JPS61231211A - Production of high-strength polyethylene fiber - Google Patents

Production of high-strength polyethylene fiber

Info

Publication number
JPS61231211A
JPS61231211A JP6842185A JP6842185A JPS61231211A JP S61231211 A JPS61231211 A JP S61231211A JP 6842185 A JP6842185 A JP 6842185A JP 6842185 A JP6842185 A JP 6842185A JP S61231211 A JPS61231211 A JP S61231211A
Authority
JP
Japan
Prior art keywords
fibers
solvent
stretching
extraction
fibrous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6842185A
Other languages
Japanese (ja)
Inventor
Kazuhiko Shimura
和彦 志村
Yoshiaki Nakayama
中山 良秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6842185A priority Critical patent/JPS61231211A/en
Publication of JPS61231211A publication Critical patent/JPS61231211A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To spin a polyethylene solution very stably, draw the resultant fibers stably at a high draw ratio and obtain the titled fibers at a low cost, by extruding high molecular-weight polyethylene solution through a spinneret, cooling the extruded solution to give a fibrous material, extracting the solvent therefrom, shrinking the fibers, drying the shrunk fibers and hot-drawing the dried fibers. CONSTITUTION:A solution consisting of a high-molecular weight polyethylene and a solvent is extruded through a spinneret 3 of an extruder 2, and cooled in a water bath 4 to give a fibrous material 6. The solvent contained in the fibrous material 6 is then extracted in an extraction bath 7 to shrink substantially the fibrous material 6, which is then dried in a drying oven 10 to afford dried undrawn fibers 12. The resultant fibers 12 are led to a hot-drawing furnace 13 and hot-drawn to give a drawn yarn 15, which is then wound by a winder 16 to afford the aimed fibers. Preferably, the fibers are shrunk at >=10% in extracting the solvent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高強度ポリエチレン繊維の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing high strength polyethylene fibers.

従来の技術 高分子量ポリエチレンを溶媒に溶解させて得た溶液を紡
糸して、高倍率1:延伸する、いわゆるゲル紡糸繊維製
造法で高強度、高弾性率のポリエチレン繊維が得られる
ことは公知である。たとえば、P、 8. mi th
やA、 J、 Penningsらの各種刊行物(たと
えば、ポリマープリテン(Polymer Bulle
tin ) 7 j j(/り2り)、同77j (/
 9♂θ))、特開昭jj−6−107jO6号公報、
特開昭!!−よ222号公報に開示されている。これら
シー記載されている従来技術を工業化技術とするために
は、延伸の安定性、すなわち高倍率延伸における長時間
連続延伸性が必須な条件である。しかしながら従来の製
造法では延伸安定性が不充分であった。即ち、高強度、
少なくとも引張強さが39 g’/を以上、の繊維を得
る為には、少なくとも70倍以上の延伸倍率C二て延伸
する必要がある。しかるに、高倍率に延伸すると、必然
的シ;延伸張力が極めて大きくなり、わずかの傷もしく
は速度の変動等により糸切れが発生し、長時間安定して
繊維を製造することができない。特に高強度になると、
それに見合う延伸張力が必要であり、実際生産の際はこ
の強度と張力はトレードオツの関係になり両立は困難で
ある。これを避ける為に、次のような手段が採られてい
た。即ち、(1)延伸速度を遅くし、あるいは延伸炉長
な長くしで歪速度を低下させること、および(2)多段
延伸することである。なお、これらの方法は延伸性を上
げる、すなわち最大延伸倍率を上げる方法でもある。
It is known that polyethylene fibers with high strength and high elastic modulus can be obtained by the so-called gel spun fiber manufacturing method, in which a solution obtained by dissolving high molecular weight polyethylene in a solvent is spun and stretched at a high magnification of 1:1. be. For example, P, 8. mi th
and various publications by A. J. Pennings et al. (e.g., Polymer Bullet
tin) 7 j j (/ri2ri), 77j (/
9♂θ)), Japanese Unexamined Patent Publication No. Shojj-6-107jO6,
Tokukai Akira! ! - It is disclosed in the No. 222 publication. In order to commercialize the conventional techniques described in these sections, stability of stretching, that is, long-term continuous stretchability in high-magnification stretching is an essential condition. However, conventional manufacturing methods have insufficient stretching stability. That is, high strength,
In order to obtain fibers with a tensile strength of at least 39 g'/ or more, it is necessary to draw the fibers at a draw ratio C2 of at least 70 times. However, when drawn at a high magnification, the drawing tension inevitably becomes extremely large, and thread breakage occurs due to slight scratches or speed fluctuations, making it impossible to stably produce fibers for a long period of time. Especially when it comes to high strength,
A stretching tension corresponding to this is required, and in actual production, there is a trade-off between strength and tension, and it is difficult to achieve both. In order to avoid this, the following measures were taken. That is, (1) lowering the strain rate by slowing down the stretching speed or increasing the length of the stretching furnace, and (2) performing multi-stage stretching. Note that these methods are also methods for increasing stretchability, that is, increasing the maximum stretching ratio.

一般に、延伸性を向上させることは最大延伸倍率を向上
させることC:つながる。この意味は、操作延伸倍率と
最大延伸倍率の差が大きいほど容易に且つ安定して延伸
できるということである。従って、高強度の繊維を得る
為には、操作延伸倍率を極めて高くしなければならない
。この事は、必然的に最大延伸倍率をいやが上にも高め
なければならないことにつながる。
In general, improving drawability leads to improving maximum draw ratio C:. This means that the larger the difference between the operating stretching ratio and the maximum stretching ratio, the easier and more stable stretching can be performed. Therefore, in order to obtain high-strength fibers, the operating draw ratio must be extremely high. This inevitably leads to the need to increase the maximum stretching ratio even more.

しかしながら、かかる公知の方法は、上記(1)の延伸
速度を遅くする方法では生産性が低下し、延伸炉長な長
くする方法は設備費が増大するという問題点を有してい
る。(2)の方法は、設備費の増加と延伸操作が煩雑に
なる欠点を有している。その上、さらに重要なことは、
これらの方法では装置面の工夫のみで延伸性を向上させ
ようとする技術思想であり、未延伸体の構造を変化させ
て最大延伸倍率を上げようとするものではない。即ち、
操作延伸倍率をその未延伸体の構造が示す最大延伸倍率
にできるだけ近づける為の手段である。この事は装置の
温度なり速度なりを極めて精密に制御しなければならな
いことを意味する。上述のように極めて遅い速度あるい
は極めて長大な炉長の装置や多段延伸装置の速度および
温度を厳密(二制御することは極めて困難であり、且つ
美大な費用を要するという重大な欠点を有する。
However, such known methods have the problem that the method (1) of slowing down the drawing speed lowers productivity, and the method of increasing the length of the drawing furnace increases equipment costs. Method (2) has the drawbacks of increased equipment costs and complicated stretching operations. Moreover, more importantly,
These methods are based on the technical idea of improving the stretchability only by devising the equipment, and do not attempt to increase the maximum stretching ratio by changing the structure of the unstretched body. That is,
This is a means for bringing the operating stretching ratio as close as possible to the maximum stretching ratio indicated by the structure of the unstretched body. This means that the temperature and speed of the equipment must be controlled very precisely. As mentioned above, it has the serious disadvantage that it is extremely difficult to strictly control the speed and temperature of an apparatus with an extremely slow speed or an extremely long furnace length or a multi-stage stretching apparatus, and it requires a large amount of cost.

以上の方法は延伸条件および延伸装置面での対策である
が、他の方法として前記のように未延伸糸の微細構造を
最適化する方法がある。結晶性の合成樹脂製繊維の場合
、高倍率延伸性を上げるためには一般的に未延伸糸はで
きるだけ未配向・非品性構造体であることが好ましいと
言われている。
The above method takes measures in terms of drawing conditions and drawing equipment, but another method is to optimize the fine structure of the undrawn yarn as described above. In the case of crystalline synthetic resin fibers, it is generally said that in order to improve high-magnification drawability, it is preferable that the undrawn yarn be as unoriented and non-structural as possible.

このため、一般的に溶融紡糸で製造される未延伸糸は溶
融樹脂紡出後結晶化を防止するため(−急冷して製造さ
れるのが一般的である。しかし、ポリエチレンは結晶化
速度が速°<、溶融樹脂を急冷しても非品性繊維にはな
りにくい。また、ポリエチレンの場合には、溶融樹脂を
徐冷して、球晶を成長させた方が、高倍率延伸性は良い
という公知文献もある。学術的には、高分子の単結晶体
は極めて延伸性が良く、最大延伸倍率が30θ倍近くま
で達することが知られている。しかしこのような構造を
未延伸体にどのように工業的に実現させるかについては
全く発表されておらず、その具体的方法については知ら
れていない。従って、未延伸糸の微細構造を制御して高
倍率延伸性を向上させる工業技術はほとんど公開されて
いないのが現状である。その中でわずかに以下の方法の
みが知られている。即ち、ゲル紡糸法において、高倍率
延伸性を向上させる未延伸体微細構造からの収組みとし
ては、紡糸液のポリマー濃度を極端に下げる方法が提案
されている。この方法による延伸性の向上は分子鎖のか
らみ合いの減少に起因していると説明されている。この
方法の問題点は、ポリマー濃度を極めて低くしなければ
ならず、従って紡糸t1:対する溶媒使用量が美大であ
り、溶媒回収コストが高くなる点である。従って、工業
的には適用はほとんど不可能である。
For this reason, undrawn yarn produced by melt spinning is generally produced by rapid cooling to prevent crystallization after spinning the molten resin. However, polyethylene has a slow crystallization rate. Even if the molten resin is rapidly cooled, it is unlikely to become a non-quality fiber.Also, in the case of polyethylene, it is better to slowly cool the molten resin and grow spherulites, which improves high-magnification drawability. There are also known documents that say that it is good.Academically, it is known that single crystal polymers have extremely good stretchability, and the maximum stretching ratio can reach nearly 30θ times.However, it is known that such a structure can be There have been no announcements about how to achieve this industrially, and no specific method is known. At present, almost no technology has been published.Among them, only the following method is known.In other words, in the gel spinning method, a method is used to extract material from the fine structure of an unstretched material to improve high-magnification drawability. As a solution, a method has been proposed in which the polymer concentration in the spinning solution is extremely lowered.The improvement in drawability with this method is explained to be due to a reduction in the entanglement of molecular chains.Problems with this method The point is that the polymer concentration must be extremely low, so the amount of solvent used for spinning t1 is large, and the cost of recovering the solvent is high.Therefore, it is almost impossible to apply it industrially. be.

発明が解決しようとする問題点 本発明は、ゲル紡糸繊維製造法に関して、極めて安定し
て高強度ポリエチレン繊維が得られる製造法を提供する
ことにある。さらには、本発明はゲル紡糸繊維製造法に
関して、高倍率にて極めて安定に延伸できる延伸方法の
前処理方法を提供することにある。
Problems to be Solved by the Invention The object of the present invention is to provide a method for producing gel-spun fibers that can extremely stably produce high-strength polyethylene fibers. Furthermore, the present invention relates to a method for producing gel-spun fibers, and it is an object of the present invention to provide a pretreatment method for a stretching method that allows extremely stable stretching at a high magnification.

問題点を解決するための手段 本発明者らは、ゲル紡糸繊維製造法(=よる高強度ポリ
エチレン繊維の製造方法において、延伸の安定性を改善
することを目的として鋭意検討した結果、問題点を有し
ている従来公知の方法を用いずζ:延伸安定化、高強度
化が可能な新規な方法を見出すに至り、本発明に達した
Means for Solving the Problems The present inventors have conducted extensive studies with the aim of improving the stability of drawing in the gel-spun fiber manufacturing method (= manufacturing method of high-strength polyethylene fibers), and as a result, have resolved the problems. The present invention was achieved by discovering a new method capable of stabilizing ζ stretching and increasing strength without using conventionally known methods.

即ち、本発明は、高分子量ポリエチレンと溶媒から成る
溶液を紡糸口金から押出し、冷却し、繊繊状物とした後
、該繊維状物に含まれる溶媒を抽出し、乾燥し、且つ熱
延伸して高強度ポリエチレン繊維を製造する方法におい
て、溶媒を抽出する際(二繊維を実質的に収縮させるこ
とを特徴とする高強度ポリエチレン繊維の製造方法にあ
る。
That is, in the present invention, a solution consisting of high molecular weight polyethylene and a solvent is extruded from a spinneret, cooled to form a fibrous material, and then the solvent contained in the fibrous material is extracted, dried, and hot-stretched. In the method for producing high-strength polyethylene fibers, the method includes substantially shrinking the two fibers during extraction of the solvent.

上記の本発明は、歪速度の低下、延伸段数など延伸条件
によるものでない。本発明は未延伸糸の微細構造の最適
化1:よって高倍率延伸性を著しく向上させたものであ
る。この最適化の結果として未延伸糸のマクロ的な性質
の一つである密度が著しく高くなっている。結晶性高分
子において結晶化未延伸糸は非品性未延伸糸に比べて延
伸応力が高くなるために低い倍率の延伸しかできないと
いうのが常識であった。本発明は、かかる問題点を解消
した方法であり、しかも従来の製造工程の中で容易に行
うことができる。
The present invention described above does not depend on stretching conditions such as a reduction in strain rate or the number of stretching stages. The present invention is an optimization of the microstructure of undrawn yarn (1), which significantly improves high-magnification drawability. As a result of this optimization, the density, which is one of the macroscopic properties of the undrawn yarn, has been significantly increased. In crystalline polymers, it has been common knowledge that crystallized undrawn yarns have a higher stretching stress than non-quality undrawn yarns, and therefore can only be drawn at a low ratio. The present invention is a method that solves these problems, and can be easily carried out within conventional manufacturing processes.

本発明の重要なポイントは、製造過程の抽出工程におい
て未延伸糸を実質的に収縮させるということである。本
発明者らは抽出工程での繊維状物の収縮と延伸性、延伸
糸物性について詳細に検討した。その結果を第7図に示
す。即ち、高分子量ポリエチレン溶液を紡糸口金から押
出し、冷却して得られる未延伸糸(湿潤ゲル繊維と称す
る。)の抽出時の収縮率が増すに従って、延伸糸の引張
強さが増加しているのが分る。図中のλ0は紡糸後の湿
潤ゲル繊維単位長さに対する延伸糸の伸び、即ち変形倍
率である。λ0は次式で表わされる。
An important point of the present invention is that the undrawn yarn is substantially shrunk during the extraction step of the manufacturing process. The present inventors conducted a detailed study on the shrinkage and drawability of the fibrous material during the extraction process, and the physical properties of the drawn yarn. The results are shown in FIG. In other words, as the shrinkage rate of undrawn yarn (referred to as wet gel fiber) obtained by extruding a high molecular weight polyethylene solution from a spinneret and cooling it increases during extraction, the tensile strength of the drawn yarn increases. I understand. λ0 in the figure is the elongation of the drawn yarn with respect to the wet gel fiber unit length after spinning, that is, the deformation ratio. λ0 is expressed by the following formula.

t。t.

20=π LD =延伸後の長さ Lo=湿潤ゲル繊維の長さ dD=延伸糸の繊度 Do;湿潤ゲル繊維の繊度 ρD=延伸糸の密度 ρ0=湿潤ゲル繊維の密度 しかし本発明では簡便法として次の式を用いた。20=π LD = Length after stretching Lo = length of wet gel fiber dD = fineness of drawn yarn Do: Fineness of wet gel fiber ρD = density of drawn yarn ρ0 = density of wet gel fiber However, in the present invention, the following equation is used as a simple method.

λ0=五 D 湿潤ゲル繊維の繊度については、長さを変化させずに抽
出、乾燥した(収縮率0)未延伸糸を用いた。この変形
倍率λ0(二元例して延伸糸の引張強さが増加している
ことも分る。さらに湿潤ゲル繊維を抽出する際の収縮率
を高くした方が、延伸の安定性が優れることも分った。
λ0=5D Regarding the fineness of the wet gel fiber, undrawn yarn was used which was extracted and dried (shrinkage rate: 0) without changing the length. This deformation magnification λ0 (as a binary example, it can be seen that the tensile strength of the drawn yarn increases.Furthermore, the higher the shrinkage rate when extracting the wet gel fiber, the better the stability of the drawing. I also understood.

たとえば、収縮させない未延伸糸は変形倍率、2!倍の
延伸で、延伸の安定性は極めて悪いが(連続延伸時間で
70分間程度)、収縮を/夕チさせたものは、延伸安定
性が極めて向上する(連続延伸時間で7時間以上)。
For example, an undrawn yarn that is not shrunk has a deformation magnification of 2! When stretched twice, the stretching stability is extremely poor (approximately 70 minutes of continuous stretching time), but when the shrinkage is reduced, the stretching stability is extremely improved (more than 7 hours of continuous stretching time).

ここで言う収縮率とは、湿潤ゲル繊維の糸条方向の長さ
の収縮率であり、次式で表わされる。
The shrinkage rate referred to here is the shrinkage rate of the wet gel fiber in the yarn direction, and is expressed by the following formula.

1゜ 8B= /−■ S、 =抽出時の収縮率 り、 =ゲル紡糸後(水冷・引取後)で抽出前の湿潤ゲ
ル繊維の長さ t8=湿潤ゲル繊維の抽出後の長さ しかし本発明では簡便法として次式を用いた。
1゜8B= /-■ S, = Shrinkage rate during extraction, = Length of wet gel fiber after gel spinning (after water cooling and collection) and before extraction t8 = Length of wet gel fiber after extraction In the invention, the following equation is used as a simple method.

8B=/−’!5L B Do=抽出前で、収縮させる前の繊維の繊度dB==抽
出後で、収縮させた後の繊維の繊度ただしこの場合、繊
度は溶媒および抽出溶媒は除いて求めた値を用いた。
8B=/-'! 5L B Do = Fineness of fiber before extraction and shrinkage dB = Fineness of fiber after extraction and shrinkage However, in this case, the fineness was determined by excluding the solvent and extraction solvent.

さらに収縮させることで得られる効果の1つは、延伸張
力が低下することである。同じ引張強さの延伸糸を得る
のに、収縮率が高い未延伸糸はど低い延伸張力でよいこ
とが見出された。この特性が延伸安定性、高倍率延伸性
に有効に働いていると考えることができる。従来、未延
伸糸の結晶性が高いと延伸応力が高くなり、延伸しにく
いと言われて来たことに反する現象であり、驚くべきこ
とである。
One of the effects obtained by further shrinking is that the stretching tension is reduced. It has been found that in order to obtain a drawn yarn with the same tensile strength, an undrawn yarn with a high shrinkage rate can be drawn at a lower tension. It can be considered that this characteristic works effectively for stretching stability and high-magnification stretchability. This phenomenon is surprising because it has been said that the higher the crystallinity of the undrawn yarn, the higher the drawing stress and the difficulty in drawing it.

以上説明したように本発明を用いることにより延伸の際
の延伸張力を減少させることができ、結果として最大延
伸倍率を著しく高めることができる。この為高倍率でも
容易に、且つ安定に延伸することができる。従って本発
明により従来公知の方法のような特別の装置を用いるこ
となく、通常の装置、方法にて極めて容易に高強力高弾
性率の繊維を製造することが可能になった。
As explained above, by using the present invention, the stretching tension during stretching can be reduced, and as a result, the maximum stretching ratio can be significantly increased. Therefore, it can be easily and stably stretched even at high magnification. Therefore, according to the present invention, it has become possible to produce fibers with high strength and high elastic modulus extremely easily using ordinary equipment and methods without using special equipment as in conventionally known methods.

次に本発明の実施方法を説明する。Next, a method of implementing the present invention will be explained.

ゲル紡糸繊維製造法による高強度高弾性率ポリエチレン
繊維の一般的製造方法は次のようである。
A general method for producing high-strength, high-modulus polyethylene fibers using the gel-spun fiber production method is as follows.

即ち、高分子量のポリエチレンと溶媒とから成る溶液を
まず作り、紡糸口金からプランジャータイプの押出機等
で押出し、冷却し、溶媒の含まれた湿潤ゲル繊維とし、
次にこの溶媒の含まれたゲル繊維から溶媒を除去し、高
倍率に熱延伸する。
That is, a solution consisting of high molecular weight polyethylene and a solvent is first prepared, extruded from a spinneret using a plunger type extruder, etc., cooled to form a wet gel fiber containing the solvent,
Next, the solvent is removed from the gel fiber containing the solvent, and the fiber is hot-stretched to a high magnification.

高分子量のポリエチレンとしては、粘度平均分子量が4
t、OX / 0s以上の高密度ポリエチレンが用いら
れるが、少量の、好ましくは!モル悌以下のプロピレン
、ブチレンなどのアルケン/種類以上が共重合されてい
るものでもよい。
As high molecular weight polyethylene, the viscosity average molecular weight is 4
t, OX/0s or higher is used, but preferably in small amounts! Alkenes such as propylene and butylene having a molar mass or more may be copolymerized.

高分子量ポリエチレンを溶解するための溶媒としては、
脂肪族炭化水素、環式炭化水素、芳香族炭化水素などが
使われる。好適なのはドデカン、デカリンなどの脂肪族
、および環式炭化水素である。溶解濃度を増加させるた
めに加熱して溶解する。この時濃度の斑を作らないよう
にすることが重要である。
As a solvent for dissolving high molecular weight polyethylene,
Aliphatic hydrocarbons, cyclic hydrocarbons, aromatic hydrocarbons, etc. are used. Preferred are aliphatic and cyclic hydrocarbons such as dodecane and decalin. Dissolve by heating to increase the dissolved concentration. At this time, it is important to avoid creating density spots.

また、酸化防止剤等少量の添加剤も適宜使用される。Additionally, small amounts of additives such as antioxidants are also used as appropriate.

紡糸の際C二相いる押出機としては、スクリュー押出機
あるいは短時間の延伸の際などは空−気や窒素ガス加圧
の容器も用いることができる。
As an extruder that uses two C phases during spinning, a screw extruder or a container pressurized with air or nitrogen gas can be used for short-term stretching.

押出された繊維状物の冷却は通常水で行われる。Cooling of the extruded fibrous material is usually carried out with water.

溶媒を除去する方法は、単に乾燥する方法あるいは抽出
用溶媒で抽出する方法などがとられる。
The solvent can be removed by simple drying or extraction with an extraction solvent.

湿潤ゲル繊維からの溶媒の抽出は、溶媒とよく混和する
抽出溶媒、たとえば、ヘキサン、シクロヘキナンなどの
炭化水素類、エタノールなどアルコール類、ジクロルメ
タン、/、/、、2− )リクロロー/、29.2−フ
ルオロエタンなどのハロゲン化炭化水素、トルエン、キ
シレンなどの芳香族炭化水素等が使われる。
Extraction of the solvent from the wet gel fibers can be carried out using extraction solvents that are miscible with the solvent, such as hydrocarbons such as hexane and cyclohexane, alcohols such as ethanol, dichloromethane, /, /, 2-)lichloro/, 29. Halogenated hydrocarbons such as 2-fluoroethane, aromatic hydrocarbons such as toluene and xylene, etc. are used.

抽出用溶媒の乾燥は、一般的に熱風オープン内で行われ
る。また可撓性ガスを発生する抽出溶媒を用いる場合は
、不活性ガス気体中にて加熱し、乾燥する。
Drying of the extraction solvent is generally carried out in an open hot air chamber. When using an extraction solvent that generates flexible gas, it is heated in an inert gas and dried.

延伸は速度の調節ができるロールの間に加熱域を設け、
ロール速度比に応じた延伸倍率で延伸することにより行
われる。
For stretching, a heating zone is installed between the rolls whose speed can be adjusted.
This is done by stretching at a stretching ratio depending on the roll speed ratio.

加熱は、通常、熱風、熱板、水蒸気等で行われる。ロー
ルは繊維のすべりが発生しないように、ゴデツトロール
、ニップロールなどが使われる。
Heating is usually performed using hot air, hot plates, steam, or the like. Rolls such as godet rolls and nip rolls are used to prevent fibers from slipping.

さらに本発明の詳細な説明する。Further, the present invention will be explained in detail.

一般的なポリエチレンゲル紡糸、熱延伸装置を第2図に
示す。高分子量ポリエチレン溶液1をプランジャータイ
プの押出機2で、これに接続している紡口3から押出し
、繊維状物とし、水槽4中に落し、冷却し、引取ロール
兼抽出用繰出ロール5で一定速度で引取り、湿潤ゲル繊
維6とする。
A general polyethylene gel spinning and hot stretching apparatus is shown in FIG. A high molecular weight polyethylene solution 1 is extruded from a spinneret 3 connected to the plunger type extruder 2 to form a fibrous material, dropped into a water tank 4, cooled, and then passed through a take-up roll and extraction roll 5. It is taken off at a constant speed to form wet gel fibers 6.

これを抽出用溶媒の入った抽出槽7に浸漬し、溶媒を抽
出し、引取ロール兼乾燥用繰出ロール8で引取る。次に
抽出後のゲル繊維9を抽出用溶媒乾燥炉10に導き入れ
、乾燥し、引取ロール兼延伸用繰出ロール11で引取り
、未延伸ゲル繊維12とする。次に未延伸ゲル繊維を熱
風あるいは熱板等を有した加熱延伸炉13に導く。乾燥
炉の引取ロール兼延伸用繰出ロール11の速度に対して
延伸炉出口の引取ロール14の速度を速めることにより
延伸が行われる。その後、延伸糸15は巻取機16で巻
取られる。
This is immersed in an extraction tank 7 containing an extraction solvent, the solvent is extracted, and the product is taken up by a take-up roll/drying roll 8. Next, the gel fibers 9 after extraction are introduced into an extraction solvent drying oven 10, dried, and taken up by a take-up roll/drawing roll 11 for drawing to form undrawn gel fibers 12. Next, the undrawn gel fibers are introduced into a heated drawing furnace 13 having hot air or a hot plate. Stretching is carried out by increasing the speed of the take-up roll 14 at the exit of the stretching furnace relative to the speed of the take-up roll/drawing roll 11 of the drying furnace. Thereafter, the drawn yarn 15 is wound up by a winding machine 16.

従来の高強度高弾性率ポリエチレン繊維の製造法は、紡
糸後の繊維状物は同速にあるいは若干引張り気味に抽出
工程まで走行させること、すなわち湿潤ゲル繊維引取ロ
ール兼抽出用繰出ロール5と抽出後の引取ロール8は同
速にあるいは若干8の方が速くして運転されることが一
般的である。
The conventional method for producing high-strength, high-modulus polyethylene fibers is to run the fibrous material after spinning at the same speed or with a slight tension to the extraction step, that is, a wet gel fiber take-up roll and extraction roll 5 and an extraction roll 5. Generally, the subsequent take-up roll 8 is operated at the same speed or slightly faster.

本発明で言う「収縮」は、抽出用繰出ロール5に対して
引取ロール8の速度を減少させ、湿潤ゲル繊維を積極的
に収縮させる。こうすることが高強度化と延伸安定性の
向上(;極めて有効である。収縮量は好ましくは/θ係
以上である。さらに好ましくはゲル繊維の自己収縮の限
度まで収縮させる。
"Shrinking" as used in the present invention means reducing the speed of the take-up roll 8 relative to the extracting delivery roll 5 to actively shrink the wet gel fibers. This is extremely effective in increasing strength and stretching stability. The amount of shrinkage is preferably at least the /θ factor. More preferably, the gel fibers are shrunk to the limit of self-shrinkage.

抽出中に収縮させるためには、先に述べたように引取ロ
ール8の速度を減じる。極端にあるいは自己収縮の限度
まで収縮させる場合は、引取ロール8による引取張力が
かからないように、抽出槽内に繊維状物を無緊張の状態
とし、抽出する。たとえば、分子量!、θ×106の高
密度ポリエチレンを2壬デカリンに溶解した770℃の
溶液から室温の水で冷却して作った湿潤ゲル繊維を室温
の/、/。
To achieve shrinkage during extraction, the speed of the take-off roll 8 is reduced as described above. When shrinking extremely or to the limit of self-shrinkage, the fibrous material is kept in a tensionless state in the extraction tank so that no tension is applied to the material by the take-up roll 8, and the fibrous material is extracted. For example, molecular weight! , θ×106 high-density polyethylene dissolved in decalin at 770°C and cooled with room temperature water to form wet gel fibers at room temperature /, /.

コートリクロロー/、、2.2− ’) !Jフロロエ
タンで無緊張下で抽出する場合1.2t〜30係まで収
縮させることができる。
Coat rechrolow/,,2.2-')! When extracted with J fluoroethane under no tension, it can be contracted from 1.2 tons to 30 tons.

湿潤ゲル繊維抽出時に収縮させることで未延伸体は延伸
しやすい微細構造になることは推測されるが、それがど
んな物でどのように延伸性の向上につながっているかは
不明である。
It is presumed that shrinkage during extraction of wet gel fibers gives the unstretched body a fine structure that makes it easier to stretch, but it is unclear what this is and how it improves stretchability.

本発明では、収縮量Cよって未延伸体の微細構造が定ま
ることから延伸工程に入いる前の溶媒が除去された未延
伸糸から求めた延伸倍率と引張強さとの関係については
、抽出時の収縮量が一定でない場合には一義的には決ま
らないことを意味している。事実本発明により抽出時数
縮率を変えて作った未延伸糸の場合、延伸前の未延伸糸
からの延伸倍率と延伸糸の引張強さの関係は、一本のラ
インには乗らないことが認められた。収縮率が高いほど
延伸倍率は高くなる。
In the present invention, since the fine structure of the undrawn yarn is determined by the amount of shrinkage C, the relationship between the drawing ratio and the tensile strength obtained from the undrawn yarn from which the solvent has been removed before entering the drawing process is This means that if the amount of contraction is not constant, it cannot be determined uniquely. In fact, in the case of undrawn yarns made by changing the extraction time contraction ratio according to the present invention, the relationship between the stretching ratio from the undrawn yarn before stretching and the tensile strength of the drawn yarn does not follow a single line. was recognized. The higher the shrinkage rate, the higher the stretching ratio.

実施例 本発明を実施例により説明する。Example The present invention will be explained by examples.

実施例/、比較例/ 高密度ポリエチレン(旭化成工業■製、分子量j、θ×
706)の2.0チデカリン溶液を/、!mωの紡糸口
金の付いた圧力容器から高圧N2ガスで押出し、水中で
冷却し、3.♂yyl/mixで引取り、ボビンに巻取
った。直ちに該湿潤ゲル繊維を外周の変化が可能な金枠
に、糸の密着防止のために重なることのないように、ま
たたるみのないように巻付けた後、金枠を所定量線める
こと1:よって金枠の周囲を減じて、/、/、、2−ト
リクロロ−/、2..2−トリフルオロエタンを入れた
抽出槽に浸漬し、溶媒の抽出を行うと同時にゲル繊維を
所定量収縮させた。
Example/, Comparative Example/ High-density polyethylene (manufactured by Asahi Kasei Corporation, molecular weight j, θ×
706) 2.0 Tidecalin solution /,! Extrude with high pressure N2 gas from a pressure vessel equipped with mω spinneret, cool in water, 3. It was taken up with ♂yyl/mix and wound onto a bobbin. Immediately, the wet gel fiber is wrapped around a metal frame whose outer circumference can be changed, so as not to overlap or slack in order to prevent threads from sticking together, and then the metal frame is wired by a predetermined amount. 1: Therefore, by reducing the circumference of the metal frame, /, /,, 2-trichloro-/, 2. .. The gel fibers were immersed in an extraction tank containing 2-trifluoroethane to extract the solvent and simultaneously shrink the gel fibers by a predetermined amount.

金枠にたるみのない状態で巻かれた抽出後のゲル繊維は
熱風循環式のオープン中で70℃で乾燥し、収縮率矢ワ
、10..2/%の未延伸糸を作った。
The gel fibers after extraction, which were wound around a metal frame without any slack, were dried at 70°C in an open air circulation system with a shrinkage rate of 10. .. A 2/% undrawn yarn was made.

また、抽出槽内で湿潤ゲル繊維を無緊張状態に保ち、限
度まで収縮させ、乾燥を繊維の長さの変化を起さないよ
うに行った未延伸糸収縮率、26チも作った。比較例と
して、抽出および乾燥で収縮させないで未延伸糸を作っ
た。
In addition, an undrawn yarn with a shrinkage rate of 26 cm was prepared by keeping the wet gel fiber in an untensioned state in the extraction tank, shrinking it to the limit, and drying it without causing any change in the length of the fiber. As a comparative example, an undrawn yarn was made without shrinkage by extraction and drying.

未延伸糸の繊度および密度を第1表に示す。Table 1 shows the fineness and density of the undrawn yarn.

第7表 収縮率に比例して密度は増加した。密度はエタノール−
水系の密度勾配管で2!℃で測定した。
Table 7: Density increased in proportion to shrinkage rate. Density is ethanol-
2 with water-based density gradient tube! Measured at °C.

これらの未延伸糸を第2図に示すような装置で、延伸温
度//!〜/33−℃、繰出速度θ、/!my偽で延伸
した。
These undrawn yarns are drawn with a device as shown in Fig. 2 at a drawing temperature of //! ~/33-℃, feeding speed θ, /! Stretched with my fake.

湿潤ゲル繊維からの変形倍率λ0と延伸糸の引張強さの
関係を第3図に示す。
FIG. 3 shows the relationship between the deformation ratio λ0 of the wet gel fiber and the tensile strength of the drawn yarn.

延伸糸の繊度は、抽出の際の収縮率にかかわらず湿潤ゲ
ル繊維が同じものであれば、λ0で決まるので、第3図
から同一のλ0のときの延伸糸の強度をみると、収縮率
が高いほど高い強度を示すことがわかる。収縮率と延伸
糸の引張強さの関係(20275%20.2!のときを
第3図から内挿、外挿により求めた。)は第1図に示さ
れ、収縮させるほど強度が高くなり、収縮率は10tl
r以上が好ましいことがわかる。
The fineness of the drawn yarn is determined by λ0 if the wet gel fiber is the same regardless of the shrinkage rate during extraction, so looking at the strength of the drawn yarn at the same λ0 from Figure 3, the shrinkage rate is It can be seen that the higher the value, the higher the strength. The relationship between the shrinkage rate and the tensile strength of the drawn yarn (obtained by interpolation and extrapolation from Fig. 3 for the case of 20275% 20.2!) is shown in Fig. 1, and the more it shrinks, the higher the strength becomes. , the contraction rate is 10tl
It can be seen that r or more is preferable.

延伸の際に第2図中、加熱延伸炉13と引取ロール14
の間に張力計をセットして延伸張力を計測し、得られた
延伸糸の引張強さとの関係を調べた。その結果を第9図
に示す。同じ強度を得るOC:収縮率が高いほど延伸張
力は低く、また、見方をかえれば同じ延伸張力で延伸す
れば、収縮率が高いほど強度も大きくなることがわかる
。なお、延伸張力は延伸糸の繊度で割り返した値を用い
ている。
During stretching, as shown in FIG.
During this time, a tensiometer was set to measure the drawing tension, and the relationship with the tensile strength of the obtained drawn yarn was investigated. The results are shown in FIG. OC to obtain the same strength: The higher the shrinkage rate, the lower the stretching tension.If you look at it from another perspective, it can be seen that the higher the shrinkage rate, the higher the strength, if stretched at the same stretching tension. Note that the drawing tension is a value divided by the fineness of the drawn yarn.

引張強さはJI8L/θ/3に準じて測定した。The tensile strength was measured according to JI8L/θ/3.

未延伸糸、延伸糸の繊度は、0.0 /岬まで計測可能
な重量測定器で一定長(ワOの)の試料の重量を測定し
て、算出した。
The fineness of the undrawn yarn and the drawn yarn was calculated by measuring the weight of a sample of a certain length (wax size) using a weight measuring device capable of measuring up to 0.0/cape.

実施例コ、比較例コ 高密度ポリエチレン(旭化成工業■製)、分子量!、θ
×706をデカリンに溶解しコ、θチの溶液とした。実
施例/と同様に紡糸し、収縮率を変えて抽出した。抽出
後の乾燥は長さの変化をさせずに行つた。これを湿潤ゲ
ル繊維からの変形倍率λ0=2夕で、繰出速度0.72
ルーで延伸温度//!〜/3!℃、熱風加熱延伸炉長/
9!mで延伸し、延伸安定性を調べた。比較として収縮
させないで抽出し、乾燥した未延伸糸も同様に延伸した
。連続に延伸できた時間、未延伸糸および延伸糸の繊度
を第2表に示す。抽出時収縮させた未延伸糸は、収縮さ
せない未延伸糸に比べて延伸安定性が良いこと、延伸糸
の引張強さが大きいことがわかる。
Examples and Comparative Examples High-density polyethylene (manufactured by Asahi Kasei Kogyo ■), molecular weight! ,θ
×706 was dissolved in decalin to prepare a solution of θ. Spinning was carried out in the same manner as in Example 1, and extraction was carried out by changing the shrinkage rate. Drying after extraction was carried out without changing the length. The deformation magnification from the wet gel fiber is λ0=2, and the feeding speed is 0.72.
Stretching temperature with roux //! ~/3! °C, hot air heating stretching furnace length/
9! The film was stretched at m and the stretching stability was examined. For comparison, an undrawn yarn that was extracted without shrinkage and dried was also drawn in the same manner. Table 2 shows the continuous drawing time and the fineness of the undrawn yarn and the drawn yarn. It can be seen that the undrawn yarn that is shrunk during extraction has better stretching stability and greater tensile strength than the undrawn yarn that is not shrunk.

第  コ  表 実施例3、比較例3 ポリエチレン(旭化成工業■製、分子量3.0X/θ6
)2.θチデカリン溶液を、第2図で示したのと同様の
紡糸、抽出、乾燥、延伸、巻取装置で紡糸から乾燥まで
を連続で行い、一旦未延伸糸を巻取った後、延伸を行っ
た。抽出溶媒はi、i、、2−トリクロロ−/、、2.
コートリフルオロエタンを用いた。
Table C Example 3, Comparative Example 3 Polyethylene (manufactured by Asahi Kasei Corporation, molecular weight 3.0X/θ6
)2. The θtidecalin solution was continuously subjected to the process from spinning to drying using the same spinning, extraction, drying, stretching, and winding equipment as shown in Figure 2, and once the undrawn yarn was wound, stretching was performed. . The extraction solvent is i, i, 2-trichloro-/, 2.
coated trifluoroethane was used.

抽出用繰出ロール5の速度り、/ルーに対して、抽出槽
出口の引取ロール8の速度を3.4♂m7mで引取り(
/2憾収縮させた)、乾燥は繰出、引取速度比/:lで
、温度♂0℃で行ない、20jデニール、密度0.り4
 、? ?Adの未延伸糸を得た。この未延伸糸を繰出
速度0.20 m/mで繰出し、延伸炉温度7ノθ〜7
37℃で、λo= 、23倍の延伸を安定に行うことが
でき、7.4tデニール、引張強さ3♂・4tff/D
のモノフィラメントが得られた。しかし、抽出槽出口の
引取ロール8の速度なり、/ル偽として、収縮させずに
抽出し、乾燥した未延伸糸(繊度/7θデニール、密度
θ、9J″、g f/ad )を同様に延伸したが、7
0分で破断し、安定な延伸はできなかった。
The speed of the take-up roll 8 at the exit of the extraction tank is set at 3.4 m7m (with respect to the speed of the extraction roll 5, /roux).
/2 shrinkage), drying was carried out at a feed and take-up speed ratio of /:l at a temperature of ♂0°C, 20j denier, density 0. ri4
,? ? An undrawn Ad yarn was obtained. This undrawn yarn was let out at a undrawn speed of 0.20 m/m, and the drawing furnace temperature was set at 7 no.
At 37℃, λo = 23 times stretching can be performed stably, 7.4t denier, tensile strength 3♂・4tff/D
of monofilament was obtained. However, depending on the speed of the take-up roll 8 at the exit of the extraction tank, the dry undrawn yarn (fineness/7θ denier, density θ, 9J″, g f/ad) extracted without shrinkage is similarly Although it was stretched, 7
It broke in 0 minutes, and stable stretching was not possible.

本発明の効果 本発明により高強度のポリエチレン繊維が容易に、且つ
、安定に製造できる。
Effects of the present invention According to the present invention, high-strength polyethylene fibers can be easily and stably produced.

また本発明により、強度と同じ傾向で、引張弾性率の高
いポリエチレン繊維も容易に、且つ安定に得られる。
Furthermore, according to the present invention, polyethylene fibers having the same tendency as strength and high tensile modulus can also be obtained easily and stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、湿潤ゲル繊維の抽出時の収縮率、延伸糸の湿
潤ゲル繊維からの変形倍率と延伸糸の引張強さの関係を
プロットした図である。 第2図は、一般的なポリエチレンゲル紡糸、熱延伸装置
を示す。 第3図は、延伸糸の湿潤ゲル繊維からの変形倍率λ0、
湿潤ゲル繊維の抽出時の収縮率と延伸糸の引張強さの関
係をプロットした図である。 第9図は、延伸張力、湿潤ゲル繊維の抽出時の収縮率と
延伸糸の引張強さの関係をプロットした図である。 l・・・高分子量ポリエチレン溶液 2・・・プランジャータイプの押出機 3・・・紡糸口金 4・・・水槽 5・・・紡糸用引取ロール兼抽出用繰出ロール6・・・
湿潤ゲル繊維 7・・・抽出槽 8・・・抽出用引取ロール兼乾燥用繰出ロール9・・・
抽出後のゲル繊維 10・・・乾燥炉 11・・・乾燥用引取ロール兼延伸用繰出ロール12・
・・乾燥未延伸ゲル繊維 13・・・加熱延伸炉 14・・・延伸用引取ロール 15・・・延伸糸 16・・・巻取機
FIG. 1 is a diagram plotting the relationship between the shrinkage rate of the wet gel fiber during extraction, the deformation ratio of the drawn yarn from the wet gel fiber, and the tensile strength of the drawn yarn. FIG. 2 shows a general polyethylene gel spinning and hot stretching apparatus. Figure 3 shows the deformation magnification λ0 of the drawn yarn from the wet gel fiber,
FIG. 3 is a diagram plotting the relationship between the shrinkage rate of wet gel fibers during extraction and the tensile strength of drawn yarn. FIG. 9 is a diagram plotting the relationship between the drawing tension, the shrinkage rate of the wet gel fiber during extraction, and the tensile strength of the drawn yarn. l...High molecular weight polyethylene solution 2...Plunger type extruder 3...Spinneret 4...Water tank 5...Take-up roll for spinning and delivery roll for extraction 6...
Wet gel fiber 7...Extraction tank 8...Extraction take-up roll/drying delivery roll 9...
Gel fiber 10 after extraction...Drying oven 11...Drying take-up roll/drawing roll 12/
... Dry undrawn gel fiber 13 ... Heating drawing furnace 14 ... Taking-off roll for drawing 15 ... Drawn yarn 16 ... Winding machine

Claims (2)

【特許請求の範囲】[Claims] (1)高分子量のポリエチレンと溶媒から成る溶液を紡
糸口金から押出し、冷却し、繊維状物とした後、該繊維
状物に含まれる溶媒を抽出し、乾燥し、且つ熱延伸して
高強度ポリエチレン繊維を製造する方法において、溶媒
を抽出する際に繊維を実質的に収縮させることを特徴と
する高強度ポリエチレン繊維の製造方法
(1) A solution consisting of high molecular weight polyethylene and a solvent is extruded from a spinneret, cooled to form a fibrous material, the solvent contained in the fibrous material is extracted, dried, and hot stretched to create a high strength product. A method for producing high-strength polyethylene fibers, the method comprising substantially shrinking the fibers when extracting the solvent.
(2)溶媒を抽出する際に、10%以上収縮させること
を特徴とする特許請求の範囲第(1)項記載の高強度ポ
リエチレン繊維の製造方法
(2) A method for producing a high-strength polyethylene fiber according to claim (1), which comprises shrinking the fiber by 10% or more when extracting the solvent.
JP6842185A 1985-04-02 1985-04-02 Production of high-strength polyethylene fiber Pending JPS61231211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6842185A JPS61231211A (en) 1985-04-02 1985-04-02 Production of high-strength polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6842185A JPS61231211A (en) 1985-04-02 1985-04-02 Production of high-strength polyethylene fiber

Publications (1)

Publication Number Publication Date
JPS61231211A true JPS61231211A (en) 1986-10-15

Family

ID=13373198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6842185A Pending JPS61231211A (en) 1985-04-02 1985-04-02 Production of high-strength polyethylene fiber

Country Status (1)

Country Link
JP (1) JPS61231211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012885A1 (en) * 1999-08-11 2001-02-22 Toyo Boseki Kabushiki Kaisha High strength polyethylene fiber and its use
CN101984155A (en) * 2010-10-11 2011-03-09 浙江千禧龙特种纤维有限公司 Method for drying ultra-high molecular weight polyethylene fibers
KR20210067716A (en) * 2019-11-29 2021-06-08 한양대학교 산학협력단 Fabrication method for graphene fiber using organic solvent as cogulant and graphene fiber fabricated by the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012885A1 (en) * 1999-08-11 2001-02-22 Toyo Boseki Kabushiki Kaisha High strength polyethylene fiber and its use
CN101984155A (en) * 2010-10-11 2011-03-09 浙江千禧龙特种纤维有限公司 Method for drying ultra-high molecular weight polyethylene fibers
KR20210067716A (en) * 2019-11-29 2021-06-08 한양대학교 산학협력단 Fabrication method for graphene fiber using organic solvent as cogulant and graphene fiber fabricated by the same

Similar Documents

Publication Publication Date Title
US3946100A (en) Process for the expeditious formation and structural modification of polyester fibers
Wu et al. High‐strength polyethylene
WO1986004936A1 (en) Polyethylene multifilament yarn
US2953428A (en) Production of polychlorotrifluoroethylene textiles
JPS5947726B2 (en) Polyester fiber manufacturing method
NO137518B (en) PROCEDURE AND DEVICE FOR AUTOMATIC CONTROL OF A STEAM GENERATOR
KR0133562B1 (en) Melt spinning of ultra-oriented crystalline filaments
US20200216980A1 (en) High-strength polyethylene terephthalate yarn and method for producing the same
JPS61231211A (en) Production of high-strength polyethylene fiber
US5733653A (en) Ultra-oriented crystalline filaments and method of making same
KR100208055B1 (en) A spinning process for producing high strength, high modulus, low shrinkage synthetic yarns
KR950000941A (en) Polyfilament yarns of polyethylene naphthalate and preparation method thereof
US5024797A (en) Processes for the production of mono- and multifilaments and staple fibers based on polyarylene sulfides
JPS61231212A (en) Production of high-strength polyethylene fiber
JPS62299513A (en) Production of polyphenylene sulfide monofilament
US3005236A (en) Process for stretching polycarbonate filaments and films at temperature at which tangent of dielectric loss angle is maximum
JPS6215317A (en) Production of high-tenacity polyethylene fiber
US5215819A (en) Processes for the production of mono- and multifilaments and staple fibers based on kolyarylene sulfides and high-strength polyarylene sulfide fibers
JPH10219512A (en) Melt extrusion spinning and apparatus therefor
KR880001033B1 (en) Acrylic fiber and it's making method
JPH02210013A (en) Dry and wet spinning process
JPH0673610A (en) Preparation of polyarylene sulfide fiber and multifilament yarn of polyarylene sulfide obtained therefrom
JPS5891811A (en) Spinning
KR940011535B1 (en) High spinning process for manufacturing a polyester fiber
KR100216966B1 (en) The manufacture method of the lumen yarn by the heat treatment