cryogenic container is The evaporation amount of liquid helium is greatly reduced, and the amount of replenishment of expensive liquid helium is small, and the helium refrigeration and liquefaction machine can be made smaller, saving energy and being economical. effective.
第1図は本発明の極低温装置の一実施例を示す縦断面図
、第2図は第1図の11−1線に沿う縦断面図、第3図
は他の実施例を示す縦断面図、第4図は第3図のN−]
’V線に沿う縦断面図、第5図は従来の極低温装置を示
す縦断面図、第6図は第5図のVl−Vl線に沿う縦断
面図である。
2・・・極低温容器 3・・・極低温冷媒4・・
・真空容器 6・・・脚部7・・・架台
8・・・支柱9・・・支持座FIG. 1 is a vertical cross-sectional view showing one embodiment of the cryogenic apparatus of the present invention, FIG. 2 is a vertical cross-sectional view taken along line 11-1 in FIG. 1, and FIG. 3 is a vertical cross-sectional view showing another embodiment. Figure 4 is N- in Figure 3]
5 is a longitudinal sectional view taken along line V, FIG. 5 is a longitudinal sectional view showing a conventional cryogenic apparatus, and FIG. 6 is a longitudinal sectional view taken along line Vl--Vl in FIG. 2... Cryogenic container 3... Cryogenic refrigerant 4...
・Vacuum container 6... Legs 7... Frame
8... Support column 9... Support seat
Claims (3)
器を支柱で内部に支持する真空容器と、この真空容器の
下部に固着した脚部とからなる極低温装置において、前
記脚部を中空に形成して前記真真空容器内に開口させ前
記支柱を前記脚部の中に脚部の側壁と間隔をあけて設置
し前記極低温容器を支持するようにしたことを特徴とす
る極低温装置。(1) In a cryogenic apparatus consisting of a cryogenic container containing a cryogenic refrigerant, a vacuum container that internally supports the cryogenic container with struts, and legs fixed to the lower part of the vacuum container, the legs is formed hollow and opens into the vacuum container, and the pillar is installed in the leg part with a space between the side wall of the leg part and supports the cryogenic container. Cryogenic equipment.
底部を密閉する架台に取り付けたことを特徴とする特許
請求の範囲第1項記載の極低温装置。(2) The cryogenic apparatus according to claim 1, wherein one end of the support is attached to a side of the cryogenic container, and the other end is attached to a pedestal that seals the bottom of the leg.
脚部内に位置させ、前記支持座の下に端を取り付けた支
柱の上端を真空容器の上部に取り付けて前記支持座を脚
部の内部に吊下げたことを特徴とする特許請求の範囲第
1項記載の極低温装置。(3) A support seat fixed to the side of the cryogenic container is located within the leg of the vacuum vessel, and the upper end of the column whose end is attached below the support seat is attached to the top of the vacuum vessel, and the support seat is attached to the leg of the vacuum vessel. 2. The cryogenic device according to claim 1, wherein the cryogenic device is suspended inside the chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59143304A JPS6123372A (en) | 1984-07-12 | 1984-07-12 | Cryogenic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59143304A JPS6123372A (en) | 1984-07-12 | 1984-07-12 | Cryogenic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6123372A true JPS6123372A (en) | 1986-01-31 |
Family
ID=15335643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59143304A Pending JPS6123372A (en) | 1984-07-12 | 1984-07-12 | Cryogenic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6123372A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2440350A (en) * | 2006-07-25 | 2008-01-30 | Siemens Magnet Technology Ltd | Arrangement for suspending a cryogen vessel within an outer vacuum container |
JP2012099618A (en) * | 2010-11-01 | 2012-05-24 | Toshiba Corp | Superconductive magnet device |
-
1984
- 1984-07-12 JP JP59143304A patent/JPS6123372A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2440350A (en) * | 2006-07-25 | 2008-01-30 | Siemens Magnet Technology Ltd | Arrangement for suspending a cryogen vessel within an outer vacuum container |
JP2008034846A (en) * | 2006-07-25 | 2008-02-14 | Siemens Magnet Technology Ltd | Cryostat having cryogenic temperature vessel supported within outer vacuum vessel |
GB2440350B (en) * | 2006-07-25 | 2009-10-14 | Siemens Magnet Technology Ltd | A cryostat comprising a cryogen vessel suspended within an outer vacuum container |
JP2012099618A (en) * | 2010-11-01 | 2012-05-24 | Toshiba Corp | Superconductive magnet device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5219420B2 (en) | A cryostat having a cryogenic vessel supported within an external vacuum vessel | |
JP2001141346A (en) | Cryogenic container for containing liquid nitrogen and use thereof for preserving biological product | |
JPS6123372A (en) | Cryogenic apparatus | |
JPH0442977A (en) | Superconducting magnet device | |
JPH029543Y2 (en) | ||
JPH05223424A (en) | Cryogenic container | |
JPS621209A (en) | Cryostat for superconducting magnet | |
Agureev et al. | Stable optimized superconducting skit coils | |
JPS6111680Y2 (en) | ||
SU669433A1 (en) | Cryostat | |
JPH04192314A (en) | Superconducting magnet | |
JPS59121986A (en) | Cryogenic magnetic shielding vessel | |
JPS5856242B2 (en) | Superconducting magnet device | |
JPS62283609A (en) | Gas cooled current supplying lead | |
JPS60219781A (en) | Superconductive device | |
JPH0478394U (en) | ||
SU1040098A1 (en) | Storage structure for juicy agricultural produce | |
JPH0179806U (en) | ||
JPH04320305A (en) | Superconductive device | |
JPS59191308A (en) | Cryostat | |
JPH02122406U (en) | ||
JP3243095B2 (en) | Superconducting magnetic shield structure | |
JPH05234746A (en) | Proximity-free magnet for magnetic resonance imaging | |
JPH01241807A (en) | Thermal insulation supporting device for superconductive coil | |
JPH03167807A (en) | Cryostat |