JPS6123078B2 - - Google Patents

Info

Publication number
JPS6123078B2
JPS6123078B2 JP16181779A JP16181779A JPS6123078B2 JP S6123078 B2 JPS6123078 B2 JP S6123078B2 JP 16181779 A JP16181779 A JP 16181779A JP 16181779 A JP16181779 A JP 16181779A JP S6123078 B2 JPS6123078 B2 JP S6123078B2
Authority
JP
Japan
Prior art keywords
wire
lubricant
fluorine
weight
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16181779A
Other languages
Japanese (ja)
Other versions
JPS5684195A (en
Inventor
Toshio Arai
Yoshihisa Kawaguchi
Kazuo Ikemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16181779A priority Critical patent/JPS5684195A/en
Publication of JPS5684195A publication Critical patent/JPS5684195A/en
Publication of JPS6123078B2 publication Critical patent/JPS6123078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は潤滑剤及び溶接用ワイヤに関し、特に
金属材を伸線加工する際に優れた潤滑性及び耐錆
性等を発揮し、且つ溶接用ワイヤの表面に付着さ
せることによつて優れた潤滑性(送給性)及び通
電性等を発揮する潤滑剤、及び該潤滑剤を表面に
付着させた溶接用ワイヤに関するものである。 以下の説明では、潤滑剤の潤滑性能を中心課題
として述べ、具体的には溶接用ワイヤの潤滑性
(送給性)を説明するが、後記実施例からも明ら
かな様にその他の特性においても優れたものであ
り、伸線加工用潤滑剤としても極めて優秀であ
る。 自動及び半自動用の溶接用ワイヤは、炭酸ガス
アーク溶接用ソリツドワイヤを中心にして著しく
普及してきた。しかし同様に炭酸ガスアーク溶接
用として開発されたフラツクス入りワイヤ(以下
複合ワイヤ)は、作業性及びビード外観の点で優
れているものであるにもかかわらずさほどは普及
していない。その原因としては、ワイヤ価格が高
いこともさることながら、特に細径ワイヤの場合
同径のソリツドワイヤに比べて送給性が不良であ
る点が指摘されている。即ちワイヤの送給性は、
良好なアーク安定性、ビード外観及び溶接能率を
確保するうえで極めて重要であり、送給性が満足
されない限り自動、半自動溶接への適用は不可能
である。ここで複合ワイヤの送給性が不良である
理由は次の様に考えられる。即ち複合ワイヤは、
一般に0.2〜0.5mm程度の薄肉軟鋼製の円筒状ケー
シング内にフラツクスを充填したものであるか
ら、ソリツドワイヤに比べて軟かく、しかもケー
シングにはシーム(継目)が形成されるから、ロ
ーラで加圧送給する際にワイヤ断面が変形したり
コンジツトチユーブ内で座屈し易く、送給抵抗が
極めて大きくなる。この為2.4mmφや3.2mmφの太
径複合ワイヤでは、ローレツト付又はギヤ付送給
ローラの使用により対処している。しかし1.2mm
φや1.6mmφ等の細径ワイヤでは、専用のローレ
ツト付又はギヤ付送給ローラが十分普及しておら
ず、ソリツドワイヤと同等の平ローラが使用され
るので、ワイヤ表面に潤滑性物質を付着させて送
給抵抗の低減を図つている。 ところでワイヤ表面の潤滑性を高める方法とし
ては、ソリツドワイヤの場合ワイヤ表面に銅メツ
キを施した後更に鉱物油、動植物油、合成油、金
属石鹸等の多量に水素を含む潤滑剤を付着させる
方法が一般的に行なわれている。しかしフラツク
ス入りワイヤの場合には、高価なシームレス(継
目のない)ワイヤを除き、これら潤滑剤がシーム
を通つて内部にまで侵入し、溶接時水素に起因す
る気孔や溶接割れの発生を引き起こすので300〜
450℃程度のベーキング処理によつて水素発生源
を可及的に除去する必要がある。一方潤滑剤とし
て、吸湿性が少なく且つ水素源を有しない黒鉛、
二硫化モリブデン、フツ化黒鉛、フツ素油、フツ
素樹脂等を単独で或は2種以上を組合わせて使用
する技術も種々開発されているが、夫々以下に示
す様な欠点がある。 即ち黒鉛、フツ化黒鉛、二硫化モリブデン、フ
ツ素樹脂等の粉末は、ワイヤ表面に多量に付着す
るので、デポの機械的性質を劣化させ易く、また
二硫化モリブデンやフツ素樹脂は絶縁性が高いの
で、溶接時に通電不良を起こす恐れがある。フツ
素油については、特公昭48−34984号公報で溶接
用ワイヤの潤滑剤として適用し得る旨記載されて
いるが、フラツクス入りワイヤに適用する限り満
足な潤滑効果は得られなかつた。更に黒鉛や二硫
化モリブデンを液状のフツ素樹脂と混合した潤滑
剤、或はこれにアーク安定剤を配合した潤滑剤に
ついても、特公昭50−38626号、同51−4503号、
同51−43987号等に開示されている。しかしこれ
らの潤滑剤は何れもベースト状であるから、付着
量を均一にすることが困難であり、且つ塗膜が厚
くなりすぎるきらいがある。またこれら潤滑剤を
伸線加工に適用する場合は、ダイスボツクス内で
ワイヤ表面に塗布され、その後ダイスでの滅面に
伴なつて塗膜の薄肉化及び均一化されるが、液状
潤滑剤に比べて十分な乾燥は期待できず、またワ
イヤ表面に対する濡れ性も良好ではないので、伸
線性(ダイス原単位等)に問題がある。 本発明者等は前述の様な状況のもとで、溶接用
ワイヤ殊に複合ワイヤに対し、水素侵入の問題、
通電性や溶接金属に対する障害等を生じることな
く送給性を大幅に高め得る様な潤滑剤の開発を期
して鋭意研究を進めてきた。その結果、以下に示
す如く配合成分の種類及び配合率を特定してやれ
ば上記の目的にかなう潤滑剤が得られること、ま
たこの潤滑剤はソリツドワイヤの送給性向上にも
優れた効果を有すること、更にはこの潤滑剤は伸
線加工用潤滑剤としても優れたものであること等
を確認し、茲に本発明を完成するに至つた。 即ち本発明に係る潤滑剤の構成とは、溶媒中に
一般にオリゴマーと呼ばれる低分子と高分子の中
間領域に属する分子量が2500〜10000の固形フツ
素系低重合度化合物0.1〜10重量部と、黒鉛及
び/若しくは二硫化モリブデン0.1〜20重量部を
配合し、懸濁液状にしてなるところに要旨が存在
する。また本発明に係る溶接用ワイヤの構成と
は、上記潤滑剤をワイヤ表面に均一に付着させた
ところに要旨が存在する。 以下潤滑剤の構成成分の種類及び配合率限定の
根拠等を追つて本発明の構成及び作用効果を説明
するが、下記は特許請求の範囲に記載した実施態
様と同様本発明を限定する性質のものではなく、
前・後記の趣旨に適合し得る範囲で適当に変更し
て実施することはすべて本発明技術の範疇に含ま
れる。 揮発性溶媒は、黒鉛及び/若しくは二硫化モリ
ブデンとフツ素系低重合度化合物からなる微粉末
状分散質の分散媒としての作用を有し、トリクロ
ロエチレンやトリクロロトリフルオロエタン等の
即乾性溶剤が使用される。これらは溶接用ワイヤ
等に塗布した後すみやかに揮発するから、ワイヤ
表面に塩素や水素等の有害元素が残らず、複合ワ
イヤに対しても支障なく適用できる。尚難揮発性
溶媒を使用すると、潤滑剤塗布後の自然乾燥に長
時間がかかつたり或は別途乾燥装置が必要にな
り、生産性が低下するし、また半乾燥の状態で伸
線加工を行なうと潤滑性が低下してダイス荒れ等
の問題が発生する。 またフツ素系低重合度化合物(以下フツ素系化
合物と略記する)としては、たとえばポリ4フツ
化エチレンテロマーに代表されるポリフツ化オレ
フイン系テロマー等が挙げられるが、少なくとも
分子量が2500〜10000の範囲のものでなければな
らない。なぜなら後記実験例でも明らかにする様
に、分子量が2500未満例えば500〜1500程度の液
状フツ素油では、満足な伸線性及びワイヤ送給性
が得られず、また分子量が10000超例えば1000000
程度のフツ素樹脂(米国デユポン社製、商品名:
テフロン等)では、粒子径が大きく且つ比重が大
きい為に分散性が乏しく、ワイヤ表面に均一に付
着させることができない。尚上記好適分子量範囲
のフツ素化合物は、前述の如く優れた分散性の
他、ワイヤ表面への均一付着性を有しているが、
単独では、潤滑性が不十分であり、目的達成の為
には黒鉛及び/若しくは二硫化モリブデンと併用
する必要がある。しかもこれらを揮発性溶媒中に
均一に分散させて安定な懸濁液を得る為には、フ
ツ素系化合物、黒鉛及び/若しくは二硫化モリブ
デンを微粉末として使用しなければらず、特に粒
径が3μ以下の微粉末を使用すれば安定な懸濁液
を確実に得ることができる。但し単に溶接用ワイ
ヤ塗布用として調製する場合は、通電性や溶着金
属への影響を考慮して1μ以下の超微粒粉末を使
用することが望まれる。即ち伸線処理用として調
製する場合は、伸線工程で前記分散質がワイヤ表
面に均一に引き延ばされるから、懸濁液の安定性
が留保される限り比較的粒径の大きい分散質を用
いても通電性等は阻害されない。 ところで本発明ではフツ素系化合物と黒鉛及
び/若しくは二硫化モリブデンの配合率を、前者
0.1〜10重量部、後者0.1〜20重量部に夫々限定し
たが、これは溶接用ワイヤへの適用を考慮して定
めたものである。 本発明による溶接用ワイヤの表面に付着させる
潤滑性薄膜は、良好な送給性、溶接性を得るため
に少なくとも分子量が2500〜10000のフツ素低重
合度化合物と黒鉛及び/若しくは二硫化モリブデ
ンで構成され、且つワイヤ全重量当り0.001〜0.1
重量部に調整する必要があり、この潤滑性薄膜の
うち分子量2500〜10000のフツ素系低重合度化合
物と黒鉛及び/若しくは二硫化モリブデンとの重
量構成比率は、使用した潤滑剤がワイヤ表面に均
一に付着しているので、元の割合に比例する。即
ち潤滑油中に含まれるフツ素系化合物と黒鉛及
び/若しくは二硫化モリブデンの重量比率は、前
者(0.1〜10)に対して後者(0.1〜20)であるか
ら、ワイヤ表面に付着した両者の重量比率は、次
式より前者/後者=0.5〜99となる。 前者/後者=(0.1〜10)/(0.1〜10)+(
0.1〜20) /(0.1〜20)/(0.1〜10)+(0.1〜
20) 夫々の範囲の下限値及び上限値をとると、 前者/後者=0.1/20.1〜10/0.1=0.5〜99 溶接用ワイヤに形成される潤滑性薄膜の付着量
を前記範囲に定めたのは、ワイヤ全重量に対し
て、0.001重量部未満であれば十分な潤滑性が得
られず、一方0.1重量部を超過すれば溶着金属の
物性や通電性の低下などの弊害が発生するからで
ある。また、この潤滑性薄膜が全て分子量2500〜
10000のフツ素系低重合度化合物と黒鉛及び/若
しくは二硫化モリブデンで構成される場合は、揮
発した溶媒を除く使用した潤滑剤組成の割合に比
し、前式と同様にしてそれぞれ0.5〜99.0重量
部、1.0〜99.5重量部となる。 即ち第1図は、液体潤滑剤に加えた固形フツ素
化合物(ポリ4フツ化エチレンテロマー)の配合
量と溶接用ワイヤの送給抵抗との関係を調べたグ
ラフ(図中の1点鎖線は、1.6mmφの複合ワイヤ
でアーク不安定を生じない為の限界送給抵抗値を
示す)、第2,3図は同じくフツ素系化合物の量
と電流変動回数及び溶接金属中の炭素の増加量と
の関係を調べたグラフである。尚グラフの横軸
は、揮発性溶媒中への配合量としたが、本文の説
説明では単に重量部と記す。これらのグラフから
も明らかな様に、フツ素化合物の配合量が0.1重
量部末満であると潤滑膜が著しく薄くなつて十分
な送給性及び伸線性を得ることができない。一方
10重量部を越えると電流変動回数が増大してお
り、通電性の低下によりアークが不安定になり、
しかも溶着金属中に炭素が侵入して機械的性質が
低下する。尚第1図はフツ素系化合物単独の添加
効果を示したものであり、単独配合では配合率を
増加しても限界送給抵抗値である3.2Kg迄低下さ
せることはできない。そこでフツ素化合物の配合
率を0.1重量部一定とし、黒鉛又は二硫化モリブ
デンの配合率を変えてワイヤ送給抵抗及び電流変
動回数を調べたのが第4及び5図である。また第
6図は、黒鉛又は二硫化モリブデンが溶着金属に
与える影響を確認する為、夫々単独の配合率との
関係を調べたグラフである。これらの結果からも
明らかな様に、黒鉛又は二硫化モリブデンの配合
率が0.1重量部未満では、フツ素化合物と併用し
ても前記限界送給抵抗値を確保できない。また20
重量部を越えると、特に二硫化モリブデンの場合
絶縁性が高にので、フツ素系化合物の絶縁性と相
俟つて通電不良が著しくなる。しかも20重量部を
越えると溶着金属中の炭素又は硫黄の量が増大し
て機械的性質が低下する。なお、10重量部以下に
する方が好ましい。 尚前記1〜6図に示したワイヤ送給抵抗及び電
流変動回数の測定条件及び測定法は下記の通りで
ある。 〔溶接用ワイヤ〕 炭酸ガスアーク溶接用複合ワイヤ(軟鋼、50Kg
高張力鋼用チタニア系フラツクス使用)、ワイヤ
径1.6mmφ 〔潤滑剤〕 1.65mmφに伸線したワイヤ表面の伸線用潤滑剤
を除去した後、予め所定濃度に調整した懸濁液状
潤滑剤(溶媒:トリクロロトリフルオロエタン、
分散質:分子量3500のポリ4フツ化エチレンテロ
マー、黒鉛又は二硫化モリブデン)中に連続的に
浸漬して塗布し、ダイスでスキンパスして1.6mm
φに仕上げる。 〔ワイヤ送給抵抗〕 第7図に示す半自動溶接用ワイヤ送給装置(図
中1:トーチ、2:3mのコンジツトチユーブ、
3:負荷を高める為の300mmφのループ、4:送
給モータ、5:送給ローラ、6:供試ワイヤ、
7:スプール)を用い、送給モータの電圧10Vで
インチング送給する際の、ワイヤの送給抵抗を測
定する。測定値が低い程送給性が良好で、1.6mm
φの複合ワイヤの場合アーク不安定を引き起こさ
ない為には、抵抗値を3.2Kg以下にする必要があ
る。これに対し同径のソリツドワイヤの場合は剛
性が高い為、送給抵抗値が5Kg程度でも十分な送
給性が得られる。 〔電流変動回数〕 通電性の目安として、溶接電流300A、溶接電
圧28V、溶接速度40cm/分、炭酸ガス20/分の
条件で、平板上に下向で1分間肉盛溶接して10A
以上の電流変動回数を測定し、10回繰り返し試験
として平均値を求めた。 なお、本発明によるワイヤは、他の潤滑剤で処
理したものをさらに本発明の潤滑剤で処理しても
よい。例えばカルシウム、バリウム、リチウム、
マグネシウムおよびナトリウムなどの金属石けん
の一種あるいは二種以上の潤滑性物質とキヤリヤ
剤として炭酸カルシウム、炭酸バリウム、炭酸ソ
ーダー、炭酸リチウム、石灰、マイカ、酸化チタ
ンなどの一種あるいは二種以上で構成される粉末
潤滑剤や油脂、、鉱油、ポリブテン等の液体、ペ
ースト状潤滑剤のような水素を含むもので所定サ
イズに伸線し、ベーキング処理により水素を除去
後、本発明による潤滑剤を浸漬塗布やスキンパス
伸線などの方法で適用することができる。 本発明は概略以上の様に構成されており、その
効果を要約すれば下記の通りである。 (1) 分散媒として揮発性溶媒を使用し、分散質と
して特定分子量のフツ素系低重合度化合物と、
黒鉛及び/若しくは二硫化モリブデンとの特定
量を併用することにより、ワイヤ送給抵抗を大
幅に低滅できる。しかもアーク安定性や溶着金
属の機械的性質に悪影響を与える恐れもない。 (2) 従つて通常のソリツドワイヤや太径の複合ワ
イヤはもとより、小径の複合ワイヤでも自動又
は半自動溶接に支障なく適用できる。 (3) 本発明の潤滑剤は、ワイヤ送給性のみならず
伸線時の抵抗も低下させるから、各種線材の伸
線加工用潤滑剤としても有効に活用できる。殊
に複合ワイヤ等の仕上げ伸線前にこの潤滑剤を
塗布しておけば、ダイスの磨耗抑制と潤滑剤の
ワイヤ表面に対する付着均一性が同時に達成さ
れ、送給性等の優れた高品質の溶接用ワイヤを
得ることができる。 (4) この潤滑剤は通電性も良好であり、アーク安
定性を阻害することもない。また表面保護効果
も有しているから、これを表面に付着させた溶
接用ワイヤは耐錆性も良好であり、保存時の変
質も可及的に予防される。 次に実験例を示す。 第1表に示す各種の潤滑剤を、直径1.6mmφの
炭酸ガスアーク溶接用フラツクス入りワイヤ(軟
鋼ケーシング:50Kg高張力鋼用、フラツクス:チ
タニア系)の表面に塗布し、各ワイヤの伸線性、
送給性、溶接時の通電性、溶着金属中の炭素及び
硫黄の増加量、溶接作業性及びワイヤ自体の耐錆
性を調べた。結果を第2表に示す。 但し試験方法は下記の通りとした。 〔伸線方法〕 連続伸線機、ダイスケジユール:3.2φ→1.6φ
(mm) 伸線速度:200m/分、350m/分、450m/分 〔潤滑剤の付着法〕 伸線加工する場合:各ダイスでの滅面時に圧着 伸線加工しない場合:1.6mmφに仕上げ伸線した
後伸線用潤滑剤を除去し、再び本発明の潤滑剤
を浸漬塗布する。 〔ワイヤ送給抵抗〕及び〔電流変動回数〕 前記と同じ 〔溶接条件〕 溶接電流:320A、溶接電圧:30V、溶速度:30
cm/分、電源極性:DC−RP、シールドガス:炭
酸ガス20/分、母材:JISSM−50A、厚さ19mm 〔耐錆性試験〕 デユーサイクル・ウエザー試験機を使用し、35
℃・1時間乾燥→25℃・1時間湿潤のサイクルを
24時間繰り返し、ワイヤ表面の発錆状況を観察す
る。
The present invention relates to a lubricant and welding wire, which exhibits excellent lubricity and rust resistance particularly when wire-drawing metal materials, and also provides excellent lubrication by adhering to the surface of welding wire. The present invention relates to a lubricant that exhibits properties (feedability), electrical conductivity, etc., and a welding wire to which the lubricant is attached to the surface. In the following explanation, the lubrication performance of the lubricant will be the main issue, and specifically the lubricity (feedability) of the welding wire will be explained, but as is clear from the examples below, other characteristics are also considered. It is an excellent lubricant for wire drawing. Wires for automatic and semi-automatic welding have become extremely popular, mainly solid wires for carbon dioxide arc welding. However, flux-cored wire (hereinafter referred to as composite wire), which was also developed for carbon dioxide arc welding, has not become very popular despite its excellent workability and bead appearance. It has been pointed out that the reasons for this are not only the high price of the wire, but also the fact that the feedability of small-diameter wires is poorer than that of solid wires of the same diameter. In other words, the wire feedability is
It is extremely important to ensure good arc stability, bead appearance, and welding efficiency, and cannot be applied to automatic or semi-automatic welding unless feedability is satisfied. The reason why the feedability of the composite wire is poor is considered to be as follows. That is, the composite wire is
Generally, flux is filled in a thin-walled mild steel cylindrical casing of about 0.2 to 0.5 mm, so it is softer than solid wire, and since a seam is formed in the casing, it is fed under pressure with rollers. When feeding, the wire cross section tends to be deformed or buckled within the conduit tube, resulting in extremely large feeding resistance. For this reason, for large diameter composite wires of 2.4 mmφ and 3.2 mmφ, a knurled or geared feed roller is used. But 1.2mm
For small diameter wires such as φ and 1.6mmφ, dedicated knurled or geared feed rollers are not widely used, and flat rollers equivalent to solid wires are used, so it is necessary to attach a lubricating substance to the wire surface. This is intended to reduce feeding resistance. By the way, in the case of solid wires, one way to increase the lubricity of the wire surface is to apply copper plating to the wire surface and then apply a large amount of hydrogen-containing lubricant such as mineral oil, animal or vegetable oil, synthetic oil, or metal soap. This is commonly done. However, in the case of flux-cored wires, except for expensive seamless wires, these lubricants can penetrate through the seams and cause porosity and weld cracks due to hydrogen during welding. 300~
It is necessary to remove hydrogen generation sources as much as possible by baking at about 450°C. On the other hand, graphite, which has low hygroscopicity and does not have a hydrogen source, can be used as a lubricant.
Various techniques have been developed in which molybdenum disulfide, graphite fluoride, fluorocarbon oil, fluorocarbon resin, etc. are used alone or in combination of two or more types, but each has the following disadvantages. In other words, powders such as graphite, graphite fluoride, molybdenum disulfide, and fluororesin adhere to the wire surface in large quantities, which tends to deteriorate the mechanical properties of the deposit, and molybdenum disulfide and fluororesin have poor insulation properties. Since it is expensive, there is a risk of electrical conduction failure during welding. Regarding fluorine oil, it is stated in Japanese Patent Publication No. 48-34984 that it can be used as a lubricant for welding wires, but a satisfactory lubricating effect could not be obtained when applied to flux-cored wires. Furthermore, regarding lubricants containing graphite or molybdenum disulfide mixed with liquid fluororesin, or lubricants containing arc stabilizers, Japanese Patent Publications No. 50-38626, No. 51-4503,
It is disclosed in No. 51-43987, etc. However, since all of these lubricants are in the form of a base, it is difficult to make the amount of adhesion uniform, and the coating film tends to be too thick. In addition, when these lubricants are applied to wire drawing processing, they are applied to the wire surface in a die box, and then the coating film becomes thinner and more uniform as the surface is destroyed in the die, but liquid lubricants In comparison, sufficient drying cannot be expected, and the wettability to the wire surface is also not good, so there is a problem in wire drawability (die basic unit, etc.). Under the above-mentioned circumstances, the present inventors solved the problem of hydrogen intrusion into welding wire, especially composite wire.
We have been conducting intensive research with the aim of developing a lubricant that can significantly improve feedability without causing problems with electrical conductivity or weld metal. As a result, it was found that a lubricant that meets the above objectives can be obtained by specifying the types and proportions of the ingredients as shown below, and that this lubricant also has an excellent effect on improving the feeding performance of solid wires. Furthermore, it was confirmed that this lubricant was also excellent as a lubricant for wire drawing, and the present invention was finally completed. That is, the composition of the lubricant according to the present invention is that 0.1 to 10 parts by weight of a solid fluorine-based low polymerization degree compound having a molecular weight of 2,500 to 10,000 and belonging to an intermediate region between low molecules and polymers, generally called oligomers, in a solvent; The gist is that 0.1 to 20 parts by weight of graphite and/or molybdenum disulfide are blended and made into a suspension. The gist of the structure of the welding wire according to the present invention is that the lubricant is uniformly adhered to the surface of the wire. The structure and effects of the present invention will be explained below with reference to the types of constituent components of the lubricant and the basis for limiting the blending ratio. Not a thing,
Any suitable changes and implementations within the range that can comply with the spirit of the above and below are included in the scope of the technology of the present invention. The volatile solvent acts as a dispersion medium for fine powder dispersoids consisting of graphite and/or molybdenum disulfide and fluorine-based low polymerization degree compounds, and quick-drying solvents such as trichlorethylene and trichlorotrifluoroethane are used. be done. Since these agents quickly volatilize after being applied to welding wires, no harmful elements such as chlorine or hydrogen remain on the wire surface, and they can be applied to composite wires without any problems. If a slightly volatile solvent is used, it will take a long time to dry naturally after applying the lubricant, or a separate drying device will be required, which will reduce productivity, and the wire drawing process will not be carried out in a semi-dry state. If this is done, the lubricity deteriorates and problems such as die roughness occur. In addition, examples of fluorine-based low polymerization degree compounds (hereinafter abbreviated as fluorine-based compounds) include polyfluorinated olefin-based telomers represented by polytetrafluorinated ethylene telomers; Must be of a range. This is because, as will be made clear in the experimental examples below, satisfactory wire drawability and wire feedability cannot be obtained with liquid fluorine oils whose molecular weight is less than 2,500, e.g. 500 to 1,500;
Fluorine resin (manufactured by DuPont, USA, product name:
Teflon (etc.) has a large particle size and a high specific gravity, so it has poor dispersibility and cannot be uniformly adhered to the wire surface. Note that the fluorine compound having the above-mentioned preferred molecular weight range has not only excellent dispersibility as described above but also uniform adhesion to the wire surface.
When used alone, the lubricity is insufficient, and it is necessary to use it in combination with graphite and/or molybdenum disulfide to achieve the purpose. Moreover, in order to uniformly disperse these in a volatile solvent and obtain a stable suspension, the fluorine-based compound, graphite, and/or molybdenum disulfide must be used as fine powder, and the particle size is particularly small. A stable suspension can be reliably obtained by using fine powder of 3 μm or less. However, when preparing the powder simply for coating welding wires, it is desirable to use ultrafine powder of 1 μm or less in consideration of the electrical conductivity and the effect on the deposited metal. That is, when preparing for wire drawing, the dispersoids are uniformly spread over the wire surface during the wire drawing process, so as long as the stability of the suspension is maintained, dispersoids with a relatively large particle size are used. However, conductivity etc. are not inhibited. However, in the present invention, the blending ratio of the fluorine-based compound and graphite and/or molybdenum disulfide is
The latter was limited to 0.1 to 10 parts by weight, and the latter to 0.1 to 20 parts by weight, which were determined in consideration of application to welding wire. The lubricating thin film attached to the surface of the welding wire according to the present invention is made of a fluorine low polymerization degree compound with a molecular weight of at least 2,500 to 10,000, graphite and/or molybdenum disulfide in order to obtain good feedability and weldability. 0.001 to 0.1 per total wire weight
It is necessary to adjust the proportion by weight of the fluorine-based low polymerization degree compound with a molecular weight of 2,500 to 10,000 and graphite and/or molybdenum disulfide in this lubricating thin film, depending on the amount of the lubricant used on the wire surface. Since it is evenly attached, it is proportional to the original proportion. That is, since the weight ratio of the fluorine-based compound and graphite and/or molybdenum disulfide contained in the lubricating oil is the former (0.1 to 10) to the latter (0.1 to 20), the weight ratio of the two attached to the wire surface is The weight ratio is the former/latter=0.5 to 99 from the following formula. former/latter = (0.1~10)/(0.1~10)+(
0.1~20) /(0.1~20)/(0.1~10)+(0.1~
20) Taking the lower and upper limits of each range, the former/latter = 0.1/20.1 to 10/0.1 = 0.5 to 99 The amount of the lubricant thin film formed on the welding wire was set within the above range. If it is less than 0.001 part by weight based on the total weight of the wire, sufficient lubricity will not be obtained, whereas if it exceeds 0.1 part by weight, problems such as a decrease in the physical properties of the weld metal and electrical conductivity will occur. be. In addition, this lubricating thin film all has a molecular weight of 2500~
10,000 fluorine-based low polymerization degree compound and graphite and/or molybdenum disulfide, the ratio is 0.5 to 99.0, respectively, in the same way as the previous formula, compared to the proportion of the lubricant composition used excluding the volatilized solvent. Parts by weight, 1.0 to 99.5 parts by weight. That is, Figure 1 is a graph examining the relationship between the amount of solid fluorine compound (polytetrafluoroethylene telomer) added to the liquid lubricant and the feeding resistance of welding wire (the dashed line in the figure is Figures 2 and 3 also show the amount of fluorine-based compounds, the number of current fluctuations, and the amount of increase in carbon in the weld metal. This is a graph examining the relationship between The horizontal axis of the graph represents the amount blended into the volatile solvent, but in the explanation of the text, it is simply expressed as parts by weight. As is clear from these graphs, if the amount of the fluorine compound blended is less than 0.1 part by weight, the lubricating film becomes extremely thin, making it impossible to obtain sufficient feedability and drawability. on the other hand
If it exceeds 10 parts by weight, the number of current fluctuations will increase, and the arc will become unstable due to a decrease in current conductivity.
Moreover, carbon invades the weld metal, resulting in a decrease in mechanical properties. Note that FIG. 1 shows the effect of adding a fluorine-based compound alone, and in the case of a single blend, even if the blending ratio is increased, the feed resistance value cannot be lowered to 3.2 kg, which is the limit feed resistance value. Therefore, the wire feeding resistance and the number of current fluctuations were investigated by keeping the blending ratio of the fluorine compound constant at 0.1 parts by weight and changing the blending ratio of graphite or molybdenum disulfide, as shown in Figures 4 and 5. Further, FIG. 6 is a graph in which the relationship between graphite and molybdenum disulfide and the blending ratio of each of them alone was investigated in order to confirm the influence they have on the weld metal. As is clear from these results, if the blending ratio of graphite or molybdenum disulfide is less than 0.1 parts by weight, the above-mentioned limit feeding resistance value cannot be secured even if it is used in combination with a fluorine compound. 20 again
If the amount exceeds 1 part by weight, especially in the case of molybdenum disulfide, the insulating property is high, and together with the insulating property of the fluorine-based compound, poor current conduction becomes significant. Furthermore, if the amount exceeds 20 parts by weight, the amount of carbon or sulfur in the weld metal increases and the mechanical properties deteriorate. Note that it is preferable to use 10 parts by weight or less. The conditions and method for measuring the wire feeding resistance and the number of current fluctuations shown in Figures 1 to 6 above are as follows. [Welding wire] Composite wire for carbon dioxide arc welding (mild steel, 50Kg
(using titania-based flux for high-strength steel), wire diameter 1.6 mmφ [Lubricant] After removing the wire drawing lubricant from the surface of the wire drawn to 1.65 mmφ, a suspension liquid lubricant (solvent : trichlorotrifluoroethane,
Dispersoid: Polytetrafluoroethylene telomer (polytetrafluoroethylene telomer, graphite or molybdenum disulfide) with a molecular weight of 3500) is continuously dipped and coated, and skin-passed with a die to form a 1.6mm
Finish to φ. [Wire feeding resistance] Semi-automatic welding wire feeding device shown in Fig. 7 (1: torch, 2: 3m conduit tube,
3: 300mmφ loop to increase load, 4: Feeding motor, 5: Feeding roller, 6: Test wire,
7: Measure the feeding resistance of the wire when inching feeding with a feed motor voltage of 10V using a spool. The lower the measured value, the better the feeding performance, 1.6mm
In the case of a composite wire of φ, the resistance value must be 3.2 kg or less to avoid arc instability. On the other hand, solid wires of the same diameter have high rigidity, so sufficient feeding performance can be obtained even if the feeding resistance value is around 5 kg. [Number of current fluctuations] As a guide for current conductivity, welding is performed downward for 1 minute on a flat plate under the following conditions: welding current 300A, welding voltage 28V, welding speed 40cm/min, carbon dioxide gas 20/min, at 10A.
The above number of current fluctuations was measured, and the average value was determined by repeating the test 10 times. Note that the wire according to the present invention may be further treated with the lubricant of the present invention after being treated with another lubricant. For example, calcium, barium, lithium,
Consists of one or more lubricating substances such as magnesium and sodium metal soaps and one or more carrier agents such as calcium carbonate, barium carbonate, soda carbonate, lithium carbonate, lime, mica, titanium oxide, etc. Wire is drawn to a predetermined size using powdered lubricant, oil, liquid such as mineral oil, polybutene, or paste lubricant containing hydrogen, and after removing hydrogen by baking, the lubricant of the present invention is applied by dip coating or It can be applied by methods such as skin path drawing. The present invention is roughly constructed as described above, and its effects can be summarized as follows. (1) A volatile solvent is used as a dispersion medium, a fluorine-based low polymerization degree compound with a specific molecular weight is used as a dispersoid,
By using a specific amount of graphite and/or molybdenum disulfide, wire feeding resistance can be significantly reduced. Moreover, there is no fear of adversely affecting the arc stability or the mechanical properties of the deposited metal. (2) Therefore, not only ordinary solid wires and large-diameter composite wires, but also small-diameter composite wires can be applied to automatic or semi-automatic welding without any problem. (3) Since the lubricant of the present invention reduces not only wire feeding performance but also resistance during wire drawing, it can be effectively used as a lubricant for wire drawing of various wire rods. In particular, if this lubricant is applied before finishing wire drawing of composite wires, etc., it is possible to simultaneously suppress die wear and achieve uniformity of lubricant adhesion to the wire surface, resulting in high quality products with excellent feedability. Welding wire can be obtained. (4) This lubricant has good electrical conductivity and does not impede arc stability. Furthermore, since it also has a surface protection effect, welding wires with this adhered to the surface have good rust resistance, and deterioration during storage is prevented as much as possible. Next, an experimental example will be shown. Various lubricants shown in Table 1 were applied to the surface of a flux-cored wire for carbon dioxide arc welding with a diameter of 1.6 mm (mild steel casing: 50 kg for high-strength steel, flux: titania type), and the drawability of each wire was determined.
The feedability, conductivity during welding, increase in carbon and sulfur in the deposited metal, welding workability, and rust resistance of the wire itself were investigated. The results are shown in Table 2. However, the test method was as follows. [Wire drawing method] Continuous wire drawing machine, die schedule: 3.2φ → 1.6φ
(mm) Wire drawing speed: 200 m/min, 350 m/min, 450 m/min [Lubricant attachment method] When wire drawing is performed: When wire drawing is not performed by crimping at the time of flattening with each die: Finished drawing to 1.6 mmφ After the wire is drawn, the wire drawing lubricant is removed, and the lubricant of the present invention is dip-coated again. [Wire feeding resistance] and [Number of current fluctuations] Same as above [Welding conditions] Welding current: 320A, welding voltage: 30V, melting speed: 30
cm/min, power polarity: DC-RP, shielding gas: carbon dioxide 20/min, base material: JISSM-50A, thickness 19mm [Rust resistance test] Using a Ducycle weather tester, 35
℃・1 hour dry → 25℃・1 hour wet cycle
Repeat this for 24 hours and observe the state of rust on the wire surface.

【表】【table】

【表】【table】

【表】 第1、2表から次の様に考察することができ
る。 (1) 従来の石灰−カルシウム石鹸系粉末潤滑剤
(No.1)は、伸線性及び通電性は良好であるも
ののワイヤ送給抵抗が高くアークがやや不安定
であり、耐錆性も期待できない。また溶着金属
の物性低下を防止する為には伸線後のベーング
処理が不可欠である。 (2) 二硫化モリブデン−黒鉛系粉末潤滑剤
(No.2)は、伸線性、ワイヤ送給性及び通電性
は良好であるものの、溶着金属の物低下が著し
くまたアークも不安定であり、且つ耐錆性も乏
しい。 (3) フツ素樹脂からなる粉末潤滑剤(No.3)
は、伸線性、ワイヤ送給性及び耐錆性は良好で
あるものの、通電性が極めて悪く、アークスタ
ート及びアーク安定性が不良で使用に耐えな
い。また溶着金属の物性にも相当悪影響を及ぼ
す。 (4) フツ素油からなる液状潤滑剤(No.4、5)
は、伸線性が不良であるから仕上げ伸線前の塗
布はできない。また仕上げ伸線後に塗布した場
合でもワイヤ送給性が不十分である。 (5) フツ素油−黒鉛−二硫化モリブデン系のペー
スト状潤滑剤(No.6)は、ワイヤ送給性、溶
接作業性及び耐錆性は良好であるが、伸線性及
び通電性が悪く且つ溶着金属の物性に悪影響を
与える。 (6) トリクロロトリフルオロエタンにフツ素系化
合物のみを配合した懸濁液状潤滑剤(No.7、
8)は、伸線性が不十分であり、仕上げ伸線前
に塗布すると満足なワイヤ送給性が得られず、
溶接作業性及び耐錆性も不十分である。尚仕上
げ伸線後に塗布すると優れた溶接作業性及び耐
錆性を発揮するが、ワイヤ送給性は依然として
不十分である。 (7) これらに対し本発明の要件を満足る潤滑剤
(No.9〜15)は、伸線性、ワイヤ送給性、通電
性、溶接作業及び耐錆性のすべてに優れてお
り、且つ溶着金属の物性を低下させることもな
い。
[Table] From Tables 1 and 2, the following can be considered. (1) Conventional lime-calcium soap powder lubricant (No. 1) has good wire drawability and electrical conductivity, but has high wire feeding resistance, slightly unstable arc, and cannot be expected to have rust resistance. . Furthermore, in order to prevent deterioration of the physical properties of the weld metal, baging treatment after wire drawing is essential. (2) Although the molybdenum disulfide-graphite powder lubricant (No. 2) has good wire drawability, wire feedability, and electrical conductivity, it significantly degrades the quality of the weld metal and causes unstable arcing. It also has poor rust resistance. (3) Powder lubricant made of fluororesin (No. 3)
Although it has good wire drawability, wire feedability, and rust resistance, it has extremely poor current conductivity and poor arc start and arc stability, making it unusable. It also has a considerable adverse effect on the physical properties of the deposited metal. (4) Liquid lubricant made of fluorine oil (No. 4, 5)
cannot be applied before finishing wire drawing because it has poor wire drawability. Further, even when applied after finishing wire drawing, wire feeding performance is insufficient. (5) Fluorine oil-graphite-molybdenum disulfide paste lubricant (No. 6) has good wire feedability, welding workability, and rust resistance, but has poor wire drawability and conductivity, and Adversely affects the physical properties of weld metal. (6) Suspension lubricant (No. 7,
8) has insufficient wire drawability, and if applied before finishing wire drawing, satisfactory wire feeding performance cannot be obtained.
Welding workability and rust resistance are also insufficient. When applied after finishing wire drawing, excellent welding workability and rust resistance are exhibited, but wire feedability is still insufficient. (7) On the other hand, the lubricants (No. 9 to 15) that satisfy the requirements of the present invention are excellent in all of wire drawability, wire feedability, electrical conductivity, welding workability, and rust resistance, and are It does not reduce the physical properties of the metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は、フツ素系化合物、黒鉛及び二硫
化モリブデンの配合率限定の根拠を示すグラフ、
第7図はワイヤ送給抵抗の測定に使用した装置を
示す略図である。 1……トーチ、2……コンジツトチユーブ、3
……ループ、4……送給モータ、5……送給ロー
ラ、6……供試ワイヤ。
Figures 1 to 6 are graphs showing the basis for limiting the blending ratio of fluorine-based compounds, graphite, and molybdenum disulfide;
FIG. 7 is a schematic diagram showing the apparatus used to measure wire feed resistance. 1...Torch, 2...Conduit tube, 3
...Loop, 4...Feed motor, 5...Feed roller, 6...Test wire.

Claims (1)

【特許請求の範囲】 1 分子量が2500〜10000のフツ素系低重合度化
合物0.1〜10重量部と、黒鉛及び/若しくは二硫
化モリブデン0.1〜20重量部を、揮発性溶媒中に
懸濁させたものであることを特徴とする潤滑剤。 2 特許請求の範囲第1項において、揮発性溶媒
がトリクロロエチレン及び/又はトリクロロトリ
フルオロエタンである潤滑剤。 3 特許請求の範囲第1又は2項において、フツ
素系低重合度化合物がポリ4フツ化エチレンテロ
マーである潤滑剤。 4 特許請求の範囲第1、2又は3項において、
フツ素系低重合度化合物、黒鉛及び/若しくは二
硫化モリブデンが、いずれも3μ以下の微粉末で
ある潤滑剤。 5 特許請求の範囲第4項において、微粉末の粒
径が1μ以下である潤滑剤。 6 特許請求の範囲第1〜4又は5項において、
金属線材の伸線加工用である潤滑剤。 7 特許請求の範囲第6項において、金属線材が
溶接用ワイヤである潤滑剤。 8 潤滑性物質を溶接用ワイヤ表面にワイヤ全重
量当り0.001〜0.1%付着させ、かつその潤滑性物
質は少なくとも分子量が2500〜10000のフツ素系
低重合度化合物0.1〜10重量部と黒鉛及び/若し
くは二硫化モリブデン0.1〜20重量部を含むこと
を特徴とする溶接用ワイヤ。 9 特許請求の範囲第8項において、フツ素系低
重合度化合物と黒鉛及び/若しくは二硫化モリブ
デンとの重量構成比を0.5〜99.0とした溶接用ワ
イヤ。 10 特許請求の範囲第8又は9項において、潤
滑性物質中、フツ素系低重合度化合物0.5〜99.0
重量部、黒鉛及び/若しくは二硫化モリブデンを
1.0〜99.5重量部含有する溶接用ワイヤ。 11 特許請求の範囲第8、9又は10項におい
て、フツ素系低重合度化合物がポリ4フツ化エチ
レンテロマーであるワイヤ。 12 特許請求の範囲第8〜10又は11項にお
いて、フツ素系低重合度化合物、黒鉛及び/若し
くは二硫化モリブデンが、いずれも1μ以下の微
粉末であるワイヤ。 13 特許請求の範囲第8〜11又は12項にお
いて、溶接用ワイヤが細径のフラツクス入りワイ
ヤであるワイヤ。
[Scope of Claims] 1. 0.1 to 10 parts by weight of a fluorine-based low polymerization degree compound having a molecular weight of 2,500 to 10,000 and 0.1 to 20 parts by weight of graphite and/or molybdenum disulfide are suspended in a volatile solvent. A lubricant characterized by being 2. The lubricant according to claim 1, wherein the volatile solvent is trichlorethylene and/or trichlorotrifluoroethane. 3. The lubricant according to claim 1 or 2, wherein the fluorine-based low polymerization degree compound is polytetrafluoroethylene telomer. 4 In claim 1, 2 or 3,
A lubricant in which a fluorine-based low polymerization degree compound, graphite and/or molybdenum disulfide are all fine powders of 3μ or less. 5. The lubricant according to claim 4, wherein the particle size of the fine powder is 1 μm or less. 6 In claims 1 to 4 or 5,
A lubricant for drawing metal wire. 7. The lubricant according to claim 6, wherein the metal wire is a welding wire. 8 A lubricating substance is attached to the surface of the welding wire in an amount of 0.001 to 0.1% based on the total weight of the wire, and the lubricating substance is at least 0.1 to 10 parts by weight of a fluorine-based low polymerization degree compound with a molecular weight of 2,500 to 10,000, graphite and/or Alternatively, a welding wire comprising 0.1 to 20 parts by weight of molybdenum disulfide. 9. The welding wire according to claim 8, wherein the weight composition ratio of the fluorine-based low polymerization degree compound and graphite and/or molybdenum disulfide is 0.5 to 99.0. 10 In claim 8 or 9, in the lubricating substance, a fluorine-based low polymerization degree compound of 0.5 to 99.0
Part by weight, graphite and/or molybdenum disulfide
Welding wire containing 1.0 to 99.5 parts by weight. 11. The wire according to claim 8, 9 or 10, wherein the fluorine-based low polymerization degree compound is polytetrafluoroethylene telomer. 12. The wire according to claims 8 to 10 or 11, wherein the fluorine-based low polymerization degree compound, graphite and/or molybdenum disulfide are all fine powders of 1 μm or less. 13. The wire according to claims 8 to 11 or 12, wherein the welding wire is a small diameter flux-cored wire.
JP16181779A 1979-12-12 1979-12-12 Lubricant and wire for welding Granted JPS5684195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16181779A JPS5684195A (en) 1979-12-12 1979-12-12 Lubricant and wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16181779A JPS5684195A (en) 1979-12-12 1979-12-12 Lubricant and wire for welding

Publications (2)

Publication Number Publication Date
JPS5684195A JPS5684195A (en) 1981-07-09
JPS6123078B2 true JPS6123078B2 (en) 1986-06-04

Family

ID=15742466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16181779A Granted JPS5684195A (en) 1979-12-12 1979-12-12 Lubricant and wire for welding

Country Status (1)

Country Link
JP (1) JPS5684195A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104291A (en) * 1982-12-06 1984-06-16 Kobe Steel Ltd Flux cored wire for gas shielded arc welding
JPS6087997A (en) * 1983-10-18 1985-05-17 Kobe Steel Ltd Lubricating treatment for outside circumferential surface of flux cored wire
JP2542266B2 (en) * 1989-10-03 1996-10-09 日鐵溶接工業株式会社 Copper plated steel wire for gas shield arc welding
JP2682814B2 (en) * 1994-05-06 1997-11-26 株式会社神戸製鋼所 Arc welding wire

Also Published As

Publication number Publication date
JPS5684195A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
CN1374167A (en) Metal core aluminium welding wire and its forming method
US4913927A (en) Lubricated aluminum weld wire and process for spooling it
CN1220626A (en) Method of production of welding wire
US3935414A (en) Automatic fixed position pipe welding
JP3148042B2 (en) Wire coated with perfluoropolyether
JPS6123078B2 (en)
KR20020028813A (en) Aluminum metal-core weld wire and method for forming the same
JP3813360B2 (en) Welding wire and manufacturing method thereof
JP2000107881A (en) Welding wire
JP4440059B2 (en) Copper plated wire for carbon dioxide shielded arc welding
JP2672153B2 (en) Welding wire
US1763417A (en) Electrode for electric welding or soldering
US3321944A (en) Surface finish for continuous electrode
JP2015186817A (en) Gas shield arc welding wire
JP3584894B2 (en) Steel wire for gas shielded arc welding
JP2546955B2 (en) MIG wire for aluminum welding
KR100668170B1 (en) Baked flux cored wire for gas shield arc welding having excellent rust resistance and feedability and a method for preparing thereof
JP2010100703A (en) Perfluoropolyether compound composition
KR100322369B1 (en) A Welding Wire and Method for Manufacturing It
JP3474378B2 (en) Method of manufacturing wire for gas shielded arc welding
JPH06285677A (en) Steel wire for arc welding
JPH09141491A (en) Production of arc welding wire
US3409478A (en) Aerosol brazing flux and method of brazing therewith
JP2001179481A (en) Flux cored wire for arc welding and method of manufacturing the same
JPS6326297A (en) Seamless flux cored wire for welding stainless steel and its production