JPS61233397A - Plastic solidifying treating method of radioactive waste - Google Patents

Plastic solidifying treating method of radioactive waste

Info

Publication number
JPS61233397A
JPS61233397A JP7396485A JP7396485A JPS61233397A JP S61233397 A JPS61233397 A JP S61233397A JP 7396485 A JP7396485 A JP 7396485A JP 7396485 A JP7396485 A JP 7396485A JP S61233397 A JPS61233397 A JP S61233397A
Authority
JP
Japan
Prior art keywords
waste
radioactive waste
solidifying
solidified
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7396485A
Other languages
Japanese (ja)
Inventor
克彦 柳川
時光 冨士雄
西沢 龍男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7396485A priority Critical patent/JPS61233397A/en
Publication of JPS61233397A publication Critical patent/JPS61233397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は原子力施設から排出される粉状や顆粒状の放射
性廃棄物を熱硬化性樹脂を用いて固形化処理する方法に
関する・ 〔従来技術とその問題点〕 原子力発電所などの原子力施設から排出される濃縮廃液
の乾燥物や使用済みのイオン交換樹脂など放射性を有す
る粉末状または顆粒状廃棄物の処理方法の一つとして、
例えば特開昭48−44700号公報に開示されている
ように1これら放射性廃棄物を熱硬化性樹脂とくに不飽
和ポリエステル樹脂を用いて固形化処理する方法が、ア
スファルトやセメントを用いた従来の固形化方法に比べ
て、減容化効果が大きく耐水性に優れ、短時間に固形化
処理が可能であることがら有方な処理方法として知られ
ている。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for solidifying powdery or granular radioactive waste discharged from nuclear facilities using a thermosetting resin. [Prior art] [and its problems] As a method for processing radioactive powder or granular waste such as dried concentrated waste liquid and used ion exchange resin discharged from nuclear facilities such as nuclear power plants,
For example, as disclosed in Japanese Unexamined Patent Publication No. 48-44700, 1 a method of solidifying these radioactive wastes using a thermosetting resin, particularly an unsaturated polyester resin, is different from the conventional solidifying method using asphalt or cement. It is known as an advantageous treatment method because it has a greater volume reduction effect, has better water resistance, and can solidify in a shorter time than the solidification method.

放射性廃棄物を固形化処理するための熱硬化性樹脂(以
下同化材と略称する)として不飽和ポリエステル樹脂を
用いて室温で硬化させるプラスチック固形化処理装置の
構成と作用の概要を説明するために第5図にその系統図
を示す@ 第5図においてホッパIK装入した粉末状または顆粒状
の放射性廃棄物2.第1のタンク3に装入した固化材の
液状不飽和ポリエステル樹脂4.第2のタンク5に装入
した重合開始剤6および第3のタンク7に装入した重合
促進剤8をそれぞれ適当な量を計量した後、これらを順
次混合槽9に投入し、撹拌器10を用いて所定時間撹拌
混合して液状混合物11とし、この混合物11を混合槽
9からその下方に置かれたドラム缶などの容器12に落
下投入する。次いで液状混合物11の入った容器12を
所定の場所に移し、そのまま室温に放置して液状混合物
11を室温硬化させることによシ、容器12の中にプラ
スチック固化体13が形成される。
To provide an overview of the structure and operation of a plastic solidification processing device that uses unsaturated polyester resin as a thermosetting resin (hereinafter referred to as assimilation material) to solidify radioactive waste at room temperature. The system diagram is shown in Fig. 5 @ In Fig. 5, powdered or granular radioactive waste is charged into the hopper IK2. Liquid unsaturated polyester resin as a solidification material charged into the first tank 3 4. After weighing appropriate amounts of the polymerization initiator 6 charged into the second tank 5 and the polymerization accelerator 8 charged into the third tank 7, they are sequentially charged into the mixing tank 9, and the stirrer 10 A liquid mixture 11 is obtained by stirring and mixing for a predetermined period of time using a mixing tank 9, and the mixture 11 is dropped from the mixing tank 9 into a container 12 such as a drum placed below it. Next, the container 12 containing the liquid mixture 11 is moved to a predetermined location and left at room temperature to cure the liquid mixture 11 at room temperature, thereby forming a plastic solidified body 13 in the container 12.

以上の過程において同化材4として不飽和ポリエステル
樹脂が使用されるのは、不飽和ポリエステル樹脂に重合
開始剤6と重合促進剤8を適切に選定して混合添加する
ことによって、室温で硬化反応を起こすことができ、速
硬化性を有するので加熱などの付帯設備を必要とせずに
放射性廃棄物2を含む固化体が得られやすく、ドラム缶
容器12などを用いた大型の固化体13として硬化させ
ることが可能であシ、しかも固化体13に要求される強
度を付与させるのに適しているからである〇しかしなが
ら、固化材4に不飽和ポリエステル樹脂を使用し九場合
にも、容器12に落下投入された液状混合物11中に固
化材4と放射性廃棄物2との大きな比重差に起因して放
射線廃棄物2が沈降することによシ、液状混合物11は
放射性廃棄物2が均一に分散されていない状態のまま硬
化してしまい、得られる固化体13は放射性廃棄物2と
固化材4とが互に分離された領域でそれぞれ硬化し、そ
のため固化体130強度強度中ドラム缶容器12とのす
き間を生ずるなど種々の欠点が見られる。このような放
射性廃棄物2の沈降現象を解決するために、固化材4と
重合促進剤8の配合量を調節して放射性廃棄物2が沈降
する前に液状混合物11の硬化を完了してしまう短時間
硬化方法も考えられるが、あt、bに硬化時間を速くす
ると液状混合物11を流出する経路のパイプ内で液状混
合物11が硬化するという事態を生じ、パイプを閉塞さ
せ放射性廃棄物固形化処理そのものが遂行不可能となる
ので好ましい方法ではない。
In the above process, the unsaturated polyester resin is used as the assimilation material 4 by appropriately selecting a polymerization initiator 6 and a polymerization accelerator 8 and adding them to the unsaturated polyester resin to allow the curing reaction to occur at room temperature. Since it has quick curing properties, it is easy to obtain a solidified body containing the radioactive waste 2 without the need for incidental equipment such as heating, and it can be hardened as a large solidified body 13 using a drum container 12 or the like. This is because it is possible and suitable for imparting the required strength to the solidified material 13.However, even when unsaturated polyester resin is used as the solidified material 4, it is possible to drop it into the container 12. Due to the large difference in specific gravity between the solidifying material 4 and the radioactive waste 2, the radioactive waste 2 settles in the liquid mixture 11, and the radioactive waste 2 is uniformly dispersed in the liquid mixture 11. The resulting solidified material 13 is cured in areas where the radioactive waste 2 and the solidifying material 4 are separated from each other. There are various drawbacks such as: In order to solve this phenomenon of settling of the radioactive waste 2, the amounts of the solidifying material 4 and the polymerization accelerator 8 are adjusted to complete the hardening of the liquid mixture 11 before the radioactive waste 2 settles. A short-time curing method is also possible, but if the curing time is accelerated as in (a) and (b), the liquid mixture 11 will harden in the pipe that flows out of the liquid mixture 11, blocking the pipe and solidifying the radioactive waste. This is not a preferred method because the process itself becomes impossible.

したがって液状混合物11が容器12内で完全に硬化す
るまで放射性廃棄物2を均一な分散状態に保持させてお
く方法が望まれる〇 〔発明の目的〕 本発明は上述の点に鑑みてなされたものであシ、その目
的は放射性廃棄物をプラスチック固形化処理する際に、
処理過程中で放射性廃棄物が沈降することなく、放射性
廃棄物を固化体中に均一に分散させ名ことができる処理
方法を提供することにある。
Therefore, a method is desired in which the radioactive waste 2 is maintained in a uniformly dispersed state until the liquid mixture 11 is completely hardened within the container 12. [Object of the Invention] The present invention has been made in view of the above points. The purpose is to solidify radioactive waste into plastic.
It is an object of the present invention to provide a treatment method capable of uniformly dispersing radioactive waste in a solidified body without causing the radioactive waste to settle during the treatment process.

〔発明の要点〕[Key points of the invention]

本発明は放射性廃棄物の粒径が200μm以下に粒度分
布を有するものを用い、同化材として使用する不飽和ポ
リエステル樹脂に対してこの放射性廃棄物の添加量を5
5重量%ないし75重量%とすることにより、固形化処
理過程において放射性廃棄物が沈降するのを防ぎ、放射
性廃棄物が均一に分散した固化体が得られるようにし九
ものである。
In the present invention, radioactive waste having a particle size distribution of 200 μm or less is used, and the amount of radioactive waste added to the unsaturated polyester resin used as an assimilation material is 5%.
By setting the amount to 5% to 75% by weight, it is possible to prevent the radioactive waste from settling during the solidification process and to obtain a solidified body in which the radioactive waste is uniformly dispersed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

本発明者らは本発明を遂行するに当シ、放射性廃棄物の
代シにこの糧の実験に常用されている硫酸ソーダの粉末
を模擬廃棄物(以下廃棄物と略称する)として用いて実
験を行ったが、実験装置は第5図に示したものと同種の
ものを使用したので装置の構成と固形化処理の手順は説
明を省略する。
In carrying out the present invention, the present inventors carried out experiments using sodium sulfate powder, which is commonly used in experiments on this food, as a simulated waste (hereinafter referred to as waste) instead of radioactive waste. However, since the experimental equipment used was the same as that shown in FIG. 5, the explanation of the equipment configuration and solidification procedure will be omitted.

実験1 本発明者らは廃棄物の粒度分布が液状混合物中での沈降
状態に影響を与えるとの認識に基づき、廃棄物を粉砕し
て比較的粒径の大きい粒子からなる試料と、これよシか
な夛小さい粒子から彦る試料とを作製した。第1図はこ
れらの廃棄物の粒度分布を示した線図であって直線Aの
1000μm以下の粒子からなる試料(A廃棄物とする
)と直線Bの200μm以下の粒手からなる試料(B廃
棄物とする)との2種類を得た0これらA、B両廃棄物
をそれぞれ廃棄物が60重量%、固化材を40重量%と
なるように計量配合し、さらに重合開始剤、重合促進剤
を添加してよく撹拌し、ドラム缶容器内に重合硬化させ
て固化体とした。第2図は得られた固化体の高さとその
中に含まれる廃棄物量との関係を示す線図を示したもの
であシ、(a)はA廃棄物、(ロ)はB廃棄物の場合で
ある。第2図から明らかなように(&)の大きな粒子を
もつA廃棄物では固化体の最上部には廃棄物が存在しな
くなシ、初めの配合量60重量%を保持する部分が偏在
しているのに対し、(B)の小さな粒子からなるB廃棄
物はほぼ全域にわ九って固化体中に初期の配合量60重
量%が保たれている。このことはA廃棄物では同化体の
硬化が完了するまでに沈降現象が生ずるが、B廃棄物は
A廃棄物はど大きく沈降することなくほぼ一様に分散す
ることを意味する。上部に廃棄物がなくなる固化体は硬
化過程における硬化発熱量や収縮量が大きいためにクラ
ックの発生やドラム缶容器との間に隙間ができるなどの
不都合が生ずるが廃棄物が一様に分散する固化体はこの
ような欠陥が見られず、したがって廃棄物は200μm
以下の範囲に粒度分布を有するものが適していることが
わかる。
Experiment 1 Based on the recognition that the particle size distribution of waste affects the sedimentation state in a liquid mixture, the present inventors crushed waste and produced samples consisting of relatively large particles and samples of this size. A sample was prepared from a large number of small particles. Figure 1 is a diagram showing the particle size distribution of these wastes, with straight line A representing a sample consisting of particles of 1000 μm or less (referred to as A waste), and straight line B representing a sample consisting of particles of 200 μm or less (B). These A and B wastes were weighed and blended so that the waste amount was 60% by weight and the solidifying material was 40% by weight, and then a polymerization initiator and a polymerization accelerator were added. The agent was added, stirred well, and polymerized and hardened in a drum container to form a solidified product. Figure 2 shows a diagram showing the relationship between the height of the obtained solidified material and the amount of waste contained therein, (a) is for A waste, and (b) is for B waste. This is the case. As is clear from Figure 2, in the case of waste A with large particles (&), there is no waste at the top of the solidified material, and the portion that retains the initial blended amount of 60% by weight is unevenly distributed. On the other hand, waste B consisting of small particles (B) maintains the initial blending amount of 60% by weight in the solidified material over almost the entire area. This means that in waste A, sedimentation occurs before the hardening of the assimilate is completed, but in waste B, waste A is almost uniformly dispersed without significant sedimentation. A solidified product with no waste at the top has a large amount of curing heat and shrinkage during the curing process, which causes problems such as cracks and gaps between the drum and the container, but solidification allows waste to be evenly distributed. The body does not show such defects and therefore the waste is 200 μm
It can be seen that particles having a particle size distribution within the following range are suitable.

実験2 次に本発明者らは固化体中の廃棄物含有量が固化体の強
度を決める要因となることから廃棄物の適切な含有量に
対する配合量を求めた。
Experiment 2 Next, since the content of waste in the solidified body is a factor that determines the strength of the solidified body, the present inventors determined the amount to be blended for the appropriate content of waste.

放射線廃棄物を含むプラスチック固化体に対して圧縮強
さ500kg/−を有することが評価基準性能として要
求されているので、本実験においてもまず500 #/
d以上の圧縮強度を得ることができる廃棄物含有量を知
るためにB廃棄物による固化体を用いて両者め関係を求
めた結果を第3図に示す。第3図かられかるようにB廃
棄物含有量が50重量%から75重量%の範囲となる個
所で固化体は500勢−を超える圧縮強さを示す◇すな
わち同化体K 500 k#/−以上の圧縮強さを与え
るためには廃棄物を50重量%°ないし75重量%含む
ことが必要であるOB廃棄物を用いた固化体は前述のよ
うに廃棄物の分散が良好であるから、との固化体の上部
1005mまでの範囲で500 #/−の圧縮強度を示
す廃棄物含有量50重量%ないし75重量%となるべき
配合量を求めるために、B廃棄物の配合量が40.50
,55,60.65.70゜75各重量−となるように
固化材の不飽和ポリエステル樹脂と混合してそれぞれ固
化体をつく)、各配合量に対応する同化体中のB廃棄物
の含有量との関係を表わす線図を得、これを第4図に示
す。
Since the evaluation standard performance is required to have a compressive strength of 500 kg/- for plastic solidified bodies containing radioactive waste, in this experiment, the compressive strength was 500 kg/-.
In order to find out the waste content that can obtain a compressive strength of d or more, the relationship between the two was determined using a solidified body of B waste, and the results are shown in Fig. 3. As can be seen from Fig. 3, the solidified material exhibits a compressive strength exceeding 500 k#/- at locations where the B waste content ranges from 50% to 75% by weight. In order to provide the above compressive strength, it is necessary to contain 50% to 75% by weight of waste.As mentioned above, the solidified material using OB waste has good dispersion of waste. In order to determine the blending amount that should give a waste content of 50% to 75% by weight that exhibits a compressive strength of 500 #/- in the upper 1005m of the solidified body, the blending amount of B waste is 40%. 50
, 55, 60. 65. 70° 75 each weight - mixed with unsaturated polyester resin as a solidifying agent to form a solidified body), content of B waste in the assimilate corresponding to each blending amount. A diagram representing the relationship with quantity was obtained and is shown in FIG.

第4図から固化体中上端から100露までの部分にB廃
棄物を50〜75重量%含有させる、すなわち500 
k&/d以上の圧縮強度を付与させるには配合量を55
重量%ないし75重量%の範囲に定めればよいことがわ
かる。
As shown in Figure 4, the part of the solidified body from the upper end to 100 yen contains 50 to 75% by weight of B waste, that is,
To impart a compressive strength of k&/d or more, the blending amount should be 55%.
It can be seen that it is sufficient to set the content within the range of 75% by weight.

以上実験1と実験2から廃棄物を固化材と混合して固形
化処理するとき、固化体の中に廃棄物が沈降することな
く、同化体に圧縮強度の規準値500 kg/cj以上
を付与させるには、廃棄物の粒度分布が最大粒径200
μm以下にあるものを用いて、固化剤との配合量を55
重量%から75重量Sまでの間に決めればよいとの結論
に達する。
From the above experiments 1 and 2, when waste is mixed with solidification material and solidified, the waste does not settle in the solidified material, and the standard value of compressive strength of 500 kg/cj or more is imparted to the assimilated material. In order to
Using a substance with a diameter of 55 μm or less, the amount of solidifying agent added is 55 μm or less.
We have reached the conclusion that it is sufficient to decide between % by weight and 75 weight S.

なお本実験では放射性廃棄物の代シに硫酸ソーダの粉末
を用いて行なっているが、放射性廃棄物で実施されると
きも同様の結果が得られることは明らかであシ、上記粒
度分布を有する放射性廃棄物とするためには、第5図ホ
ツノ(−1に装入する易に達せられる。
In this experiment, we used sodium sulfate powder as a substitute for radioactive waste, but it is clear that similar results can be obtained when using radioactive waste. In order to treat it as radioactive waste, it can be easily achieved by charging it into the hot spring (-1) in Figure 5.

〔発明の効果〕〔Effect of the invention〕

不飽和ポリエステル樹脂を固化材として放射性廃棄物の
プラスチック固形化処理を行なうに当って、硬化過程中
に放射性廃棄物と固化材との比重差に起因して放射性廃
棄物が沈降するのを防ぎ、固化体に所期の圧縮強さが得
られるように、本発明によれば実施例で説明したごとく
、最大粒径が200μm以下にある粒度分布をもった放
射性廃棄物を用い、放射性廃棄物と固化材との混合比率
を放射性廃棄物が55重量%から75重量−の範囲と定
めたために、放射性廃棄物は硬化に至るまで沈降するこ
となく、得られる固化体は全域にわたって放射性廃棄物
が均一に分散したものとなシ、固化体の強度評価基準で
ある5 00 k#/cl/1の圧縮強さを確保するこ
とができた。
When solidifying radioactive waste into plastic using unsaturated polyester resin as a solidifying material, it is possible to prevent the radioactive waste from settling due to the difference in specific gravity between the radioactive waste and the solidifying material during the curing process. In order to obtain the desired compressive strength in the solidified material, according to the present invention, as explained in the examples, radioactive waste with a particle size distribution in which the maximum particle size is 200 μm or less is used, and radioactive waste is mixed with radioactive waste. Because the mixing ratio of radioactive waste with the solidifying material was determined to be in the range of 55% to 75% by weight, the radioactive waste did not settle until hardening, and the resulting solidified material contained uniformly radioactive waste over the entire area. It was possible to secure a compressive strength of 500 k#/cl/1, which is the strength evaluation standard for the solidified material, when the solidified material was dispersed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は廃棄物の粒度分布を示す線図、第2図は廃棄物
含有量と固化体の高さ寸法との関係を示す線図、第3図
は廃棄物含有量と固化体の圧縮強さとの関係を示す線図
、第4図は固化体への廃棄物添加量と廃棄物含有量との
関係を示す線図、第5図は放射性廃棄物のプラスチック
固形化処理装置の構成と系統を示す概念図である0 2・・・・・・放射性廃棄物、4・・・・・・固化材、
9・・・・・・混合槽、11・・・・・・液状混合物、
12・・・・・・ドラム缶容器。 13・・・・・・固化体。 ωイb4.さくnuワp 第3図
Figure 1 is a diagram showing the particle size distribution of waste, Figure 2 is a diagram showing the relationship between waste content and solidified body height, and Figure 3 is a diagram showing the relationship between waste content and solidified body compaction. Figure 4 is a diagram showing the relationship between the strength and the amount of waste added to the solidified body and the waste content. Figure 5 is the configuration of the radioactive waste plastic solidification processing equipment. Conceptual diagram showing the system 0 2...Radioactive waste, 4...Solidification material,
9...Mixing tank, 11...Liquid mixture,
12...Drum container. 13...Solidified body. ωi b4. Sakunuwap Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)放射性廃棄物、不飽和ポリエステル樹脂、重合開始
剤および重合促進剤からなる液状混合物をドラム缶容器
内に注入放置して固形化処理する方法において、200
μm以下の粒径をもつて分布する放射性廃棄物を用い、
かつ該放射性廃棄物と不飽和ポリエステル樹脂との配合
割合を放射性廃棄物が55重量%ないし75重量%とな
るように添加することを特徴とする放射性廃棄物のプラ
スチック固形化処理方法。
1) A method in which a liquid mixture consisting of radioactive waste, an unsaturated polyester resin, a polymerization initiator, and a polymerization accelerator is injected into a drum container and left to solidify.
Using radioactive waste distributed with a particle size of less than μm,
A method for solidifying radioactive waste into plastic, characterized in that the radioactive waste and the unsaturated polyester resin are added at a mixing ratio of 55% to 75% by weight of the radioactive waste.
JP7396485A 1985-04-08 1985-04-08 Plastic solidifying treating method of radioactive waste Pending JPS61233397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7396485A JPS61233397A (en) 1985-04-08 1985-04-08 Plastic solidifying treating method of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7396485A JPS61233397A (en) 1985-04-08 1985-04-08 Plastic solidifying treating method of radioactive waste

Publications (1)

Publication Number Publication Date
JPS61233397A true JPS61233397A (en) 1986-10-17

Family

ID=13533267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7396485A Pending JPS61233397A (en) 1985-04-08 1985-04-08 Plastic solidifying treating method of radioactive waste

Country Status (1)

Country Link
JP (1) JPS61233397A (en)

Similar Documents

Publication Publication Date Title
JP7152427B2 (en) Method for producing aggregate from returned concrete
JPH0634097B2 (en) Solidifying agent for radioactive waste
DE69302016T2 (en) Production of inorganic, curable sludge and its use for solidifying waste materials
EP0168638B1 (en) Process for making disposable products from polluting salt mixtures
JPS61233397A (en) Plastic solidifying treating method of radioactive waste
CA1216694A (en) Composition of matter suitable for blocking radioactive residues, products based on said composition wherein radioactive residues are blocked and process for obtaining said products
GB2090045A (en) Method of embedding radioactive waste in bitumen
EP0088512B1 (en) A process for solidifying a waste material
JP4416142B2 (en) Method and apparatus for solidifying radioactive waste
JP3595969B2 (en) Simple blending method for fluidized soil
JPS62133397A (en) Plastic solidifying processing method of radioactive waste
Alexander et al. Relative stabilizing effect of various limes on clayey soils
WO2023039825A1 (en) Method for treating borate waste liquid
TWI741802B (en) Method of processing liquid borate waste
JPS61178698A (en) Method of hardening water glass
JPS63167296A (en) Manufacture of solid substance containing proper cement for finally storing water containing thorium
JP2019181351A (en) Method of producing fluidized soil
JPS6175298A (en) Plastic solidifying treating method of radioactive waste
JPH085794A (en) Solidification equipment and method for radioactive waste pellet
GB1564600A (en) Building block
JP3579101B2 (en) Processing method of harmful substance-containing powder, surface coating agent and concrete secondary product using the powder as raw material
JP3101129B2 (en) Method of manufacturing heavy concrete
JPS6175299A (en) Plastic solidifying treating method of radioactive waste
JPS6158797B2 (en)
JP3821889B2 (en) Disposal method for contaminated concrete waste