JPS61230354A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS61230354A
JPS61230354A JP60072873A JP7287385A JPS61230354A JP S61230354 A JPS61230354 A JP S61230354A JP 60072873 A JP60072873 A JP 60072873A JP 7287385 A JP7287385 A JP 7287385A JP S61230354 A JPS61230354 A JP S61230354A
Authority
JP
Japan
Prior art keywords
bipolar
region
polycrystalline silicon
film
bored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60072873A
Other languages
Japanese (ja)
Other versions
JPH0671066B2 (en
Inventor
Katsuyuki Inayoshi
稲吉 勝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60072873A priority Critical patent/JPH0671066B2/en
Publication of JPS61230354A publication Critical patent/JPS61230354A/en
Publication of JPH0671066B2 publication Critical patent/JPH0671066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Abstract

PURPOSE:To obtain a Bi-CMOS IC having characteristics as a bipolar-transistor having extremely high performance by forming base-emitter regions in a controllable manner in fine size. CONSTITUTION:Drain-source regions and a gate electrode in a CMOS section are shaped, an inter-layer insulating layer 14 is laminated on the whole surface, the PSG film in the region of a bipolar-transistor is removed selectively through etching, and the PSG film is melted through heating. B ions are implanted while using a resist, to which only a base region is bored, as a mask, and electrode windows 17 are bored to the bipolar-transistor section. Polycrystalline silicon 15 is laminated on the whole surface, and As ions are implanted while employing a resist, to which only collector-emitter regions are bored, as a mask. Polycrystalline silicon on the MOS side is removed through etching, and source- drain electrode windows 16 are bored through a tapered etching method to the PSG film.

Description

【発明の詳細な説明】 〔概要〕 半導体装置で、バイポーラとMis)ランジスタを同一
のチップ上に形成せる集積回路装置の製造に当たり、プ
ロセスの改良によりバイポーラ部で浅いベース、エミッ
タ領域の形成を可能として装置の低電力化と高速化を行
った。
[Detailed Description of the Invention] [Summary] When manufacturing an integrated circuit device in which bipolar and Mis) transistors are formed on the same chip, it is possible to form shallow base and emitter regions in the bipolar part by improving the process. As a result, we reduced the power consumption and increased the speed of the device.

〔産業上の利用分野〕[Industrial application field]

本発明は、ロジック回路とリニヤ−回路の共存を必要と
する集積回路として、バイポーラとMISトランジスタ
を同一のチップ上に形成せる、所謂、Bi−MISIC
の製造方法に関する。
The present invention is an integrated circuit that requires the coexistence of a logic circuit and a linear circuit, and is a so-called Bi-MISIC in which bipolar and MIS transistors can be formed on the same chip.
Relating to a manufacturing method.

半導体集積回路の製造技術の進歩に伴って、ロジック回
路部とリニヤ−の増幅回路を同一のチップ上に形成する
要求が多くなって来ている。
As the manufacturing technology of semiconductor integrated circuits advances, there is an increasing demand for forming a logic circuit section and a linear amplifier circuit on the same chip.

このような集積回路の製造プロセスでは、MIS  F
ET部とバイポーラ・トランジスタ部とはその構造の差
異によりプロセスは複雑となり、プロセスの制約により
、バイポーラの特性を希望通りに実現出来ないという問
題が屡起こる。
In the manufacturing process of such integrated circuits, MISF
The difference in structure between the ET section and the bipolar transistor section complicates the process, and the problem often arises that bipolar characteristics cannot be achieved as desired due to process constraints.

特に、Bi−MISIGの低電力化と高速化にハハイボ
ーラ・トランジスタのベース領域を出来るだけ浅く形成
することが必要であり、改善を要望されている。
In particular, in order to reduce the power consumption and increase the speed of Bi-MISIG, it is necessary to form the base region of the HAI boular transistor as shallow as possible, and improvements are desired.

〔従来の技術〕[Conventional technology]

従来の技術によるMIS)ランジスタとして、CMO3
で構成されるBi−CMO3ICの製造方法を、第2図
(al〜(f)の工程順断面図により説明する。
As a conventional MIS) transistor, CMO3
A method for manufacturing a Bi-CMO3 IC composed of the following will be explained with reference to step-by-step cross-sectional views of FIGS.

第2図(alは、p″″型シリコン基板1にマスクを用
い、選択的にp−MOSとバイポーラのトランジスタ部
に、n゛型埋没層2を形成せる状態を示す。
FIG. 2 (al) shows a state in which an n-type buried layer 2 is selectively formed in the p-MOS and bipolar transistor portions using a mask on the p'' type silicon substrate 1.

上記シリコン基板にn型エピタキシアル層3を気相成長
させる。これを第2図(b)に示す、この成長では基板
温度が1000℃以上に加熱されるので不純物層はエピ
タキシアル層にまで拡がる。
An n-type epitaxial layer 3 is grown in vapor phase on the silicon substrate. This is shown in FIG. 2(b). In this growth, the substrate temperature is heated to 1000° C. or more, so the impurity layer spreads to the epitaxial layer.

次いで、熱酸化により基板全面にSing膜4、更に、
CVD法で5izN4膜5を積層する。次いで、MO3
素子形成領域、及びバイポーラのベース、コレクタ領域
以外のS i 3 N 4膜を選択的エツチング除去す
る。
Next, a Sing film 4 is formed on the entire surface of the substrate by thermal oxidation, and further,
A 5izN4 film 5 is laminated by CVD. Then M.O.3
The S i 3 N 4 film other than the element forming region and the bipolar base and collector regions is removed by selective etching.

次いで、pウェル6の形成領域とアイソレーシッン領域
7を除いてレジストでマスクして、ボロン(B)のイオ
ンの打ち込みを行ない、アニールすることにより第2図
(C1に示すpウェルとp型アイソレーション領域が得
られる。
Next, the formation region of the p-well 6 and the isolation region 7 are masked with a resist, boron (B) ions are implanted, and annealing is performed to form the p-well and p-type isolation region shown in FIG. 2 (C1). area is obtained.

次に隣接せるトランジスタ間の酸化膜の下に、レジスト
をマスクとしてB及び砒素(As)のイオン打ち込みを
それぞれ行い、p型、n型のチャンネルカット8.9を
形成する。この基板を熱酸化することによりS i 3
 N a膜に覆われた領域以外は厚いフィールド酸化膜
10が形成される。この状態を第2図(d)に示す。
Next, B and arsenic (As) ions are implanted under the oxide film between adjacent transistors using a resist as a mask to form p-type and n-type channel cuts 8.9. By thermally oxidizing this substrate, S i 3
A thick field oxide film 10 is formed in areas other than those covered with the Na film. This state is shown in FIG. 2(d).

以上でトランジスタの素子形成前の前工程が終わる。This completes the pre-process before forming the transistor element.

基板上の薄い5ilN、膜、SiO□膜を化学的に洗浄
除去し、MOSおよびバイポーラのトランジスタ形成領
域のシリコン基板を露出セした後、この領域にゲート酸
化膜11を成長させる。
After chemically cleaning and removing the thin 5ilN film and SiO□ film on the substrate to expose the silicon substrate in the MOS and bipolar transistor forming regions, a gate oxide film 11 is grown in this region.

次いで、バイポーラ・トランジスタのベース領域のみ開
口せるレジストによりBのイオン打ち込みを行う。
Next, B ions are implanted using a resist that opens only the base region of the bipolar transistor.

次いで、全面にn型多結晶シリコンを成長させると共に
、先のベースイオン打ち込み領域のアニールを行う。
Next, n-type polycrystalline silicon is grown over the entire surface, and the base ion implanted region is annealed.

次いで、ゲート電極部を除いて多結晶シリコンをエツチ
ング除去し、ゲート電極12を形成する。
Next, the polycrystalline silicon is etched away except for the gate electrode portion to form the gate electrode 12.

次いで、n−MOS、p−MOSのソース、ドレイン領
域に、ゲート電極および必要領域以外のレジストでマス
クしてAS%及びBのイオン打ち込み行う。
Next, ions of AS% and B are implanted into the source and drain regions of the n-MOS and p-MOS while masking the gate electrode and other regions with resist.

この際、As打ち込み時には、バイポーラ・トランジス
タのエミッタ領域17、コレクタ領域18にもイオンを
打ち込む。また、B打ち込み時にはベース・コンタクト
領域にもBを打ち込む。以上の工程で第2図(elが得
られる。
At this time, when implanting As, ions are also implanted into the emitter region 17 and collector region 18 of the bipolar transistor. Further, when implanting B, B is also implanted into the base contact region. Through the above steps, the image shown in FIG. 2 (el) is obtained.

次いで、ゲート電極表面をブロック酸化膜として・Si
n、膜13を成長させ、全面にPSG膜14を成長させ
た後、電極窓用のコンタクトホール16を開口する。
Next, the surface of the gate electrode is coated with Si as a block oxide film.
After growing the film 13 and growing the PSG film 14 on the entire surface, a contact hole 16 for an electrode window is opened.

この状態で約1050℃の高温熱処理を行ってPSG膜
をメルトさせることにより、第2図(f)が完成する。
In this state, high-temperature heat treatment at about 1050° C. is performed to melt the PSG film, thereby completing the structure shown in FIG. 2(f).

配線工程以降の工程については説明を省略する。Description of the steps after the wiring step will be omitted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記に述べた、従来の技術による方法では、PSG膜の
形成はトランジスタ素子領域の形成後に行われる。
In the conventional method described above, the formation of the PSG film is performed after the formation of the transistor element region.

また電極窓の形成はCMO5、バイポーラ共、PSG膜
形成後に開口しているので、微細寸法を必要とするエミ
ッタ、ベース領域の窓もPSG膜の高温のドライメルト
工程にさらされる。このためベース拡散領域を浅く出来
ない。
Furthermore, since the electrode windows are opened after the PSG film is formed for both CMO5 and bipolar, the windows in the emitter and base regions, which require fine dimensions, are also exposed to the high-temperature dry melting process of the PSG film. For this reason, the base diffusion region cannot be made shallow.

またエミッタの電極窓は、エミッタ拡散領域とセルファ
ラインで形成出来ない。
Further, the emitter electrode window cannot be formed by the emitter diffusion region and the self-line.

以上のように、バイポーラ・トランジスタの性能の向上
には大きな問題点を含んでいるので改善が要望されてい
る。
As described above, there are major problems in improving the performance of bipolar transistors, and improvements are therefore desired.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は CMOS部のドレイン、ソース領域、及
びゲート電極の形成を行った後、全面に層間絶縁層(P
SG膜)を積層し、バイポーラ部の該層間絶縁層を除去
する。
The problem mentioned above is that after forming the drain, source region, and gate electrode of the CMOS section, an interlayer insulating layer (P
SG film) is stacked, and the interlayer insulating layer in the bipolar part is removed.

次いで、バイポーラ部にベース、コレクタ領域を形成し
た後、表面絶縁膜に電極窓を開口し、全面に多結晶シリ
コン層を積層した後、イオン注入法、あるいはPSG膜
からの固相拡散法等によりエミッタ領域を形成する。
Next, after forming the base and collector regions in the bipolar part, electrode windows are opened in the surface insulating film, and a polycrystalline silicon layer is laminated on the entire surface. Form an emitter region.

次いで、CM OS SJI域の多結晶シリコン層を除
去し、層間絶縁膜にティパーエツチング法によりCMO
S部の電極窓を形成する工程を含むことよりなる本発明
の製造方法によって解決される。
Next, the polycrystalline silicon layer in the CMOS SJI area is removed, and a CMO layer is formed on the interlayer insulating film by tipper etching.
This problem is solved by the manufacturing method of the present invention, which includes a step of forming an electrode window in the S section.

〔作用〕[Effect]

バイポーラ部の電極窓の形成は、PSG膜に開口するの
でなく、表面酸化膜に開口し、多結晶シリコン層を積層
した後、イオン打ち込み等によりエミッタ拡散層を形成
する・ので、エミッタ領域は電極窓に対してセルファラ
イン的に形成出来る。
The electrode window in the bipolar part is formed not through the PSG film, but through the surface oxide film, and after laminating a polycrystalline silicon layer, an emitter diffusion layer is formed by ion implantation, etc. Therefore, the emitter region is not an electrode window. It can be formed in a self-aligned manner against the window.

またバイポーラの精度の高いベース、エミッタ領域の形
成が全てCMOS部の素子形成、PSG膜の成長後に行
うことが出来るので、ベース領域が浅く形成可能であり
、後の工程で拡散領域が拡がることがない。
In addition, since the highly accurate formation of the bipolar base and emitter regions can be performed after the element formation of the CMOS section and the growth of the PSG film, the base region can be formed shallowly, and the diffusion region can be expanded in later steps. do not have.

〔実施例〕〔Example〕

本発明による一実施例を第1図(a)〜(dlの工程断
面図により詳細説明する。トランジスタの素子形成の前
工程までは変わらないので、第2図(d)から以後の工
程ついて説明する。図面の符号も同一のものは省略する
An embodiment according to the present invention will be explained in detail with reference to process cross-sectional views shown in FIGS. 1(a) to (dl). Since the steps up to the step of forming a transistor element remain the same, subsequent steps will be explained from FIG. 2(d). The same reference numerals in the drawings will be omitted.

第2図(d)のごとく形成された基板を用い、全面のS
i 2 N a膜、Si0g膜を洗浄除去した後、新し
くゲート酸化膜11を全面に形成する。全面にn型多結
晶シリコンを成長させ、ゲート電極12を除いて多結晶
シリコンをエツチング除去する。
Using the substrate formed as shown in Fig. 2(d),
After cleaning and removing the i 2 Na film and the Si0g film, a new gate oxide film 11 is formed over the entire surface. N-type polycrystalline silicon is grown over the entire surface, and the polycrystalline silicon is etched away except for the gate electrode 12.

次いで、p−MOSのドレイン、及びソース領域、及び
バイポーラ・トランジスタの外部ベース領域をのみ開口
せるレジストをマスクとしてBイオンの打ち込みを行う
Next, B ions are implanted using a resist mask that opens only the drain and source regions of the p-MOS and the external base region of the bipolar transistor.

更に、n−MOSのドレイン、及びソース領域、及びバ
イポーラ・トランジスタのコレクタ領域を開口せるレジ
ストをマスクとして、A3のイオン打ち込みを行って第
1図(a)が得られる。
Further, using the resist as a mask to open the drain and source regions of the n-MOS and the collector region of the bipolar transistor, ions of A3 are implanted to obtain the structure shown in FIG. 1(a).

次いで、ゲート電極及びソース、ドレイン、バイポーラ
・トランジスタ上に酸化膜13を成長させ、その上にP
SG膜14を積層する。バイポーラ・トランジスタの領
域のPSG膜を選択的にエツチング除去する。次いで9
50℃以下の酸素ガス中の加熱でPSG膜のメルトを行
う。
Next, an oxide film 13 is grown on the gate electrode, source, drain, and bipolar transistor, and P is deposited on it.
The SG film 14 is laminated. The PSG film in the bipolar transistor region is selectively etched away. then 9
The PSG film is melted by heating in oxygen gas at 50° C. or lower.

次いで、ベース領域のみ開口せるレジストをマスクとし
てBのイオン打ち込みを行い、バイポーラ・トランジス
タ部分に電極窓17を開口する。
Next, B ions are implanted using a resist mask that opens only the base region, and an electrode window 17 is opened in the bipolar transistor portion.

次いで、全面に多結晶シリコン15を約500人積層し
、コレクタ、エミッタ領域のみ開口せるレジストをマス
クとしてAsのイオン打ち込みを行う。
Next, approximately 500 layers of polycrystalline silicon 15 are deposited on the entire surface, and As ions are implanted using a resist mask that opens only the collector and emitter regions.

このときエミッタ領域の拡散量を正確にコントロールし
つつAsを導入する。この状態を第1図(C)に示す。
At this time, As is introduced while accurately controlling the amount of diffusion in the emitter region. This state is shown in FIG. 1(C).

次いで、MOS(12)の多結晶シリコンをエツチング
除去し、ソース、ドレイン電極窓16をPSG膜のテー
パーエツチング法により開口する。
Next, the polycrystalline silicon of the MOS (12) is removed by etching, and source and drain electrode windows 16 are opened by taper etching the PSG film.

これを第1図(d)に示す。This is shown in FIG. 1(d).

バイポーラ部の多結晶シリコン層の配線パターンニング
、及びそれ以降のA1配線工程等については説明を省略
する。
A description of the wiring patterning of the polycrystalline silicon layer of the bipolar portion, the subsequent A1 wiring process, etc. will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上に説明せるごとく本発明の製造方法を適用すること
により、ベース、エミッタ領域の形成は微細寸法にてコ
ントロールが可能となり、極めて高性能なるバイポーラ
・トランジスタの特性をもったBi−0MO3ICを得
ることが出来る。
As explained above, by applying the manufacturing method of the present invention, it is possible to control the formation of the base and emitter regions with fine dimensions, and it is possible to obtain a Bi-0MO3 IC with the characteristics of an extremely high-performance bipolar transistor. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 〜(d)は本発明にかかわるBi−MI
Sの製造工程順の断面図、 第2図(a) 〜(f)は従来の方法によるBi−Mi
sの製造工程順の断面図を示す。 図面において、 1はp9型シリコン基板、 2はn°型埋没層、 3はn型エピタキシアル層、 4はStow膜、 5はS i 3 N a膜、 6はpウェル、 7はアイソレーシッン領域、 8はp型チャンネルカット、 9はn型チャンネルカット、 10はフィールド酸化膜、 11はゲート酸化膜、 12はゲート電極、 13は酸化膜、 14はPSG膜、 15は多結晶シリコン、 16、17は電極窓、 をそれぞれ示す。 1m81 第 1 図 n−Mo5      ρ−Mos     ハ1p−
tし   &    番
Figures 1(a) to (d) show Bi-MI related to the present invention.
2(a) to (f) are cross-sectional views of the manufacturing process of Bi-Mi by the conventional method.
s is shown in cross-sectional view in the order of manufacturing steps. In the drawings, 1 is a p9 type silicon substrate, 2 is an n° type buried layer, 3 is an n type epitaxial layer, 4 is a Stow film, 5 is a Si 3 Na film, 6 is a p well, 7 is an isolating region, 8 is a p-type channel cut, 9 is an n-type channel cut, 10 is a field oxide film, 11 is a gate oxide film, 12 is a gate electrode, 13 is an oxide film, 14 is a PSG film, 15 is a polycrystalline silicon, 16, 17 denotes the electrode window and , respectively. 1m81 Figure 1 n-Mo5 ρ-Mos Ha1p-
tshi & number

Claims (1)

【特許請求の範囲】 バイポーラとMIS部よりなる集積回路において、 MIS部のドレイン、ソース領域、及びゲート電極(1
2)の形成を行った後、全面に層間絶縁膜(14)を積
層し、バイポーラ部の該層間絶縁層を除去した後、 該バイポーラ部のベース領域に不純物を導入する工程と
、 前記バイポーラ部の表面絶縁膜に電極窓(17)を開口
した後、全面に多結晶シリコン層(15)を積層し、エ
ミッタ領域を形成する工程と、 MIS領域の前記多結晶シリコン層(15)を除去し、
層間絶縁膜(14)をエッチング法によりMIS部の電
極窓(16)を形成する工程を含むことを特徴とする半
導体集積回路装置の製造方法。
[Claims] In an integrated circuit consisting of a bipolar and MIS section, the drain, source region, and gate electrode (1
After forming 2), stacking an interlayer insulating film (14) on the entire surface, removing the interlayer insulating layer in the bipolar part, and then introducing an impurity into the base region of the bipolar part; After opening an electrode window (17) in the surface insulating film, a polycrystalline silicon layer (15) is laminated on the entire surface to form an emitter region, and the polycrystalline silicon layer (15) in the MIS region is removed. ,
A method for manufacturing a semiconductor integrated circuit device, comprising the step of forming an electrode window (16) in an MIS section by etching an interlayer insulating film (14).
JP60072873A 1985-04-05 1985-04-05 Method for manufacturing semiconductor integrated circuit device Expired - Lifetime JPH0671066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072873A JPH0671066B2 (en) 1985-04-05 1985-04-05 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072873A JPH0671066B2 (en) 1985-04-05 1985-04-05 Method for manufacturing semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS61230354A true JPS61230354A (en) 1986-10-14
JPH0671066B2 JPH0671066B2 (en) 1994-09-07

Family

ID=13501878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072873A Expired - Lifetime JPH0671066B2 (en) 1985-04-05 1985-04-05 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0671066B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232365A (en) * 1987-03-20 1988-09-28 Fujitsu Ltd Manufacture of bipolar cmis device
JPS63278371A (en) * 1987-05-11 1988-11-16 Nippon Precision Saakitsutsu Kk Manufacture of bipolar transistor
US5962913A (en) * 1996-01-19 1999-10-05 Mitsubishi Denki Kabushiki Kaisha Bipolar transistor having a particular contact structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232365A (en) * 1987-03-20 1988-09-28 Fujitsu Ltd Manufacture of bipolar cmis device
JPS63278371A (en) * 1987-05-11 1988-11-16 Nippon Precision Saakitsutsu Kk Manufacture of bipolar transistor
US5962913A (en) * 1996-01-19 1999-10-05 Mitsubishi Denki Kabushiki Kaisha Bipolar transistor having a particular contact structure

Also Published As

Publication number Publication date
JPH0671066B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US4558508A (en) Process of making dual well CMOS semiconductor structure with aligned field-dopings using single masking step
JPS63304657A (en) Manufacture of semiconductor device
JPS6379368A (en) Manufacture of high performance bicmos composition with polycrystalline silicon emitter and silicide base
JPS62226667A (en) Semiconductor device and manufacture thereof
EP0274217B1 (en) Method of producing a semiconductor device
JP2953425B2 (en) Method for manufacturing semiconductor device
JP2776350B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0831542B2 (en) Method for manufacturing BiCMOS field effect transistor
JPS6072255A (en) Semiconductor ic device and manufacture thereof
JPS61230354A (en) Manufacture of semiconductor integrated circuit device
JP2727552B2 (en) Method for manufacturing semiconductor device
JPS6038856A (en) Manufacture of semiconductor device
JPS61110457A (en) Semiconductor device
JPS6380560A (en) Method of manufacturing bipolar transistor and complementary field effect transistor simultaneously with the minimum number of masks
JPS6197967A (en) Semiconductor device and manufacture thereof
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JPS61194764A (en) Manufacture of semiconductor device
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JPH0481336B2 (en)
JP2000340676A (en) Cmos device and manufacture of the same
JPH11251467A (en) Semiconductor device and manufacture thereof
JPH0249464A (en) Bi-mos semiconductor device and manufacture thereof
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same