JPS59121986A - Cryogenic magnetic shielding vessel - Google Patents

Cryogenic magnetic shielding vessel

Info

Publication number
JPS59121986A
JPS59121986A JP57227624A JP22762482A JPS59121986A JP S59121986 A JPS59121986 A JP S59121986A JP 57227624 A JP57227624 A JP 57227624A JP 22762482 A JP22762482 A JP 22762482A JP S59121986 A JPS59121986 A JP S59121986A
Authority
JP
Japan
Prior art keywords
superconducting
vessel
external
container
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57227624A
Other languages
Japanese (ja)
Inventor
Eiji Horikoshi
堀越 英二
Motonobu Kawarada
河原田 元信
Kazunori Yamanaka
一典 山中
Hiroshi Kano
博司 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57227624A priority Critical patent/JPS59121986A/en
Publication of JPS59121986A publication Critical patent/JPS59121986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To reduce magnetic flux density from the quantum efficiency of a superconducting material by forming a superconducting state by oppositely combining two cylinders and increasing total internal volume by sliding the external cylinder. CONSTITUTION:A superconducting shielding vessel 1 made of a superconducting material such as Pb, Nb and an Nb-Ti alloy and the like is arranged in a case 3 made of a heat-insulating material together with an external vessel 2 made of a high permeability material, and the cryogenic magnetic shielding vessel (A) is formed. The external vessel 2 is prepared by the high permeability material, such as permalloy, permendur, etc., and a through-hole 5 into which liquid helium 4 flows is formed at the center of the bottom of the vessel 2. The external cylinder 1a and the internal cylinder 1b are constituted so as to be freely slid mutually, and encased into the case 3 together with the external vessel 2, and liquid helium 4 is charged into the case 3. When the superconducting shielding vessel 1 is brought to the superconducting state, the external cylinder 1a is pulled up. The internal volume is increased through the operation.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は、超伝導材料の量子化効果を応用して磁場を遮
蔽する極低温用磁気遮蔽容器に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a magnetic shielding container for cryogenic temperatures that shields a magnetic field by applying the quantization effect of a superconducting material.

(2)技術の背景 ソヨセフソン素子を用いたコンピューターにおいては、
超伝導状態にするために極低温にしなければならない。
(2) Technical background In computers using Soyosefson devices,
To achieve superconductivity, it must be brought to extremely low temperatures.

このためには、コンビーータのメインフレームを液体ヘ
リウム(4,2°K)中に入れて使用スる。また、コン
ビーータのメインフレームを外部磁場から辿へいして極
低磁場にする必弛があるので、液体ヘリウム中に超伝導
材で作った超伝導遮へいを設けている。地磁気が0.3
〜0.5G程度であるのに、1O−6Gという極低磁場
が求められているといわれる。
For this purpose, the main frame of the combeater is immersed in liquid helium (4.2°K). In addition, since it is necessary to remove the main frame of the combeater from an external magnetic field and reduce it to an extremely low magnetic field, a superconducting shield made of a superconducting material is provided in liquid helium. Earth's magnetic field is 0.3
It is said that an ultra-low magnetic field of 10-6 G is required, although it is about 0.5 G.

(3)従来技術と問題点 ジョセフソンコンビーータを液体ヘリウム中に入れ、そ
の周囲を超伝導体容器で取シ囲んで磁気遮蔽している。
(3) Prior art and problems A Josephson combinator is placed in liquid helium and surrounded by a superconductor container for magnetic shielding.

超伝導体容器の外側を高透磁率材料の容器で取シ囲む強
磁性遮蔽を伴用して冷却時での磁界を減らしている。
A ferromagnetic shield, which surrounds the outside of the superconductor container with a container of high magnetic permeability material, is used to reduce the magnetic field during cooling.

このような構造の極低温用磁気遮へい容器における超伝
導遮へい容器に関し、従来はマイスナー効果を応用した
ブラダ−(Bla、dder )法や・90−。
Regarding superconducting shielding containers in cryogenic magnetic shielding containers having such a structure, the bladder (Bla, dder) method, which applies the Meissner effect, and 90-.

ン(balloon )法が彩用されていた。これらの
方法は、超伝導材料である鉛(Pb)を折pたたんで素
材を構成し、それを広り資内側容器である超伝導遮へい
容器となしていた。しかるにこのような方法による場合
、切シたたまれた部分からひずみが入)、そこから磁場
が侵入するという欠点があった。従って、従来の構造で
は磁気遮へいが不十分であった。
The balloon method was widely used. In these methods, lead (Pb), which is a superconducting material, is folded to form a material, which is then expanded to form a superconducting shielding container, which is the inner container. However, when using this method, there are disadvantages in that strain is introduced from the cut and folded portions) and the magnetic field enters from there. Therefore, the conventional structure has insufficient magnetic shielding.

(4)発明の目的および構成 本発明は従来のかかる欠点を解消して、磁気遮へい効果
を増強することのできる極低温用磁気遮へい容器を提供
することを目的とする。かかる目的達成のため、本発明
は、超低4遮蔽容器および外側の強a性辿蔽容器の二電
榊造で極低温液体を収容している極低温用磁気遮蔽容器
において、該超伝導遮蔽容器を超伝導材料から成る二重
上の筒体の一部を互いに軸方向に摺動自在に重ね合せ/
こことを/+!f徴とする。
(4) Object and Structure of the Invention An object of the present invention is to provide a magnetic shielding container for cryogenic temperatures that can eliminate such conventional drawbacks and enhance the magnetic shielding effect. To achieve such an object, the present invention provides a superconducting shielding container for a cryogenic magnetically shielding container containing a cryogenic liquid with a two-electric structure of an ultra-low 4 shielding container and an outer strong magnetic shielding container. The container is constructed by overlapping parts of double cylinders made of superconducting material so that they can slide freely in the axial direction.
Here and there/+! It is assumed to be f-symptom.

上記のように、本発明は超伝導材料の量子化効果を応用
するものであシ、この原理は容器内の磁束密度×断面積
で表わされ、その値は一定であるということをその内容
とするものである。かかる原理にもとづき、本発明は例
えば円筒形のシリンダーを文」向して組み合わせ同容積
を増加することによシ磁場を希釈すなわち遮へいせんと
するものである。
As mentioned above, the present invention applies the quantization effect of superconducting materials, and this principle is expressed as the magnetic flux density in the container x cross-sectional area, and the content is that the value is constant. That is. Based on this principle, the present invention attempts to dilute or shield the magnetic field by, for example, combining cylindrical cylinders in a pattern to increase the same volume.

(5)発明の実施例 以下、本発明の一実施例を第1図ないし第3図に基づい
て説明する。
(5) Embodiment of the Invention An embodiment of the invention will be described below with reference to FIGS. 1 to 3.

第1図は不発明の容器に使用される超低導遮へい容器1
の透視図でおシ、第2図は使用状態にふ・ける超云尋遮
へい容器1の透視図である・第1図および第2図から明
らかなように外倶]筒1aおよび内側筒1bから構成さ
れ、互いに軸方向に摺動自在となっている。尚、前記超
低導遮へい容器1は鉛(Pb)、ニオブ(Nb )およ
びニオブ−チタン(Nb−TI)合金などの超電導材料
で作られる。
Figure 1 shows ultra-low conductivity shielding container 1 used for uninvented containers.
FIG. 2 is a perspective view of the super-sealing container 1 in use. As is clear from FIGS. 1 and 2, the outer tube 1a and the inner tube 1b are shown in FIG. , and are able to slide freely relative to each other in the axial direction. The ultra-low conductivity shielding container 1 is made of superconducting materials such as lead (Pb), niobium (Nb), and niobium-titanium (Nb-TI) alloy.

このように構成された超低導遮へい容器1は高透磁率材
の外側容器2とともに断熱材のケース3内に配置され極
低温用磁気遮へい容器Aを構成する。
The ultra-low conductivity shielding container 1 configured in this manner is placed in a case 3 made of a heat insulating material together with an outer container 2 made of a high magnetic permeability material, thereby forming a magnetic shielding container A for cryogenic temperatures.

前記外側容i 21ti /4−マロイ、・ヤーメンデ
ーールなどの高透磁率材料で作成され、その底部中央に
は液体ヘリウム4が流入するための透孔5が設けられて
いる。
The outer volume is made of a high magnetic permeability material such as i 21ti /4-Malloy, Yamendale, etc., and a through hole 5 through which liquid helium 4 flows is provided at the center of the bottom.

今、前記超低導遮へい容器1を厚さ0.5mの鉛で作成
した内径100露、長さ150m+nのシリンダーを組
み合わせ第1図および第2図で示されるように外側筒1
aおよび内側筒1bが互いに摺動自在となるように構成
し外側容器2とともにケース3内に収納した。次いで液
体ヘリウム4を投入した。超低導遮へい容器1が超電導
状態になったら、外側筒1aを上方に引き上げる。この
操作により内容積が増加することになる。従って、前述
の説明から理解されるように、内部にトラJ7″′され
ている磁束は、一定であるから磁束密度は減少する。例
えば前記の厚さ、内径および長さのシリンダーを組み合
わせたとき、内部の磁束密度は約500μGであったが
、第2図に示されるように外側筒1aを所定治具を用い
て上方に引き延ばし270mmの間隔にしその内容積を
増加せしめた。
Now, the ultra-low conductivity shielding container 1 is assembled with a cylinder made of lead with a thickness of 0.5 m and an inner diameter of 100 m and a length of 150 m + n, and an outer cylinder 1 is assembled as shown in FIGS. 1 and 2.
A and the inner cylinder 1b were configured to be able to slide freely relative to each other, and were housed in the case 3 together with the outer container 2. Next, liquid helium 4 was added. When the ultra-low conductivity shielding container 1 becomes superconducting, the outer cylinder 1a is pulled upward. This operation will increase the internal volume. Therefore, as understood from the above explanation, since the magnetic flux inside the cylinder is constant, the magnetic flux density decreases.For example, when cylinders with the above thickness, inner diameter, and length are combined Although the internal magnetic flux density was approximately 500 μG, as shown in FIG. 2, the outer cylinder 1a was stretched upward using a prescribed jig to a spacing of 270 mm to increase its internal volume.

この状態における内部の磁束密度は約300μGに減少
していた。
The internal magnetic flux density in this state had decreased to about 300 μG.

(6)発明の効果 本発明は、以上説明したように例えば二つのシリンダー
を対向して組わせ超電導状態を形成後、外側筒を摺動せ
しめて全体の内部容積を増加せしめることによシ、超電
導材料の量子化効果から磁束密度を低減せしめる効果を
奏する0従って)従来装置におけるように、超伝導材料
(Pb等)を折りたたんで広げて使用することがないの
で切シたたみ部分から磁場が侵入することもなく、極め
て簡便に磁場を希釈する効果が得られる・
(6) Effects of the Invention As explained above, the present invention, for example, combines two cylinders facing each other to form a superconducting state, and then slides the outer cylinder to increase the overall internal volume. The quantization effect of the superconducting material has the effect of reducing the magnetic flux density (0) Unlike conventional devices, the superconducting material (Pb, etc.) is not folded and unfolded for use, so the magnetic field enters from the folded part. The effect of diluting the magnetic field can be obtained extremely easily without the need for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に用いられる超低導遮へい
容器の透視図であシ、 第2図は超低導遮へい容器の使用中の透視図であシ、 第3図は本発明の一実施例を示す断面図である。 1・・・超低導遮へい容器、1a・・・内側筒、1b・
・・外側筒、2・・・外側筒、3・・・ケース、4・・
・液体ヘリウム。
FIG. 1 is a perspective view of an ultra-low conductivity shielding container used in an embodiment of the present invention, FIG. 2 is a perspective view of the ultra-low conductivity shielding container in use, and FIG. 3 is a perspective view of the ultra-low conductivity shielding container used in an embodiment of the present invention. FIG. 1 is a sectional view showing an embodiment of the invention. 1... Ultra-low conductivity shielding container, 1a... Inner cylinder, 1b.
...Outer tube, 2...Outer tube, 3...Case, 4...
・Liquid helium.

Claims (1)

【特許請求の範囲】[Claims] 1 超伝導遮蔽容器および外側の強磁性遮蔽容器の二重
ネ1ミ造で極低温液体を収容している極低温用磁気遮蔽
容器において、該超伝導遮蔽容器を超伝導材料から成る
二以上の筒体の一部を互いに軸方向に摺動自在に重ね合
わせたことを特徴とする、前記極低温用磁気遮蔽容器。
1. In a magnetically shielded container for cryogenic use that contains a cryogenic liquid with a double-layer construction of a superconducting shielded container and an outer ferromagnetic shielded container, the superconducting shielded container is made of two or more layers made of superconducting material. The above-mentioned magnetically shielded container for cryogenic temperatures, characterized in that parts of the cylindrical bodies are stacked on top of each other so as to be able to freely slide in the axial direction.
JP57227624A 1982-12-28 1982-12-28 Cryogenic magnetic shielding vessel Pending JPS59121986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227624A JPS59121986A (en) 1982-12-28 1982-12-28 Cryogenic magnetic shielding vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227624A JPS59121986A (en) 1982-12-28 1982-12-28 Cryogenic magnetic shielding vessel

Publications (1)

Publication Number Publication Date
JPS59121986A true JPS59121986A (en) 1984-07-14

Family

ID=16863839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227624A Pending JPS59121986A (en) 1982-12-28 1982-12-28 Cryogenic magnetic shielding vessel

Country Status (1)

Country Link
JP (1) JPS59121986A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114796A (en) * 1991-10-22 1993-05-07 Chodendo Sensor Kenkyusho:Kk Magnetic shielding case
JPH07193392A (en) * 1993-12-27 1995-07-28 Chodendo Sensor Kenkyusho:Kk Magnetic shield capsule
CN104640426A (en) * 2014-12-03 2015-05-20 北京原力辰超导技术有限公司 Magnetic shielding device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114796A (en) * 1991-10-22 1993-05-07 Chodendo Sensor Kenkyusho:Kk Magnetic shielding case
JPH07193392A (en) * 1993-12-27 1995-07-28 Chodendo Sensor Kenkyusho:Kk Magnetic shield capsule
CN104640426A (en) * 2014-12-03 2015-05-20 北京原力辰超导技术有限公司 Magnetic shielding device

Similar Documents

Publication Publication Date Title
Sharma Superconductivity: Basics and applications to magnets
Rogalla et al. 100 years of superconductivity
Narlikar Superconductors
Shiraishi et al. Vortex lattice transition in d-wave superconductors
Ford et al. High-temperature superconductivity-ten years on
GB1088172A (en) Superconductor arrangement for screening-off or trapping magnetic fields
JPS59121986A (en) Cryogenic magnetic shielding vessel
JPH0239105B2 (en)
US3582851A (en) Apparatus adapted to provide a zero magnetic field environment
US3361940A (en) Process of forming a super-conductive magnetic shield
Cesnak et al. A cylindrical coil with graduated current density for very homogeneous magnetic fields
JPH07122884A (en) Magnetism shielding structure
Hildebrandt Shielding with superconductors in small magnetic fields
US3323089A (en) Superconductive devices
Clem Zero-quantum superconducting magnetic shielding apparatus and method
USH1605H (en) Supercurrent bifilar twister
JPS5958803A (en) Superconductive coil
JPH04188893A (en) Electric and magnetic shielding case and manufacture thereof
Talantsev Cooper pair ring model
JPH07321381A (en) Squid storage container and squid cooling method
JP2781837B2 (en) Magnetic field stabilization method and magnetic field stabilizer
JPH06132695A (en) Superconductive magnetic shielding member and method for superconductive magnetic shielding
Coles Pumped Helium Tests of a 51-Centimeter Bore Niobium-Tin Magnet
Acerbi et al. High field superconducting solenoid for the LASA in Milan
JPH07321380A (en) Squid storage container and squid cooling method