JPS61230042A - Diagnosing method for corrosion of steel structure - Google Patents

Diagnosing method for corrosion of steel structure

Info

Publication number
JPS61230042A
JPS61230042A JP7182985A JP7182985A JPS61230042A JP S61230042 A JPS61230042 A JP S61230042A JP 7182985 A JP7182985 A JP 7182985A JP 7182985 A JP7182985 A JP 7182985A JP S61230042 A JPS61230042 A JP S61230042A
Authority
JP
Japan
Prior art keywords
corrosion
wall thickness
remaining
corrosion rate
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7182985A
Other languages
Japanese (ja)
Inventor
Sukeki Oka
扶樹 岡
Hiroshi Kihira
寛 紀平
Toru Ito
叡 伊藤
Hachiro Tanaka
八郎 田中
Motonobu Hasegawa
長谷川 元信
Shigeo Yasuda
安田 茂生
Masayoshi Yokoo
正義 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7182985A priority Critical patent/JPS61230042A/en
Publication of JPS61230042A publication Critical patent/JPS61230042A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To diagnose the present corrosion state and the remaining service life of a steel structure by measuring the remaining wall thickness of each part of the steel structure with an ultrasonic thickness meter and measuring the corroding speed of the same part with a corroding speed detector. CONSTITUTION:The corroding speed detector 2 of metal material is fixed on a steel pipe pile 3 used for the structure, for instance, a lading pier by a jig 4 and performs the automatic measurement by a program indication from a measuring system 1 and the arithmetic processing and figuring are performed by a calculation processing machine 5. The detector 2 catches a corrosion reaction of the metal as the impedance at the interface and calculates the reaction electric current quantity from the relation with the impressed voltage and converts it into the corroding speed. Then, first, the precise measurement of the remaining wall thickness is performed every four places in a circumferential direction of the steel pipe pile 3, for instance, with a 50cm pitch of the depth of water by the ultrasonic thickness meter and the corroding speed of the same place at the point of time is measured by the detector. Then, the necessary wall thickness for every depth of water is calculated from the designed load or the like to calculate the remaining life.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼構造物、特に、海水や河川水等の電解質を
含有する溶液に接した状態で使用される土木建築構造物
の腐食診断手法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to corrosion diagnosis of steel structures, particularly civil engineering and architectural structures used in contact with solutions containing electrolytes such as seawater and river water. It is about the method.

(従来の技術と問題点) 海水や河川水等の電解質を含有する溶液に接して使用さ
れる金属材料を用いた鋼構造物は、素材の腐食による穴
あきや断面の減少によって構造体としての機能を失う可
能性がある。一方、安定成長期に入り設備寿命の延長が
社会的に求められている。従って、設備や構造体が現在
どの程度の腐食状態にあり、残存寿命がいくらかという
腐食診断の必要性が高まっている。
(Conventional technology and problems) Steel structures made of metal materials that are used in contact with solutions containing electrolytes such as seawater or river water are susceptible to damage as a structure due to holes and a reduction in cross section due to corrosion of the material. Functionality may be lost. On the other hand, as we enter a period of stable growth, there is a social demand for extending the life of equipment. Therefore, there is an increasing need for corrosion diagnosis to determine the current state of corrosion of equipment and structures and how much remaining life they have.

現在行われている腐食診断方法には、 (1)腐食モニタリング用の小試片を設備や構造体の新
設時にあらかじめ設置しておき、定期的にそれを調査し
、腐食傾向から残存寿命を推定する方法。
The currently used corrosion diagnosis methods include: (1) Small specimens for corrosion monitoring are installed in advance when new equipment or structures are installed, and the specimens are inspected periodically to estimate remaining service life from corrosion trends. how to.

(2)腐食調査実施時点での孔食部の残存肉厚を測定し
極値統計手法により最大減肉量を推定し機能上必要とさ
れる最小厚との関係から寿命の有無を判断する方法。
(2) A method of measuring the remaining wall thickness of the pitting area at the time of conducting the corrosion investigation, estimating the maximum amount of wall thinning using extreme value statistical methods, and determining whether the service life has expired based on the relationship with the minimum thickness required for functionality. .

(3)例えば、港湾技研資料 No、413.1982
年、2.5に記載されている腐食速度の算出法を用い、
構造体の残存肉厚と初期肉厚との差を使用期間で除して
平均腐食速度を求め、構造強度上必要とされる最小肉厚
と残存肉厚との差を平均腐食速度で除して残存寿命を求
める方法。
(3) For example, Port and Harbor Engineering Research Materials No. 413.1982
Using the corrosion rate calculation method described in 2.5,
Find the average corrosion rate by dividing the difference between the remaining wall thickness and the initial wall thickness of the structure by the period of use, and then divide the difference between the minimum wall thickness required for structural strength and the remaining wall thickness by the average corrosion rate. How to calculate remaining life.

(4)g食による肉厚変化が測定可能なほどの期間をあ
けて、同一箇所の肉厚変化を測定し、変化量と期間から
平均腐食速度を求め、構造強度上必要とされる最小肉厚
と残存肉厚との差を平均腐食速度で除して残存寿命を求
める方法。
(4) Measuring the change in wall thickness at the same location after a period long enough for the change in wall thickness due to corrosion to be measurable, and calculating the average corrosion rate from the amount of change and period, and determining the minimum thickness required for structural strength. A method of determining remaining life by dividing the difference between wall thickness and remaining wall thickness by the average corrosion rate.

等が有る。etc.

(1)は、あくまでモニタリング用の小片に関する腐食
情報であり、設備や構造体そのものの状況を代表してい
ない。(2)は、孔食により機能を失うようなパイプラ
イン配管等の寿命予測には有効であるが、構造体のよう
に全面腐食が寿命を左右するような場合には通用困難で
ある。(3)については、構造体の初期肉厚を予め測定
していない場合が大半であり、この場合カタログデータ
を使用せざるを得ないが、JIS規格(JIS  A3
525)には、板厚に公差が許容されているため平均腐
食速度の算定に誤差が生じる。また、使用環境の変化(
主として溶存酸素)や、電気防食の適用による腐食速度
の変化があり、腐食診断の精度は低いものである。(4
)は、診断に長時間を必要とするため、短時間に結果を
得ることができず現実的でない。
(1) is only corrosion information regarding small pieces for monitoring, and does not represent the condition of the equipment or structure itself. (2) is effective for predicting the lifespan of pipelines that lose their functionality due to pitting corrosion, but is difficult to apply in cases where overall corrosion affects the lifespan, such as structures. Regarding (3), in most cases the initial wall thickness of the structure is not measured in advance, and in this case catalog data must be used.
525), an error occurs in calculating the average corrosion rate because a tolerance is allowed in the plate thickness. Also, changes in the usage environment (
The accuracy of corrosion diagnosis is low because the corrosion rate changes mainly due to dissolved oxygen) and the application of cathodic protection. (4
) requires a long time for diagnosis and is not practical because results cannot be obtained in a short time.

(発明が解決しようとする問題点) 本発明は、モニタリング用の小試片の腐食情報や初期肉
厚に関するデータを用いることなく、対象物を現場で直
接測定して求めた現時点での腐食速度と残肉厚の測定結
果をもとに、鉄鋼を使用した土木建築構造物の腐食診断
を、早く、精度良く行なうための手法を提供するもので
ある。
(Problems to be Solved by the Invention) The present invention is based on the current corrosion rate determined by directly measuring the target object on-site, without using corrosion information on small specimens for monitoring or data on initial wall thickness. The present invention provides a method for quickly and accurately diagnosing corrosion of civil engineering and architectural structures using steel, based on the results of measurements of the remaining wall thickness.

(問題点を解決するための手段) 本発明は、鉄鋼を使用した土木建築構造物に、例えば超
音波厚み針を用いて求めた残肉厚の測定結果と、腐食速
度を現場で直接測定できる装置、例えば、金属材料の腐
食速度検出子(特願昭59−174169号)を用いて
求めた現時点の腐食速度を利用して腐食診断の精度向上
を図るものである。金属材料の腐食速度検出子は、金属
と分極用電極の間で、装置によって特定された範囲を、
ACインピーダンス法、定電流法、クーロスタティック
パロス法、および、定電流2重波形法(2周波数法)等
を用いて、均一に分極することによって分極抵抗を測定
し、それを腐食速度に換算するものである。
(Means for Solving the Problems) The present invention makes it possible to directly measure the residual wall thickness of civil engineering construction structures using steel, for example, using an ultrasonic thickness needle, and the corrosion rate on site. The present invention aims to improve the accuracy of corrosion diagnosis by using the current corrosion rate determined using a device such as a corrosion rate detector for metal materials (Japanese Patent Application No. 174169/1982). The corrosion rate detector for metal materials detects the range specified by the device between the metal and the polarizing electrode.
Measure polarization resistance by uniformly polarizing the material using the AC impedance method, constant current method, coulostatic paros method, constant current double waveform method (dual frequency method), etc., and convert it into a corrosion rate. It is something.

第1図に腐食診断の基本となる考えかたを示す。Figure 1 shows the basic concept of corrosion diagnosis.

図の横軸は時間を、縦軸は構造部材の肉厚を示す。The horizontal axis of the figure shows time, and the vertical axis shows the wall thickness of the structural member.

他の記号は、 Tt :@食診断実施時、tr:Ts食速度から求めた
残存寿命、tml:平均腐食速度から求めた、肉厚にマ
イナス許容誤差有りの場合の残存寿命、tm2:平均腐
食速度から求めた、肉厚にプラス許容誤差有りの場合の
残存寿命、δi:初期肉厚、δ11:肉厚にマイナス許
容誤差有りの場合の初期肉厚、δ12:肉厚にプラス許
容誤差有りの場合の初期肉厚、δt:腐食診断時の残肉
厚、δn:構造強度上必要な最小肉厚、vt:腐食診断
時の腐食速度、Vml:δilを用いて求めた平均腐食
速度、Vm2:δ12を用いて求めた平均腐食速度、 を示す。本手法では初期肉厚に関する情報を必要としな
いことが特徴であるが、従来の手法との比較のために、
初期肉厚や平均腐食速度も表示している。
Other symbols are: Tt: @at the time of corrosion diagnosis, tr: remaining life determined from Ts corrosion rate, tml: remaining life determined from average corrosion rate when wall thickness has a negative tolerance, tm2: average corrosion Remaining life when the wall thickness has a plus tolerance, calculated from the speed, δi: Initial wall thickness, δ11: Initial wall thickness when the wall thickness has a minus tolerance, δ12: When the wall thickness has a plus tolerance. Initial wall thickness in case, δt: Remaining wall thickness at corrosion diagnosis, δn: Minimum wall thickness required for structural strength, vt: Corrosion rate at corrosion diagnosis, Vml: Average corrosion rate determined using δil, Vm2: The average corrosion rate determined using δ12 is shown below. A feature of this method is that it does not require information regarding the initial wall thickness, but for comparison with conventional methods,
The initial wall thickness and average corrosion rate are also displayed.

診断を実施した時点 Ttの残肉厚δtと腐食速度Vt
の測定結果と、別途実施する構造解析から算定する構造
強度上必要な最小肉厚δnとの関係から残存寿命t「を
trw(δを一δn)/Vtとして求める。さらに、海
洋鋼構造物を例にとり詳細に述べると、 診断を実施する時点 Ttに於て、診断対象構造物の同
一水深りの周方向に2箇所以上n箇所測定(i=1〜n
)L、残肉厚δt (hl iと腐食速度V t (h
) iの測定結果と、別途実施する構造解析から算定す
る構造解析上必要な最小肉厚δn (hlとの関係から
構造体の残存寿命trを推定する。(δt(hl iは
、同−iの周辺で3〜5点測定し平均する。
Residual wall thickness δt and corrosion rate Vt at time of diagnosis Tt
From the relationship between the measurement results of To give an example in detail, at the time Tt when performing the diagnosis, measurements are taken at two or more n points (i = 1 to n) in the circumferential direction of the structure to be diagnosed at the same water depth.
)L, residual thickness δt (hl i and corrosion rate Vt (h
) Estimate the remaining lifespan tr of the structure from the relationship with the minimum wall thickness δn (hl) calculated from the measurement results of i and the structural analysis performed separately. Measure at 3 to 5 points around and average.

また、構造解析上は、水深方向に直角な2方向で必要最
小肉厚が異なる場合が有るが、腐食診断には、いずれか
小さい方をδn (h)として良い。)まず、残肉厚δ
t (h) iと腐食速度v t (h+ iの各々の
周方向平均δt (h) taeanとV t (h)
 meansおよび、腐食速度の最大、最小の差V t
 (h) wをδt (h) mean−Σδt (h
) i / nV t (h)sean=ΣV t (
h) i / nV t(h1w=V t(h) i 
 1llax−V t(h) i  II+inとして
求める。
Further, in terms of structural analysis, the required minimum wall thickness may be different in two directions perpendicular to the water depth direction, but for corrosion diagnosis, the smaller one may be set as δn (h). ) First, the remaining thickness δ
t (h) i and corrosion rate v t (h+ each circumferential average δt (h) taean and V t (h)
means and the maximum and minimum difference in corrosion rate V t
(h) w as δt (h) mean−Σδt (h
) i/nV t (h) sean=ΣV t (
h) i/nV t(h1w=V t(h) i
It is calculated as 1llax-V t(h) i II+in.

次に、 として水深方向の速度分布V t (h)を決定し、残
存寿命の水深方向分布tr(tdをtr(h)=(δt
(h)mean−δn (h) / V t (h)と
して算出する。腐食は、界面の電気化学反応であるので
固定したものではなく、溶存酸素濃度等の経時変化に影
響され、瞬間値として捕えた場合、腐食速度は最大Q、
1m/year程の日および季節変化が有る。従って、
V t (h)WS2.1■/yearについては、平
均値を採用する。
Next, determine the velocity distribution V t (h) in the water depth direction as
(h) Calculate as mean-δn (h) / V t (h). Corrosion is an electrochemical reaction at the interface, so it is not a fixed thing, but is influenced by changes over time such as dissolved oxygen concentration, and when captured as an instantaneous value, the corrosion rate is the maximum Q,
There are daily and seasonal changes of about 1m/year. Therefore,
For V t (h)WS2.1/year, the average value is adopted.

V t (h) w≧0.2 m / yearである
場合は、干満帯や飛沫帯のように腐食環境が厳しく、ま
た、部分的に腐食が進んでいる場合であるので、再度の
測定を行い、安全サイドの考えから腐食速度の最大値を
その部分の腐食速度とする。
If V t (h) w≧0.2 m/year, it means that the corrosive environment is severe, such as in a tidal zone or a splash zone, and corrosion has progressed in some areas, so repeat the measurement. Then, from the viewpoint of safety, the maximum value of the corrosion rate is taken as the corrosion rate of that part.

最後に、tr(h)の最小値から、構造体としての寿命
trをt r = t r (h)n+inとして求め
、構造上クリティカルとなる部位(h)を求める。Vt
(hew≧0、24wm / yearの存在する場合
には、その部位を要注意領域として再調査する。
Finally, from the minimum value of tr(h), the lifetime tr of the structure is determined as tr=tr(h)n+in, and the structurally critical portion (h) is determined. Vt
(If hew≧0, 24wm/year exists, that part is re-examined as a caution area.

〔実施例〕〔Example〕

以下、具体例をもとに詳細に説明する。 Hereinafter, a detailed explanation will be given based on a specific example.

第2図に、桟橋に使用されている鋼管杭の腐食診断の例
を示す。診断対象の鋼管杭3に金属材料の腐食速度検出
子2を治具4により固定し、測定システム1からのプロ
グラム指示により自動測定し、計算処理機5によって演
算処理と図化を行なう。6は鋼管杭の残肉厚を測定する
超音波厚み計である。腐食速度検出子2は、金属の腐食
反応を界面でのインピーダンスとして捕え、印加した電
圧との関係から、反応電流量を算出して腐食速度に換算
するものである。
Figure 2 shows an example of corrosion diagnosis for steel pipe piles used in piers. A metal material corrosion rate detector 2 is fixed to a steel pipe pile 3 to be diagnosed using a jig 4, automatic measurement is performed according to program instructions from a measurement system 1, and arithmetic processing and diagramming are performed by a computer processor 5. 6 is an ultrasonic thickness gauge for measuring the remaining wall thickness of the steel pipe pile. The corrosion rate detector 2 captures the corrosion reaction of metal as impedance at the interface, calculates the amount of reaction current from the relationship with the applied voltage, and converts it into a corrosion rate.

まず、鋼管杭の円周方向に4箇所ずつ(n−4の場合)
、水深方向に50CIIピツチで、超音波厚み針を用い
た残肉厚の精密測定を行い、同じ箇所の、その時点の腐
食速度を金属材料の腐食速度検出子で測定した。
First, four locations in the circumferential direction of the steel pipe pile (in the case of n-4)
The remaining wall thickness was precisely measured using an ultrasonic thickness needle at a pitch of 50 CII in the water depth direction, and the corrosion rate at that point in time was measured using a metal corrosion rate detector.

次に、設計荷重から算出したモーメントM (h)、お
よび軸力N (hlの水深方向(h)分布と、材料の許
容応力度σから、各水深毎の必要肉厚は以下の関係式に
よって求まる。
Next, from the distribution of the moment M (h) calculated from the design load, the axial force N (hl) in the water depth direction (h), and the allowable stress σ of the material, the required wall thickness for each water depth is determined by the following relational expression: Seek.

ここで、A (h) : Ii管杭の断面積、Z(h)
:鋼管杭の断面係数、D(h):鋼管杭の外径、d (
h) : m管杭の内径、π:円周率である。変数8種
、与条件4種、未知数4種、関係式4種であるので、上
記の関係式は解析的に解くことができる。
Here, A (h): Cross-sectional area of Ii pipe pile, Z (h)
: Section modulus of steel pipe pile, D (h): Outer diameter of steel pipe pile, d (
h): m is the inner diameter of the pipe pile, π: pi. Since there are 8 types of variables, 4 types of given conditions, 4 types of unknowns, and 4 types of relational expressions, the above relational expression can be solved analytically.

第3図に、測定結果を示す。縦軸は水深、横軸は鋼管杭
の肉厚を示しており、破線は構造強度上必要な最小肉厚
、実線は、円周方向の平均残肉厚の水深方向分布を示す
。全体として必要最小厚は満たしているものの、平均干
潮面付近の腐食が著しく、δt (hl mean−δ
n(h)=1mより、余裕は1日であり、この領域が桟
橋の寿命を決定することがわかる。
Figure 3 shows the measurement results. The vertical axis shows the water depth, and the horizontal axis shows the wall thickness of the steel pipe pile. The broken line shows the minimum wall thickness necessary for structural strength, and the solid line shows the distribution of the average remaining wall thickness in the circumferential direction in the water depth direction. Although the required minimum thickness is satisfied as a whole, corrosion near the mean low tide surface is significant, and δt (hl mean−δ
From n(h)=1m, it can be seen that the margin is one day, and this area determines the life of the pier.

腐食診断を必要とするのは、主に、建設後10〜20年
を経過した頃であり、平均満潮面から海底までの平均腐
食速度は、通商Q、 l tm / yearといわれ
ている0本事例はこれを越えており、と(に注意を要す
る場合である。
Corrosion diagnosis is mainly required 10 to 20 years after construction, and the average corrosion rate from the average high tide surface to the seabed is 0 lines, which is said to be commercial Q, l tm / year. The case goes beyond this and requires caution.

金属材料の腐食速度検出子によって測定した腐食速度の
水深方向分布を第4図に示す。図中、X印は円周方向4
点の腐食速度の平均、矢印は円周方向4点の腐食速度分
布を示す。
Figure 4 shows the distribution of corrosion rates in the water depth direction as measured by a metal corrosion rate detector. In the figure, the X mark is circumferential direction 4
The average corrosion rate at a point, and the arrows indicate the corrosion rate distribution at four points in the circumferential direction.

前述の、1式、水深方向の腐食速度分布の判定方法から
、h = 0.5 mを除イテ、V t (h) = 
V t (hl toceanとする。h = 0.5
 mについては、V t (h) w〉0.2鶴/ye
arであるのでVt  (0,5) =Vt(0,5)
 i max = 0.55 tm/ yearを採用
する。第5図に、tr(hl=(δt (hl mea
n−δn (hl / V t (hlより求めた寿命
分布を示す。h = 0.5 mで構造体の寿命が決定
され、t r=1.010.55=1.82から、残存
寿命は2年以下であり、直ちに補修工事の必要有りと判
断される状態であった。
From Equation 1, the method for determining the corrosion rate distribution in the water depth direction, remove h = 0.5 m, V t (h) =
V t (hl tocean. h = 0.5
For m, V t (h) w>0.2 crane/ye
Since ar, Vt (0,5) = Vt (0,5)
Adopt i max = 0.55 tm/year. In FIG. 5, tr(hl=(δt (hl mea
n-δn (hl / V t (shows the life distribution obtained from hl. The life of the structure is determined by h = 0.5 m, and from tr = 1.010.55 = 1.82, the remaining life is It was less than 2 years old and was in a condition that required immediate repair work.

鋼管杭以外の鋼矢板、鋼管矢板やその他の鋼構造材を用
いた港湾構造物についても、その構造材を対象にした■
式を構築することによって同様の診断が行なえる。
For port structures that use steel sheet piles, steel pipe sheet piles, and other steel structural materials other than steel pipe piles, this also applies to those structural materials.
A similar diagnosis can be made by constructing a formula.

〔発明の効果〕〔Effect of the invention〕

本発明によると、超音波厚み針や、マイクロメーク等に
よって測定した部材の残肉厚と、金属材料の腐食検出子
等の腐食速度を現場で直接測定できる装置により測定し
た腐食速度を用いて、土木建築鋼構造物の腐食診断を早
く、精度良く行なうことができる。また、規格上の誤差
を含んだ初期肉厚に関する情報や、建設から腐食診断ま
での腐食環境の変化、および、電気防食の一時的通用等
、不確定な情報を用いることなく、腐食給断が可能とな
り、鋼構造物のメンテナンス等に利用することができ、
ひいては鋼構造物の安全性向上、寿命延長等が可能とな
る。
According to the present invention, the remaining wall thickness of the member is measured using an ultrasonic thickness needle, micromake, etc., and the corrosion rate is measured using a device that can directly measure the corrosion rate on site, such as a corrosion detector for metal materials. Corrosion diagnosis of civil engineering and construction steel structures can be performed quickly and accurately. In addition, corrosion supply and disconnection can be performed without using uncertain information such as information on initial wall thickness that includes standard errors, changes in the corrosive environment from construction to corrosion diagnosis, and temporary validity of cathodic protection. It can be used for maintenance of steel structures, etc.
In turn, it becomes possible to improve the safety and extend the life of steel structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は腐食診断に用いる、その時点の腐食速度の意義
説明図、第2図は構造物の腐食診断の実施例を示す説明
図、第3.4.5図は、腐食速度を用いて腐食診断を行
なう場合に使用する図表の例である。 図面で1は測定システム、2は金属材料の腐食速度検出
子、3は鋼管杭、4は治具、5は計算処理機、6は超音
波厚み針である。 出 願 人  新日本製鐵株式会社 代理人弁理士  青 柳    稔 第1図 1、 測定システム 2、金属材料の腐食速度撲″J:、子 3、  it!l  管 オル 4、 5台 具 5、計算処理機 6、a音波f#み計 第2図 手続補正書(自発) 昭和60年5月13日 特許庁長官  志 賀    学  殿昭和60年特許
願第71829号 2発明の名称 鋼構造物の腐食診断方法 &補正をする者 事件との関係   特許出願人 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式会社 代表者  武 1)  豊 4、代理人 〒101 5、補正命令の日付    な し 6、補正によシ増加する発明の数   な し7、補正
の対象 ”\ / (1)明細書第7頁11−12行および第10頁20行
の r tr(h) = (δt(h)mean−δn(h
)/Vl(h) Jをrtr(h)=(δt(h) m
ean−δn(h) )/ Vt(h) J と各々補
正する。 0)同第1O頁8行の「通商」を「通常」と補正する。
Figure 1 is an explanatory diagram of the significance of the corrosion rate at that point used in corrosion diagnosis, Figure 2 is an explanatory diagram showing an example of corrosion diagnosis of structures, and Figures 3.4.5 are This is an example of a chart used when conducting corrosion diagnosis. In the drawing, 1 is a measurement system, 2 is a metal material corrosion rate detector, 3 is a steel pipe pile, 4 is a jig, 5 is a computer processor, and 6 is an ultrasonic thickness needle. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Fig. 1 1, Measurement system 2, Corrosion rate suppression of metal materials J:, 3, it!l pipe 4, 5 equipment 5, Computer processor 6, a sound wave f# meter Figure 2 Procedural amendment (voluntary) May 13, 1985 Manabu Shiga, Commissioner of the Patent Office, 1985 Patent Application No. 71829 2 Name of the invention Steel structure Corrosion diagnosis method & relationship with the person making the amendment case Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (6
65) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 〒101 5, Date of amendment order None 6, Number of inventions increased by amendment None 7, Subject of amendment”\ / ( 1) r tr(h) = (δt(h)mean-δn(h
)/Vl(h) J rtr(h)=(δt(h) m
ean-δn(h))/Vt(h)J. 0) Correct "commerce" on page 1, line 8, to "normal".

Claims (1)

【特許請求の範囲】[Claims] 鋼構造物の各部の残肉厚を超音波厚み計で測定し、同一
部分の腐食速度を現場で腐食速度検出子を用いて測定し
て両方の測定結果から該鋼構造物の残存寿命を推定する
ことを特徴とする鋼構造物の腐食診断方法。
The remaining wall thickness of each part of a steel structure is measured using an ultrasonic thickness meter, and the corrosion rate of the same part is measured on-site using a corrosion rate detector, and the remaining life of the steel structure is estimated from the results of both measurements. A method for diagnosing corrosion of steel structures.
JP7182985A 1985-04-04 1985-04-04 Diagnosing method for corrosion of steel structure Pending JPS61230042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7182985A JPS61230042A (en) 1985-04-04 1985-04-04 Diagnosing method for corrosion of steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7182985A JPS61230042A (en) 1985-04-04 1985-04-04 Diagnosing method for corrosion of steel structure

Publications (1)

Publication Number Publication Date
JPS61230042A true JPS61230042A (en) 1986-10-14

Family

ID=13471823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7182985A Pending JPS61230042A (en) 1985-04-04 1985-04-04 Diagnosing method for corrosion of steel structure

Country Status (1)

Country Link
JP (1) JPS61230042A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033085A (en) * 2005-07-22 2007-02-08 Nippon Steel Corp Life cycle cost evaluation system of steel structure
JP2009204593A (en) * 2008-02-29 2009-09-10 Ihi Corp Probe for electrochemical measurement in electrolyte, electrochemical measuring device, and electrochemical measuring method using it
JP2020143970A (en) * 2019-03-05 2020-09-10 株式会社日立製作所 Corrosion diagnostic system
CN113252544A (en) * 2021-05-21 2021-08-13 北京化工大学 Corrosion monitoring system and method for oil refining device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624553A (en) * 1979-08-08 1981-03-09 Ebara Corp Corrosion monitoring apparatus for structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5624553A (en) * 1979-08-08 1981-03-09 Ebara Corp Corrosion monitoring apparatus for structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033085A (en) * 2005-07-22 2007-02-08 Nippon Steel Corp Life cycle cost evaluation system of steel structure
JP2009204593A (en) * 2008-02-29 2009-09-10 Ihi Corp Probe for electrochemical measurement in electrolyte, electrochemical measuring device, and electrochemical measuring method using it
JP2020143970A (en) * 2019-03-05 2020-09-10 株式会社日立製作所 Corrosion diagnostic system
WO2020179108A1 (en) * 2019-03-05 2020-09-10 株式会社日立製作所 Corrosion diagnosis system
CN113252544A (en) * 2021-05-21 2021-08-13 北京化工大学 Corrosion monitoring system and method for oil refining device
CN113252544B (en) * 2021-05-21 2022-03-18 北京化工大学 Corrosion monitoring system and method for oil refining device

Similar Documents

Publication Publication Date Title
Andrade et al. Corrosion rate monitoring in the laboratory and on-site
CN102706933B (en) Electrochemical detection method for corrosion degree of steel reinforcing bar in concrete
Tan Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media
US7686938B2 (en) Quantitative, real time measurements of localized corrosion events
US8111078B1 (en) Oxidizing power sensor for corrosion monitoring
JPH0464583B2 (en)
US7622030B2 (en) General and localized corrosion rate measurements
US11892391B2 (en) Field monitoring electrochemical method for anticorrosion performance of organic coatings in seawater environment
Vélez et al. Electrochemical characterization of early corrosion in prestressed concrete exposed to salt water
JPS61230042A (en) Diagnosing method for corrosion of steel structure
Dunn et al. Corrosion monitoring of steel reinforced concrete structures using embedded instrumentation
CA3235221A1 (en) Corrosion monitoring method
Tan et al. Review of critical issues in carbon dioxide corrosion testing and monitoring techniques
JP2000046778A (en) Mimic electrode for monitoring local corrosion and method for monitoring local corrosion using the electrode
Cavalcante et al. Non-destructive monitoring based on corrosion potential
Tan Principles and issues in structural health monitoring using corrosion sensors
Rahgozar Fatigue endurance of steel structures subjected to corrosion
Elechi et al. Predictive Model for Corrosion Control in Crude Oil and Gas Production Facilities
SEYE Compression and Bending Fracture Processes based on Rebar Corrosion in RC using Acoustic Emission–Towards Health Monitoring in Maintenance of Bridges
Brossia Corrosion Monitoring in Seawater
Коваленко BASIC METHODS OF MONITORING OF CORROSION PROCESSES OF CEMENT STRUCTURES AND THEIR IMPLEMENTATION FOR PROJECTING OF POSSIBLE MINERALOGICAL CHANGES IN MATRIX COMPOSITION
Greimann et al. REMR Management Systems-Navigation Structures: condition rating procedures for tainter dam and lock gates
Gandhi et al. Corrosion fatigue crack growth in tubular joints under CA loading
Castaneda et al. Proposed methodology for coating defect and location in buried pipelines from frequency signal data applied in field conditions
Sundaravadivelu et al. Health Monitoring of Berthing Structures