JPS61233325A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPS61233325A
JPS61233325A JP60074773A JP7477385A JPS61233325A JP S61233325 A JPS61233325 A JP S61233325A JP 60074773 A JP60074773 A JP 60074773A JP 7477385 A JP7477385 A JP 7477385A JP S61233325 A JPS61233325 A JP S61233325A
Authority
JP
Japan
Prior art keywords
flange
cylinder
face
inner cylinder
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60074773A
Other languages
Japanese (ja)
Other versions
JPH0453368B2 (en
Inventor
Takashi Watanabe
孝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60074773A priority Critical patent/JPS61233325A/en
Publication of JPS61233325A publication Critical patent/JPS61233325A/en
Publication of JPH0453368B2 publication Critical patent/JPH0453368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To extend the life of holding of a degree of vacuum and enhance the mechanical strength and improve the productivity by welding a stainless internal cylinder and a 'Kovar(R)' flange subjected to nickel electroplating by an electron beam. CONSTITUTION:A stainless internal cylinder 2 is formed into a cylindrical shape, and a package 7 provided with an infrared detecting element 6 is provided on one face, and a 'Kovar(R)' flange 4 is joined to the other end face. A ceramic layer 16 exists on the outside surface of the cylinder 2 and is supported while being insulated electrically from metallic wires and the internal cylinder 2. An external cylinder 3 has one end face joined to the flange 4, and a window 5 is fixed to the other end face by a glass melt-sticking layer 17. A metallic vapor-deposited film 18 is formed on the inside of the external cylinder 3 to make it difficult to transmit the radiant heat from the external cylinder 3 to the internal cylinder 2, the package 7, and the detecting element 6. The flange has an airtight terminal 19 insulated by glass because it is necessary to take out the signal from the detecting element to the outside of a low temperature holding vessel 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、  InSb、 HgCdTe、 Pb8
nTe 等で極低温に冷却して動作させる赤外線検知素
子を具備する赤外線検知器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is based on InSb, HgCdTe, Pb8
This invention relates to an infrared detector equipped with an infrared detection element that is operated by cooling it to an extremely low temperature with nTe or the like.

〔従来の技術〕[Conventional technology]

第3図は従来の赤外線検知器の構成例を示すもので9図
において(1)は低温保持容器で、ガラス製の内筒(2
1,外筒(31,フランジ(4)、赤外線透過材料(例
えばGe )であるウィンド(5)、赤外線検知素子(
6)を具備したパッケージ(7)で構成されている。
Figure 3 shows an example of the configuration of a conventional infrared detector.
1, outer cylinder (31, flange (4), window (5) made of infrared transmitting material (e.g. Ge), infrared detection element (
6) is comprised of a package (7).

上記ウィンド(5)は、真空用接着剤(例えばMARI
AN社商標TORR5EAL)Ic!つて上記外筒(3
)の端面に接着されている。(8)はジュールトムソン
冷却器で、スパイラル状に巻かれたフィンチューブ(9
)とノズル員を具備しておシ、高圧ガス(例えば窒素)
の充填されたボンベαυと弁α2を介して配管a3によ
って連通している。ここで、低温保持容器(1)の内部
は、外部からの侵入熱を遮断するため、10 〜10 
 TORR程度の真空に保たれている。赤外線検知素子
(6)の信号は金属線α◆によ〕。
The window (5) is made of vacuum adhesive (such as MARI).
AN company trademark TORR5EAL) Ic! With the above outer cylinder (3
) is glued to the end face of the (8) is a Joule-Thomson cooler with spirally wound fin tubes (9).
) and a nozzle member for high-pressure gas (e.g. nitrogen)
It communicates with the filled cylinder αυ through a pipe a3 via a valve α2. Here, the inside of the low temperature holding container (1) has a temperature of 10 to 10 to block heat from entering from the outside.
It is maintained at a vacuum level of about TORR. The signal of the infrared detection element (6) is provided by the metal wire α◆].

端子αSから低温保持容器【1)の外部に取出すことが
できる。
It can be taken out of the cryogenic container [1] from the terminal αS.

次に以上のような構成からなる従来の赤外線検知器の動
作について説明する。弁α2を開放し、ボンベαυから
ジュールトムソン冷却器(8)に高圧ガスを供給すると
、スパイラル状に巻かれたフィンチューブ(9)を通っ
てノズル(IGからガスが噴出する。
Next, the operation of the conventional infrared detector having the above configuration will be explained. When the valve α2 is opened and high pressure gas is supplied from the cylinder αυ to the Joule-Thomson cooler (8), the gas is ejected from the nozzle (IG) through the spirally wound fin tube (9).

この時ガスは高圧から低圧(大気圧)に開放され、67
tめ、ジュールトムソン効果によって温度降下する。こ
の温度降下は微々するものであるが、内筒(2)の内側
に沿って排出されるガスと、フィンチューブ(9)の内
部を流れる新たに供給されるガスとの間に熱交換を行な
わせることによ〕、究極的には上記ガスはその液化温度
(窒素の場合でT門0に達する。赤外線検知素子り6)
およびパッケージ(7)は上記液化温度に達したガスを
吹きつけられることによル極低温に冷却されることにな
るが、上記ジュールトムソン冷却器の冷却能力は通常1
W〜5w程度と少ないので、外部からの熱侵入を妨げな
ければノズル顛から噴出するガスを液化温度に到達せし
めることはできない。低温保持容器(1)は外部からの
侵入熱を遮断するための容器であり。
At this time, the gas is released from high pressure to low pressure (atmospheric pressure), and 67
Second, the temperature decreases due to the Joule-Thomson effect. Although this temperature drop is slight, heat exchange takes place between the gas discharged along the inside of the inner tube (2) and the newly supplied gas flowing inside the fin tube (9). Ultimately, the above gas will reach its liquefaction temperature (in the case of nitrogen, T gate 0).Infrared sensing element 6)
The package (7) is cooled to an extremely low temperature by being blown with gas that has reached the liquefaction temperature, but the Joule-Thomson cooler usually has a cooling capacity of 1
Since the amount is as small as W~5W, it is not possible to make the gas ejected from the nozzle body reach the liquefaction temperature unless heat intrusion from the outside is prevented. The low temperature holding container (1) is a container for blocking heat from entering from the outside.

内筒(2)、外筒(31,フランジ(4)、ウィンド(
51で囲まれている容器内部は外部と密閉され、かつ真
空に保たれている。
Inner cylinder (2), outer cylinder (31, flange (4), window (
The inside of the container surrounded by 51 is sealed from the outside and kept in vacuum.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし1以上のような構成から成る従来の赤外線検知器
は次のような問題点があった。
However, conventional infrared detectors having one or more configurations have the following problems.

0) ウィンド(5)と外筒(3)の接合のため使用し
ている接着剤は有機生成物であるから長期的に見れば、
多量の有機ガスを放出し、低温保持容器(1)の真空度
維持上、特に寿命という面で好ましくない。
0) The adhesive used to join the window (5) and outer cylinder (3) is an organic product, so in the long run,
A large amount of organic gas is emitted, which is undesirable in terms of maintaining the degree of vacuum in the cryogenic container (1), especially in terms of life.

←)主要構造部材である内筒(2)、外筒(3)、フラ
ンジ(4)がガラス製で靭性に欠けるので厳しい耐振動
性、耐衝撃性が要求される場合(例えはミサイル、航空
機等に搭載される場合)には機械的強度の面で適さない
←) In cases where the main structural members, the inner cylinder (2), outer cylinder (3), and flange (4), are made of glass and lack toughness, so severe vibration resistance and impact resistance are required (for example, missiles, aircraft etc.) is not suitable in terms of mechanical strength.

el  低温保持容器(11の内筒(2)Kt−iジュ
ールトムソン冷却器(8)が挿入され、この時上記内筒
(2)とジュールトムソン冷却器(8)との隙間は、ノ
ズル(11から噴出され外部へ排出されるガスとフィン
チューブ(9)内を流れる新たに供給されるガスとの熱
交換効率に大きな影!#を与えるので、内筒(2)には
精密な加工寸法精度が要求されるが、内筒(2)がガラ
ス製なので研磨等生産性の悪い加工手段でなければ達成
できない。
el Inner cylinder (2) of the low temperature holding container (11) Kt-i Joule-Thomson cooler (8) is inserted, and at this time, the gap between the inner cylinder (2) and the Joule-Thomson cooler (8) is the nozzle (11). The inner cylinder (2) must have precise machining and dimensional accuracy because this will have a big impact on the heat exchange efficiency between the gas ejected from the fin tube (9) and the newly supplied gas flowing inside the fin tube (9). However, since the inner cylinder (2) is made of glass, this can only be achieved by processing methods with poor productivity such as polishing.

この発明は以上のような問題点を改善するためになされ
たもので、真空度維持の寿命が長く1機械的強度が高く
、かつ生産性の曳い赤外線検知器を提案するものである
This invention was made to improve the above-mentioned problems, and proposes an infrared detector that has a long vacuum maintenance life, high mechanical strength, and high productivity.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る赤外線検知器は、主要構造部材である内
筒、外筒、フランジを金属性にし、特に内筒はステンレ
ス、また気密端子を有するフランジは電気ニッケルメッ
キを施し友コバールの材料を用いたものである。
In the infrared detector according to the present invention, the main structural members, the inner tube, the outer tube, and the flange, are made of metal.In particular, the inner tube is made of stainless steel, and the flange with the airtight terminal is electro-nickel plated and made of Tomo Kovar's material. It was there.

なお、コバールはガラスと熱膨張係数が接近しており、
その組成は、N12B 〜29%、co17〜18チ、
MnO,2チ、Fe残であ夛、一般にガラスやセラミッ
クに接合される封着金属として使用される。
Furthermore, Kovar has a coefficient of thermal expansion close to that of glass.
Its composition is N12B ~29%, CO17~18C,
Made of MnO, 2-chip, and Fe residue, it is generally used as a sealing metal to be bonded to glass or ceramics.

〔作用〕[Effect]

この発明においては、ステンレス製の内筒と。 In this invention, the inner cylinder is made of stainless steel.

電気ニッケルメッキを施こしたコバール製のフランジを
電子ビーム溶接することにより、低温保持容器を真空維
持できる構造にした。
By electron beam welding the flanges made of Kovar with electrolytic nickel plating, we created a structure that allows the cryogenic container to maintain a vacuum.

〔実施例〕〔Example〕

第1図はこの発明による赤外線検知器の構成例を示す図
であり、第2図は第1図の一部詳細を示す図である。v
L1図および第2図ではジュールトムソン冷却器、配管
、弁、ボンベ等この発明と直接係りのない部品は省略し
ている。図において。
FIG. 1 is a diagram showing an example of the configuration of an infrared detector according to the present invention, and FIG. 2 is a diagram showing some details of FIG. 1. v
In Figure L1 and Figure 2, parts that are not directly related to this invention, such as a Joule-Thomson cooler, piping, valves, and cylinders, are omitted. In fig.

(2)は内筒で金属(例えばステンレス)を円筒状に成
形したもので、一方の端面には赤外線検知素子(6)を
具備するパッケージ(7)が設けられておフ、もう一方
の端面にはコパール製のフランジ(4)が接合されてい
る。上記円筒(2:の外面には0.1〜0.4IE1に
のセラミック層t1eがあり、金属線Q4はこのセラミ
ック層(Ieに埋設されてお)、金属線Iどおし、およ
び内筒(2)と電気的に絶縁状態で支持されている。
(2) is an inner cylinder made of metal (e.g. stainless steel) molded into a cylindrical shape, with a package (7) equipped with an infrared detection element (6) on one end face, and a package (7) equipped with an infrared detection element (6) on the other end face. A copal flange (4) is joined to the flange (4). There is a ceramic layer t1e of 0.1 to 0.4IE1 on the outer surface of the cylinder (2:), and the metal wire Q4 is connected to this ceramic layer (embedded in Ie), the metal wire I, and the inner cylinder. (2) and is supported in an electrically insulated state.

(3)は外筒でステンレスを円筒状に成形したもので。(3) is an outer cylinder made of stainless steel molded into a cylindrical shape.

片方の端面は上記フランジ(41と接合され、もう一方
の端面には赤外線透過材料(例えばGe)である円板状
のウィンド(5)がガラス融着層αηによシ固定されて
いる。さらに、外筒(3)の内側は金属蒸着膜Qlが形
成され、内筒(2)、パッケージ(7)および赤外線検
出素子(6)に外筒(3)からのふく射熱が伝わりにく
いようになっている。
One end surface is joined to the flange (41), and the other end surface has a disc-shaped window (5) made of an infrared transmitting material (eg, Ge) fixed to the glass fusion layer αη. A metal vapor deposition film Ql is formed on the inside of the outer cylinder (3), making it difficult for the radiant heat from the outer cylinder (3) to be transmitted to the inner cylinder (2), the package (7), and the infrared detection element (6). There is.

ところで上記フランジ(4)は検出素子(6)からの信
号を低温保持容器(1)の外部に取り出す必要性からガ
ラスで絶縁された気密端子a!Jを有しており、材質は
ガラスと熱膨張係数の近いコバールが適している。また
、内筒(2)はフランジ(4)から検出素子(6)への
伝導による熱侵入をできるだけ少なくする必要性から、
加工性がよくその厚さを小さくできるような熱伝導率の
小さいステンレスが適している。
By the way, the flange (4) is an airtight terminal a! insulated with glass because it is necessary to extract the signal from the detection element (6) to the outside of the cryogenic container (1). J, and the suitable material is Kovar, which has a coefficient of thermal expansion close to that of glass. In addition, the inner cylinder (2) is designed to minimize heat intrusion from the flange (4) to the detection element (6) due to conduction.
Stainless steel is suitable because it has good workability and low thermal conductivity so that its thickness can be reduced.

第4図に主な金属材料の熱伝導率を示す。ここで。Figure 4 shows the thermal conductivity of main metal materials. here.

金属線組4と気密端子aldマイクロスポット溶接する
が、その接合性をよくする九めと防錆性の面から、一体
で構成される上記フランジ(4)と気密端子a!Iはニ
ッケルメッキが好ましい。また、フランジ(4)と内筒
(2)は気密接合する必要があるが、熱歪の少ない電子
ビーム溶接(2)が適用され、その接合性をよくするた
めに、フランジ(4)は特に電気ニッケルメッキを施こ
しておくことが重要である。
The metal wire set 4 and the airtight terminal ALD are micro-spot welded, but from the viewpoint of improving the bondability and rust prevention, the above-mentioned flange (4) and the airtight terminal a! I is preferably nickel plated. In addition, the flange (4) and the inner cylinder (2) must be airtightly joined together, but electron beam welding (2) with low thermal distortion is applied, and in order to improve the joint, the flange (4) is It is important to apply electro-nickel plating.

〔発明の効果〕〔Effect of the invention〕

この発明による赤外線検知器は以上のような構成から成
るため0次のような利点がある。
Since the infrared detector according to the present invention has the above-described configuration, it has the following zero-order advantages.

け)主要構造部材である内筒(2)、外筒(3)、フラ
ンジ(4)が金属性であることから9機械的強度にすぐ
れ、厳しい耐振性、耐衝撃性が要求される場合(例えば
、ミサイルや航空機に搭載される場合)でも、要求を満
足することができる、 (ロ)従来のガラス製の赤外線検知器に比較して。
(9) Since the main structural members, the inner cylinder (2), outer cylinder (3), and flange (4), are made of metal, they have excellent mechanical strength, and when severe vibration resistance and impact resistance are required ( For example, when mounted on a missile or aircraft), it can meet the requirements (b) compared to conventional glass infrared detectors.

プレス加工1機械加工が可能なので1寸法精度が容品に
得られ生産性が極めて良くなる。
Since press processing and mechanical processing are possible, one-dimensional accuracy can be obtained for the container, and productivity is extremely improved.

e→ 内筒(2)がステンレスで、Sカ2機械加工によ
シ極薄にできることから、フランジ(4)方向からの侵
入熱が伝わるのを阻止しているので、極めて冷却効率が
高く1機器の誤動作が少ない。すなわち。
e→ The inner cylinder (2) is made of stainless steel and can be made extremely thin by Ska2 machining, which prevents heat from penetrating from the flange (4) direction, resulting in extremely high cooling efficiency. Fewer equipment malfunctions. Namely.

高性能で高信穎性の赤外線検知器とすることができる。It can be a high performance and reliable infrared detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による赤外線検知器の実施例を示す断
面図、第2図は第1図のA部を詳細に説明した断面図、
第3図は従来の赤外線検知器の構成例を示す断面図、第
4図は金属材料の熱伝導率を示す図である。 図において、(1)は低温保持容器、(21は内筒、(
3)ハ外筒、(4)はフランジ、(5)はウィンド、(
6)は赤外線検知素子、(7)はパッケージ、(8)は
ジュールトムソン冷却器、α4は金属線、Qlは気密端
子、(1)は電子ビーム溶接部である。 なお9図中あるいは相当部分には同一符号を付して示し
ておる。
FIG. 1 is a cross-sectional view showing an embodiment of an infrared detector according to the present invention, and FIG. 2 is a cross-sectional view illustrating part A in FIG. 1 in detail.
FIG. 3 is a sectional view showing an example of the configuration of a conventional infrared detector, and FIG. 4 is a diagram showing the thermal conductivity of metal materials. In the figure, (1) is a cryogenic container, (21 is an inner cylinder, (
3) C outer cylinder, (4) flange, (5) window, (
6) is an infrared detection element, (7) is a package, (8) is a Joule-Thomson cooler, α4 is a metal wire, Ql is an airtight terminal, and (1) is an electron beam welding part. Note that the same reference numerals are given to the parts in FIG. 9 or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] ステンレス製の内筒と、上記内筒の一端面に設けた赤外
線検知素子と、上記内筒の他端面に設けられ、かつコバ
ールに電気ニッケルメッキが施してあり、さらに上記内
筒と電子ビーム溶接に接合されたフランジと、上記フラ
ンジの外周部と電子ビーム溶接により接合され、かつ上
記内筒を覆うように取りつけられた金属製の外筒と、上
記外筒の上記フランジと接合する端面と相対する端面に
取付けられた赤外線透過材料である平板上に形成したウ
ィンドとから構成されたことを特徴とする赤外線検知器
An inner cylinder made of stainless steel, an infrared detection element provided on one end face of the inner cylinder, an infrared detection element provided on the other end face of the inner cylinder, and electrolytic nickel plated on Kovar, and electron beam welded to the inner cylinder. a flange joined to the flange; a metal outer cylinder joined to the outer circumference of the flange by electron beam welding and attached to cover the inner cylinder; an infrared detector comprising: a window formed on a flat plate made of an infrared transmitting material; and a window formed on a flat plate made of an infrared transmitting material.
JP60074773A 1985-04-09 1985-04-09 Infrared detector Granted JPS61233325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60074773A JPS61233325A (en) 1985-04-09 1985-04-09 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074773A JPS61233325A (en) 1985-04-09 1985-04-09 Infrared detector

Publications (2)

Publication Number Publication Date
JPS61233325A true JPS61233325A (en) 1986-10-17
JPH0453368B2 JPH0453368B2 (en) 1992-08-26

Family

ID=13556939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074773A Granted JPS61233325A (en) 1985-04-09 1985-04-09 Infrared detector

Country Status (1)

Country Link
JP (1) JPS61233325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089705A (en) * 1990-02-16 1992-02-18 Fujitsu Limited Infrared detector having dewar with film coatings to suppress reflections

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180367B (en) 2010-10-29 2014-08-13 东丽株式会社 Polyarylene sulfide production method and polyarylene sulfide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089705A (en) * 1990-02-16 1992-02-18 Fujitsu Limited Infrared detector having dewar with film coatings to suppress reflections

Also Published As

Publication number Publication date
JPH0453368B2 (en) 1992-08-26

Similar Documents

Publication Publication Date Title
US4930318A (en) Cryocooler cold head interface receptacle
US3395993A (en) Titanium activated nickel seal and method of forming it
US5111050A (en) Quick cooldown/low distortion hybrid focal plane array platform for use in infrared detector dewar packages
JPS61233325A (en) Infrared detector
US5529858A (en) Hermetically sealed thermocompression feedthrough and peripheral seal for high temperature lithium based battery applications
US4944155A (en) Vacuum separator for dewar flask cold exchange systems
JPH01110219A (en) Ceramic conduit having outer cylinder
JPS6367530A (en) Infrared detector
JPS61266928A (en) Infrared detector
JPS6327721A (en) Infrared ray detector
JPH0438265Y2 (en)
JPS62298730A (en) Infrared detector
JPS62298731A (en) Infrared detector
JPH0439543Y2 (en)
JPS60146121A (en) Infrared-ray detector
JPS60174919A (en) Infrared detector
JPH02102422A (en) Infrared-ray detector
JP3462628B2 (en) Superconducting accelerating cavity
JP2945466B2 (en) Airtight joint structure between ceramic tube and metal
JPS58186974A (en) Cooled photoelectric converter
JPS6271825A (en) Infrared detector
JP2000258520A (en) Superconductor cooling device
JPH05827B2 (en)
JP2003139861A (en) Detector for monitoring environment at local region
JPH041623Y2 (en)