JPS60174919A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPS60174919A
JPS60174919A JP3177084A JP3177084A JPS60174919A JP S60174919 A JPS60174919 A JP S60174919A JP 3177084 A JP3177084 A JP 3177084A JP 3177084 A JP3177084 A JP 3177084A JP S60174919 A JPS60174919 A JP S60174919A
Authority
JP
Japan
Prior art keywords
metal
inner cylinder
cylinder
end surface
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3177084A
Other languages
Japanese (ja)
Inventor
Motoyuki Suzuki
基之 鈴木
Juichi Shibahara
芝原 重一
Masatomi Okumura
奥村 正富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3177084A priority Critical patent/JPS60174919A/en
Publication of JPS60174919A publication Critical patent/JPS60174919A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To enable low temp. holding reduced in insulating inferiority and disconnection trouble with high reliability, by forming the inner cylinder, outer cylinder and flange of a main structural member from a metal. CONSTITUTION:An inner cylinder 2 is formed by molding a metal (e.g., stainless steel) into a cylindrical form and a package 7 having an infrared detection element 6 attached thereto is provided to one end surface thereof while a flange made of a metal (e.g., cover) having an input output terminal 8 hermetically sealed thereto is adhered to the other end surface thereof. On the other hand, an outer cylinder 3 is formed by molding a metal (e.g., cover) into a cylindrical form and a window 5 made of an infrared ray pervious material is adhered to one end surface thereof while the other end surface of said cylinder 3 is connected to the flange 4. Further, a ceramic layer 16 is provided to the outer surface of the inner cylinder 2 and tanzaku shaped thin metal plates 17 are embedded in the ceramic layer 16 to electrically insulate the mutual metal plates 17 and the inner cylinder 2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 コノ発明は、InSb、l(gC!dTe 、 Pt)
SnTe等の極低温に冷却して動作させる赤外線検出素
子な具備した赤外線検知器に関するものである。
[Detailed description of the invention] [Technical field of the invention] The present invention is directed to InSb,l(gC!dTe,Pt)
The present invention relates to an infrared detector equipped with an infrared detection element made of SnTe or the like which is cooled to an extremely low temperature and operated.

〔従来技術〕[Prior art]

第1図は従来の赤外線検知器の構成例を示す図である。 FIG. 1 is a diagram showing an example of the configuration of a conventional infrared detector.

図において、(1)赤外線検知器で、ガラス製の内筒(
2)、外筒(3)、フランジ(4)、赤外線透過材料(
例えばGe )であるウィンド(5)、赤外線検出素子
(6)が取)付けられたパッケージ(7)、入出力端子
(8)とを電気的に接続させる金属線(9)とで構成さ
れておシ、上記金属線(9)は、上記ガラス製の内筒(
2)に埋設されている。01はジュールトムソン冷却器
で、スパイラル状に巻かれたフィンチューブIとノズル
αaを具備しておシ、高圧ガス(例えば窒素)の充填さ
れたボンベ(13と、弁Iを介して、配管a!9によっ
て連通している。ここで、低温保持容器+11の内部は
、外部からの侵入熱を遮断するためtc、10’〜10
 TOrr程度の真空が保たれている。
In the figure, (1) an infrared detector with a glass inner cylinder (
2), outer cylinder (3), flange (4), infrared transmitting material (
For example, it consists of a window (5) made of Ge), a package (7) to which an infrared detection element (6) is attached, and a metal wire (9) that electrically connects the input/output terminal (8). The metal wire (9) is connected to the glass inner cylinder (
2). 01 is a Joule-Thomson cooler, which is equipped with a spirally wound fin tube I and a nozzle αa. !9.Here, the inside of the low-temperature holding container
A vacuum of about TOrr is maintained.

次に2以上の構成から成る従来の赤外線検知器の動作に
ついて説明する。弁Iを開放すると、ボンベ(II カ
(−)ジュールトムソン冷却器四に、高圧ガスが流れ、
スパイラル状に巻かれたフィンチューブaυを通って、
ノズルa3からガスが噴出する。この時、ガスは高圧か
ら低圧(大気圧)に開放されるため、ジュールトムソン
効果によって温度降下する。この温度降下は微々たるも
のであるが、内筒(2)に内側に沿って排出されるガス
とフィンチューブaυの内部を流れ新たに供給されるガ
スとの間に、熱交換を行わせることにより、最終的に、
上記ガスはその液化温度(窒素の場合で11°K)まで
降下する。この液化温度に達したガスを吹きつけて、赤
外線検出素子(6)とパッケージ(7)を極低温に冷却
することになる。しかし上記ジュールトムソン冷却器顛
の冷却能力は1通常IW〜5W程度と小さいので、外部
からの侵入熱を遮断しなければ、ノズル(13から噴出
するガスを液化温度に到達させることはできない。赤外
線検知器+11は、外部からの侵入熱を遮断するための
容器で、内筒(2)。
Next, the operation of a conventional infrared detector consisting of two or more configurations will be explained. When valve I is opened, high pressure gas flows into cylinder (II) and Joule-Thomson cooler (4).
Passing through the spirally wound fin tube aυ,
Gas is ejected from nozzle a3. At this time, the gas is released from high pressure to low pressure (atmospheric pressure), so the temperature drops due to the Joule-Thomson effect. Although this temperature drop is slight, heat exchange occurs between the gas discharged along the inside of the inner cylinder (2) and the newly supplied gas flowing inside the fin tube aυ. Finally,
The gas drops to its liquefaction temperature (11°K for nitrogen). By blowing the gas that has reached this liquefaction temperature, the infrared detection element (6) and the package (7) are cooled to an extremely low temperature. However, the cooling capacity of the Joule-Thomson cooler is small, usually around IW to 5W, so the gas ejected from the nozzle (13) cannot reach the liquefaction temperature unless heat is infiltrated from the outside.Infrared rays Detector +11 is a container for blocking heat entering from the outside, and has an inner cylinder (2).

外筒(3)、フランジ(4)、ウィンド(5)から囲ま
れる容器内部は、密閉され、かつ真空に保たれている。
The inside of the container surrounded by the outer cylinder (3), flange (4), and window (5) is sealed and kept in a vacuum.

しかし1以上pような構成から成る従来の赤外線検知器
(1)は、主構造部材となる内筒(2)、外筒(3)。
However, the conventional infrared detector (1) has a configuration of 1 or more p, and the main structural members are an inner cylinder (2) and an outer cylinder (3).

フランジ(4)がガラス製であることから次のよウナ欠
点があった。
Since the flange (4) was made of glass, it had the following disadvantages.

0) ガラスは靭性に欠けるため、厳しい耐振動性、耐
衝撃性が要求される場合(例えばミサイル。
0) Glass lacks toughness, so in cases where severe vibration resistance and impact resistance are required (for example, missiles).

航空機等に搭載される場合)には機械的強度の面で適さ
ない。
In terms of mechanical strength, it is not suitable for mounting on aircraft, etc.).

(ロ)ジュールトムソン冷却器α1が挿入される低温保
持容器(1)の内筒(2)は、上記内筒(2)とジュー
ルトムソン冷却器Qlとの隙間が、ノズルαりから噴出
して外部へ排出されるガスとフィンチューブ収り内を流
れて新たに供給されるガスとの熱交換効率に大きな影響
を与えるので、精密な寸法精度が要求される。しかし、
内筒α2がガラス製であることから、研摩等の生産性の
極めて悪い加工手段によって寸法精度求を満足しなけれ
ばならない。
(b) The inner cylinder (2) of the low-temperature holding container (1) into which the Joule-Thomson cooler α1 is inserted has a gap between the inner cylinder (2) and the Joule-Thomson cooler Ql, and the air is ejected from the nozzle α. This has a large effect on the heat exchange efficiency between the gas discharged to the outside and the newly supplied gas flowing inside the fin tube housing, so precise dimensional accuracy is required. but,
Since the inner cylinder α2 is made of glass, the dimensional accuracy requirements must be met by processing means with extremely poor productivity, such as polishing.

〔発明の概要〕[Summary of the invention]

この発明は以上のような欠点を改善する目的でなされた
もので2機械的強度が高く、生産性の良い赤外線検知器
を提案するものである。
This invention has been made to improve the above-mentioned drawbacks and proposes an infrared detector that has high mechanical strength and good productivity.

〔発明の実施例〕[Embodiments of the invention]

第2図、第3図、第4図は、この発明による赤外線検知
器の実施例を示す図である。5g2図ではジュールトム
ソン冷却器、配管、弁、ボンベ等のこの発明と直接係シ
のない部品は省略しである。
FIG. 2, FIG. 3, and FIG. 4 are diagrams showing embodiments of the infrared detector according to the present invention. In Figure 5g2, parts that are not directly related to this invention, such as the Joule-Thomson cooler, piping, valves, and cylinders, are omitted.

図において、(2)は金属(例えはステンレス)を円筒
状に成形した内筒で、−万の端面には、赤外線検出素子
(6)が取シ付けられたパッケージ(7)が設けられて
おシ、他の端面に杜入出力端子(8)が、ハーメティク
シールされた金属製(例えばコバール)のフランジ(4
)が接合されている。(3)は、金属(例えばコバール
)を円筒状に成形した外筒で、−万の端面には、赤外線
透過材料(例えばG13)Oウィンド(5)が接合され
ておシ、もう一万の端面は上記フランジ(4)と接合さ
れている。上記内筒(2)の外面には、0,1〜0.4
雛のセラミック層顛があり。
In the figure, (2) is an inner cylinder made of metal (for example, stainless steel) formed into a cylindrical shape, and a package (7) to which an infrared detection element (6) is attached is provided on the end surface of -1000. The input/output terminal (8) is attached to the other end of the flange (4) made of hermetically sealed metal (e.g. Kovar).
) are joined. (3) is an outer cylinder made of metal (e.g. Kovar) formed into a cylindrical shape, and an infrared transmitting material (e.g. G13) O window (5) is bonded to the end face of -10,000. The end face is joined to the flange (4). The outer surface of the inner cylinder (2) has 0.1 to 0.4
There is a ceramic layer of chicks.

短冊型の薄い金属板αηは、このセラミック層の中に埋
設されておシ、上記の金属板aη同士及び、上記内筒(
2)との電気的な絶縁を得ている。上記セラミック層t
USは、11気的な絶縁材料であれば、他の材料で成形
してもよいが、樹脂材料のような有機生成物は、長期的
に見ればかなシ多量の有機ガスを放出シ2.低温保持容
器(11内の真空を維持するうえで好ましくなく、この
点で、無機生成物であるセラミックスは極めて都合が良
い。上記金属板(Iηをセラミック層aeに埋設する方
法としては2例えば、まず、内筒(2)の外面にセラミ
ックスを溶射し。
The rectangular thin metal plate αη is embedded in this ceramic layer and is connected to the metal plates aη and the inner cylinder (
2) electrical insulation is obtained. The above ceramic layer t
US may be molded with other materials as long as they are 11-gas insulating materials, but organic products such as resin materials emit a large amount of organic gas in the long run.2. Ceramics, which are inorganic products, are not preferred in maintaining the vacuum inside the cryogenic container (11), and in this respect, ceramics, which are inorganic products, are extremely convenient. First, ceramics was sprayed on the outer surface of the inner cylinder (2).

第1のセラミック層を形成した後、金属板aυを上記第
1のセラミック層の表面に、適当な治具を用いて仮止め
し、再度セラミックを溶射して第2のセラミック層を形
成する方法がある。この場合セラミックスの熱膨張係数
が、金属板(17)および内筒(2)の材料の熱膨張係
数と近いことが、温度変化によるセラミック層(Llの
はく離や、亀裂の発生を防止するために重要となる。例
えば、金属板QDの材料がニッケル、内筒顛の材料がス
テンレスの場合。
After forming the first ceramic layer, a metal plate aυ is temporarily fixed on the surface of the first ceramic layer using an appropriate jig, and ceramic is sprayed again to form a second ceramic layer. There is. In this case, the coefficient of thermal expansion of the ceramic is close to that of the material of the metal plate (17) and the inner cylinder (2) to prevent peeling of the ceramic layer (Ll) and generation of cracks due to temperature changes. This is important. For example, when the material of the metal plate QD is nickel and the material of the inner cylinder is stainless steel.

セラミックスとしては、ジルコニア(Zr02)が適切
である。なお、上記金属板αηの一万の端は入出力端子
(8)と、もう一方の端は、パッケージ(7)の端子と
、夫々金属線(9)を介して、ハンダ付等圧jシ接合さ
れている、 〔発明の効果〕 この発明による赤外線検知器は以上のような構成から成
るため2次のような利点がある。
Zirconia (Zr02) is suitable as the ceramic. Note that one end of the metal plate αη is connected to an input/output terminal (8), and the other end is connected to a terminal of the package (7) through a soldered equal-pressure j-series via a metal wire (9), respectively. [Effects of the Invention] Since the infrared detector according to the present invention has the above configuration, it has the following secondary advantages.

(イ)主要構造部材である内筒(2)、外筒(3)、ン
ランジ(4)が金属製なので1機械的強度に後れ、 M
Lい耐振動性、耐衝撃性が要求される場合(例えばミサ
イルや航窒機に搭載される場合)でも、要求を十分満足
できる。
(a) The main structural members, the inner cylinder (2), outer cylinder (3), and flange (4), are made of metal, so the mechanical strength is low.
Even when high vibration resistance and impact resistance are required (for example, when mounted on a missile or navigation aircraft), the requirements can be fully satisfied.

(ロ)従来のガラス製の赤外−検知器と比較して。(b) Compared to conventional glass infrared detectors.

プレス加工1機械加工が”J IUとなるので2寸法柑
度を良くすることがM能となシ、生産性が極めて良くな
る。
Pressing 1st machining is ``J IU'', so improving the 2-dimensional firmness is a M function, and productivity is extremely improved.

以上説明したように、この発明によれば、絶縁不良や断
線事故等が極めて少ないイe頼性の高い低温保持容器を
提供することができる。
As explained above, according to the present invention, it is possible to provide a highly reliable low temperature holding container with extremely few insulation defects, disconnection accidents, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の赤外線検知器の構成例を示す図、第2
図は、この発明による禅外線検知器の実施例を示す図、
第3図は、第2図のA部を詳細に説明する図、第4図は
、第2図の断面B−Bを詳細に説明する図である。 図において、(1)は赤外線検知器、(2)は内筒、(
3)L外筒、(4)はフランジ、(5)はウィンド、(
6)は赤外線検出素子、(7)はパッケージ、(8)は
入出力端子。 (田は金属線、 +1(lはジュールトムソン冷却器、
aυはフィンチューブ、αのはノズル、α5はボンベ、
α41ハ弁、 +149は配管、aeはセラミック層、
αηは金属板である。 なお2図中同一ちるいは相当部分には、同一符号を付し
て示しである。 代理人大岩増雄 第1図 八 9JIztl 8 第2図 第4図 第 3 図
Figure 1 is a diagram showing an example of the configuration of a conventional infrared detector;
The figure shows an embodiment of the Zen external ray detector according to the present invention,
3 is a diagram illustrating the section A in FIG. 2 in detail, and FIG. 4 is a diagram illustrating the section BB in FIG. 2 in detail. In the figure, (1) is an infrared detector, (2) is an inner cylinder, (
3) L outer cylinder, (4) is flange, (5) is window, (
6) is an infrared detection element, (7) is a package, and (8) is an input/output terminal. (field is metal wire, +1 (l is Joule-Thomson cooler,
aυ is the fin tube, α is the nozzle, α5 is the cylinder,
α41 c valve, +149 is piping, ae is ceramic layer,
αη is a metal plate. In the two figures, the same parts or corresponding parts are designated by the same reference numerals. Agent Masuo Oiwa Figure 1 Figure 89JIztl 8 Figure 2 Figure 4 Figure 3

Claims (1)

【特許請求の範囲】 金属製の内筒と、この内筒の外面に設けられたセラミッ
ク層と、上記セラミック層に埋設された短冊型の薄い金
属板と、上記内筒の一端面に設けられた赤外線検出素子
と、上記円筒の他端面に設けられた入出力端子を有する
金属製のフランジと・さらに、上記フランジ外周に適合
し、かつ、上記内筒を覆うように取シ付けられた金属製
の外筒と。 上記金属製外筒の、上記フランジと反対側の端面に設け
られた赤外線透過材料であるウィンドと。 上記金属板と上記入出力端子及び、上記赤外線検出素子
とを、電気的に接続するための金属線とで構成したこと
を特徴とする赤外線検知器。
[Claims] A metal inner cylinder, a ceramic layer provided on the outer surface of the inner cylinder, a rectangular thin metal plate embedded in the ceramic layer, and a metal inner cylinder provided on one end surface of the inner cylinder. a metal flange having an infrared detection element and an input/output terminal provided on the other end surface of the cylinder, and a metal fitting to the outer circumference of the flange and attached to cover the inner cylinder. With an outer cylinder made of and a window made of an infrared transmitting material provided on an end surface of the metal outer cylinder opposite to the flange. An infrared detector comprising a metal wire for electrically connecting the metal plate, the input/output terminal, and the infrared detection element.
JP3177084A 1984-02-22 1984-02-22 Infrared detector Pending JPS60174919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177084A JPS60174919A (en) 1984-02-22 1984-02-22 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177084A JPS60174919A (en) 1984-02-22 1984-02-22 Infrared detector

Publications (1)

Publication Number Publication Date
JPS60174919A true JPS60174919A (en) 1985-09-09

Family

ID=12340280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177084A Pending JPS60174919A (en) 1984-02-22 1984-02-22 Infrared detector

Country Status (1)

Country Link
JP (1) JPS60174919A (en)

Similar Documents

Publication Publication Date Title
US5111050A (en) Quick cooldown/low distortion hybrid focal plane array platform for use in infrared detector dewar packages
US20060180752A1 (en) Stacked-plate gas-expansion cooler assembly, fabrication method, and use
US5198671A (en) Apparatus for large area infrared focal plane
EP0058645B1 (en) Infrared radiation detector device
EP0136687B1 (en) Infrared receiver
US4621279A (en) Non-evacuated, rapidly coolable housing for an opto-electronic semiconductor component
US5834778A (en) Method for assembling a detection unit for electromagnetic and in particular infrared waves with a thermally conducting substrate and an electromagnetic and in particular an infrared detector with which to implement this method
JPS60174919A (en) Infrared detector
US6334313B1 (en) Apparatus for cooling superconductor
JPH0438265Y2 (en)
JPH0439543Y2 (en)
EP0253883B1 (en) Cryogenically cooled radiation detection apparatus
JPS6367530A (en) Infrared detector
JPS60146121A (en) Infrared-ray detector
JPS61233325A (en) Infrared detector
EP0213421A2 (en) Infrared detector assembly having vacuum chambers
JPS62298730A (en) Infrared detector
JPS60235026A (en) Manufacture of infrared detector
JPS61266928A (en) Infrared detector
US4399661A (en) Prolonged cold temperature cryogenic cooler
JPS6327721A (en) Infrared ray detector
JPS6271825A (en) Infrared detector
JPH08121890A (en) Small-sized low temperature device
JP2000258520A (en) Superconductor cooling device
JP2016522872A (en) Method and apparatus for insulating equipment