JP2020143970A - Corrosion diagnostic system - Google Patents

Corrosion diagnostic system Download PDF

Info

Publication number
JP2020143970A
JP2020143970A JP2019040024A JP2019040024A JP2020143970A JP 2020143970 A JP2020143970 A JP 2020143970A JP 2019040024 A JP2019040024 A JP 2019040024A JP 2019040024 A JP2019040024 A JP 2019040024A JP 2020143970 A JP2020143970 A JP 2020143970A
Authority
JP
Japan
Prior art keywords
corrosion
information
remaining life
calculation unit
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019040024A
Other languages
Japanese (ja)
Other versions
JP7228410B2 (en
Inventor
颯 斎藤
Hayate SAITO
颯 斎藤
将宏 伊藤
Masahiro Ito
将宏 伊藤
大橋 健也
Takeya Ohashi
健也 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019040024A priority Critical patent/JP7228410B2/en
Priority to PCT/JP2019/035600 priority patent/WO2020179108A1/en
Publication of JP2020143970A publication Critical patent/JP2020143970A/en
Application granted granted Critical
Publication of JP7228410B2 publication Critical patent/JP7228410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • G01N23/204Measuring back scattering using neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a corrosion diagnostic system allowing for prediction of the outer surface corrosion position and remaining life of coated equipment and piping in a plant.SOLUTION: A corrosion diagnostic system 100 diagnosing the corrosion of a metal material side at an interface between the metal material and a non-metal material, comprises a processing device 10, and a storage device 20 holding meteorological information, construction information, design information and operation information. The processing device 10 includes: a first calculation unit 11 calculating the probability of water presence on metal surface for each position from the information of the storage device 20, calculating corrosion occurrence probability on the basis of this water presence probability, and determining that the position where the corrosion occurrence probability is greater than or equal to a prescribed threshold is a corroded position; a second calculation unit 12 calculating a corrosion rate for the corroded position on the basis of a corrosion rate prediction formula and the information of the storage device 20, calculating the amount of reduction in thickness from the corrosion rate, and determining a remaining life; and a display processing unit 13 outputting, to a display device 32, maintenance inspection unnecessary information for positions other than the corroded position determined by the first calculation unit 11 and the content of maintenance inspection for the corroded position from the remaining life determined by the second calculation unit 12.SELECTED DRAWING: Figure 1

Description

本発明は、石油化学プラント等の産業プラントにおける被覆材施工の機器・配管の外表面の腐食を診断する腐食診断システムに関する。 The present invention relates to a corrosion diagnosis system for diagnosing corrosion on the outer surface of equipment / piping for coating material construction in an industrial plant such as a petrochemical plant.

産業プラントの機器・配管は、エネルギーロス低減や異物接触防止のため、保温材やコンクリート等の被覆材が施工されている。近年、プラント老朽化に伴い、機器・配管の被覆材と接する外表面の腐食(外面腐食)が問題視されている。特に、保温材施工の配管外面の腐食(保温材下腐食)は発生頻度が高いことから、石油化学プラントを中心に重大な問題となっている。被覆材施工の機器・配管の外面腐食は、外部から直接目視観察することは不可能である。そのため一般的な保守点検は、被覆材の劣化状態、機器・配管形状等から外面腐食発生有無を属人的に判断して、外面腐食有りと判断した位置に対して、被覆材を剥離して目視や超音波検査により減肉検査している。 In order to reduce energy loss and prevent foreign matter contact, the equipment and piping of industrial plants are covered with heat insulating materials and covering materials such as concrete. In recent years, with the aging of plants, corrosion of the outer surface in contact with the covering material of equipment and piping (outer surface corrosion) has been regarded as a problem. In particular, corrosion on the outer surface of pipes constructed with heat insulating material (corrosion under heat insulating material) occurs frequently, and has become a serious problem mainly in petrochemical plants. Corrosion on the outer surface of equipment and pipes for which covering materials are applied cannot be visually observed directly from the outside. Therefore, in general maintenance and inspection, the presence or absence of external surface corrosion is personally judged from the deterioration state of the covering material, the shape of equipment and piping, etc., and the covering material is peeled off at the position where it is judged that there is external corrosion. The wall thickness is inspected by visual inspection or ultrasonic inspection.

しかし、属人的判断では、外面腐食未発生位置を腐食位置と誤って判断して、被覆材を剥離してしまう場合が多く、非効率的で保守点検コストが膨大となる。 However, in the personal judgment, the position where the outer surface corrosion does not occur is often mistakenly judged as the corrosion position and the covering material is peeled off, which is inefficient and enormous maintenance and inspection cost.

特開2018−25497号公報JP-A-2018-25497 特開2011−53161号公報Japanese Unexamined Patent Publication No. 2011-53161

被覆材施工の機器・配管における外面腐食の保守点検を高効率化するプログラムとしては特許文献1がある。本プログラムは、温度や稼働期間等の環境情報及び測定による腐食情報から、機器・配管が使用不能状態となる確率を演算して、どの位置から優先的に保守点検を実施するかという意思決定を支援する。しかし本プログラムは、機器・配管の余寿命到達確率の補正はできるが、保守点検する時期を決定できないことの難点がある。 Patent Document 1 is a program for improving the efficiency of maintenance and inspection of external surface corrosion in equipment and piping for covering materials. This program calculates the probability that equipment and piping will become unusable from environmental information such as temperature and operating period and corrosion information from measurements, and decides from which position to prioritize maintenance and inspection. Assist. However, although this program can correct the probability of reaching the remaining life of equipment and piping, it has the disadvantage that it cannot determine when to perform maintenance and inspection.

また、特許文献2では、埋設配管のカソード防食設備を対象とし、腐食等の異常をカソード電位、アノード電位、電源電流の変化速度及び加速度から予兆診断して、埋設パイプラインの掘り返し頻度を適正化して、保守点検を効率化しコストを削減するシステムが提案されている。しかし、本システムは、電位や電流を検出するセンサが設置されている配管であれば実施可能であるが、センサが設置されていない配管では実施不可という点に難点がある。 Further, in Patent Document 2, for the cathode anticorrosion equipment of the buried pipe, an abnormality such as corrosion is predicted and diagnosed from the cathode potential, the anode potential, the rate of change of the power supply current and the acceleration, and the frequency of digging up the buried pipeline is optimized. Therefore, a system has been proposed that streamlines maintenance and inspection and reduces costs. However, although this system can be implemented in a pipe in which a sensor for detecting an electric potential or a current is installed, there is a drawback in that it cannot be implemented in a pipe in which a sensor is not installed.

本発明の目的は、プラントが保有する情報を活用して、被覆材施工の機器・配管の外表面腐食位置及び余寿命を予測することができる腐食診断システムを提案する。 An object of the present invention is to propose a corrosion diagnosis system capable of predicting the outer surface corrosion position and remaining life of equipment / piping for coating material construction by utilizing the information possessed by the plant.

前記目的を達成するために、本発明の腐食診断システムは、金属材料と非金属材料との界面での金属材料側の腐食を診断する腐食診断システムであって、腐食診断システムは、処理装置と、表示装置とを有し、処理装置は、外部から取得し、または、自システムの記憶装置に保持している気象情報、設計情報、施工情報、運転情報の情報により、診断対象物の位置ごとに金属表面の水存在確率を算出し、その水存在確率に基づき腐食発生確率を演算し、腐食発生確率が所定の閾値以上の場合その腐食発生確率の位置を腐食位置と判定する第1演算部と、判定された腐食位置について、腐食速度予測式と記憶装置の情報を基に腐食速度を算出し、腐食速度から減肉量を演算して、減肉量に基づいて余寿命を算出する第2演算部と、第1演算部で腐食位置と判定されなかった腐食位置以外は、保守点検不要情報を、腐食位置は第2演算部で算出された余寿命の結果に基づき保守点検内容を、表示装置に出力する表示処理部と、を有することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。 In order to achieve the above object, the corrosion diagnosis system of the present invention is a corrosion diagnosis system for diagnosing corrosion on the metal material side at the interface between a metal material and a non-metal material, and the corrosion diagnosis system is a treatment device. , The processing device has a display device, and the processing device is obtained from the outside or stored in the storage device of the own system, based on the information of weather information, design information, construction information, and operation information, for each position of the diagnostic object. The first calculation unit that calculates the water existence probability of the metal surface, calculates the corrosion occurrence probability based on the water existence probability, and determines the position of the corrosion occurrence probability as the corrosion position when the corrosion occurrence probability is equal to or more than a predetermined threshold. With respect to the determined corrosion position, the corrosion rate is calculated based on the corrosion rate prediction formula and the information in the storage device, the wall loss amount is calculated from the corrosion rate, and the remaining life is calculated based on the wall loss amount. Except for the 2 calculation unit and the corrosion position that was not determined to be the corrosion position by the 1st calculation unit, the maintenance and inspection unnecessary information is provided, and the corrosion position is the maintenance and inspection content based on the result of the remaining life calculated by the 2nd calculation unit. It is characterized by having a display processing unit that outputs to a display device. Other aspects of the present invention will be described in embodiments described below.

本発明によれば、プラントが保有する情報を活用して、被覆材施工の機器・配管の外表面腐食位置及び余寿命を予測することができる。 According to the present invention, it is possible to predict the outer surface corrosion position and the remaining life of the equipment / piping for covering material construction by utilizing the information possessed by the plant.

実施形態1に係る腐食診断システムを示す構成図である。It is a block diagram which shows the corrosion diagnosis system which concerns on Embodiment 1. 実施形態1に係る腐食診断システムの適応配管に対して記憶装置で保有する内容である。This is the content held in the storage device for the adaptive piping of the corrosion diagnosis system according to the first embodiment. 実施形態1に係る腐食診断システムの処理を示すフローチャートである。It is a flowchart which shows the process of the corrosion diagnosis system which concerns on Embodiment 1. 実施形態1に係る第1演算部における腐食診断システムの適応配管外表面の水存在確率リスク判定表である。It is a water existence probability risk determination table of the adaptive pipe outer surface of the corrosion diagnosis system in the 1st calculation part which concerns on Embodiment 1. 実施形態1に係る第2演算部の腐食速度予測式における補正係数の算出図である。It is a calculation figure of the correction coefficient in the corrosion rate prediction formula of the 2nd calculation part which concerns on Embodiment 1. FIG. 実施形態1に係る第2演算部の腐食速度予測式における補正係数により補正前腐食速度から補正後腐食速度を算出する図である。It is a figure which calculates the post-correction corrosion rate from the pre-correction corrosion rate by the correction coefficient in the corrosion rate prediction formula of the 2nd calculation part which concerns on Embodiment 1. FIG. 実施形態1に係る表示装置における保守点検予定出力例である。This is an example of scheduled output for maintenance and inspection in the display device according to the first embodiment. 実施形態2に係る腐食診断システムを示す構成図である。It is a block diagram which shows the corrosion diagnosis system which concerns on Embodiment 2. 実施形態2に係る腐食診断システムの処理を示すフローチャートである。It is a flowchart which shows the process of the corrosion diagnosis system which concerns on Embodiment 2. 実施形態2に係る表示装置における保守点検予定出力例である。This is an example of scheduled output for maintenance and inspection in the display device according to the second embodiment. 実施形態3に係る腐食診断システムの構成図である。It is a block diagram of the corrosion diagnosis system which concerns on Embodiment 3. 実施形態3に係る腐食診断システムの処理を示すフローチャートである。It is a flowchart which shows the process of the corrosion diagnosis system which concerns on Embodiment 3. 実施形態3に係る腐食位置検査部における腐食有無を再検証した結果である。This is the result of re-verifying the presence or absence of corrosion in the corrosion position inspection unit according to the third embodiment. 実施形態4に係る腐食診断システムの構成図である。It is a block diagram of the corrosion diagnosis system which concerns on Embodiment 4. 実施形態4に係る腐食診断システムの処理を示すフローチャートである。It is a flowchart which shows the process of the corrosion diagnosis system which concerns on Embodiment 4. 実施形態4に係る余寿命補正部における減肉量を評価して余寿命を補正した結果である。This is the result of evaluating the amount of wall loss in the remaining life correction unit according to the fourth embodiment and correcting the remaining life. 実施形態3に係る腐食診断システムの処理の変形例1を示すフローチャートである。It is a flowchart which shows the modification 1 of the process of the corrosion diagnosis system which concerns on Embodiment 3. 実施形態3に係る腐食診断システムの処理の変形例2を示すフローチャートである。It is a flowchart which shows the modification 2 of the process of the corrosion diagnosis system which concerns on Embodiment 3. 実施形態3に係る腐食診断システムの処理の変形例3を示すフローチャートである。It is a flowchart which shows the modification 3 of the process of the corrosion diagnosis system which concerns on Embodiment 3. 実施形態4に係る腐食診断システムの処理の変形例1を示すフローチャートである。It is a flowchart which shows the modification 1 of the process of the corrosion diagnosis system which concerns on Embodiment 4. 実施形態4に係る腐食診断システムの処理の変形例2を示すフローチャートである。It is a flowchart which shows the modification 2 of the process of the corrosion diagnosis system which concerns on Embodiment 4. 実施形態4に係る腐食診断システムの処理の変形例3を示すフローチャートである。It is a flowchart which shows the modification 3 of the process of the corrosion diagnosis system which concerns on Embodiment 4.

以下、本発明の実施形態を、図面を用いて詳細に説明する。
<<実施形態1>>
本発明の腐食診断システムは、プラントが保有する気象情報(降雨量、湿度等)、設計情報(屋内外、機器・配管形状等)、施工情報(被覆材の巻き方)、及び運転情報(運転温度、稼働年数等)等を活用して、機器・配管の腐食位置及び余寿命を予測することで、保守点検すべき位置と時期の判断を支援する。それにより属人的判断を低減して、保守点検の高効率化と低コスト化を実現する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<< Embodiment 1 >>
The corrosion diagnosis system of the present invention includes weather information (rainfall, humidity, etc.), design information (indoor / outdoor, equipment / piping shape, etc.), construction information (wrapping method of covering material), and operation information (operation) possessed by the plant. By predicting the corrosion position and remaining life of equipment and piping by utilizing temperature, years of operation, etc.), we support the determination of the position and timing for maintenance and inspection. As a result, personal judgment is reduced, and maintenance and inspection efficiency is improved and costs are reduced.

図1は、実施形態1に係る腐食診断システム100を示す構成図である。腐食診断システム100は、処理装置10、記憶装置20、入力装置31、表示装置32、通信装置33を有する。処理装置10は、外部から取得し、または、自システムの記憶装置20に保持している気象情報、設計情報、施工情報、運転情報の情報により、診断対象物の位置ごとに金属表面の水存在確率を算出し、その水存在確率に基づき腐食発生確率を演算し、腐食発生確率が所定の閾値以上の場合その腐食発生確率の位置を腐食位置と判定する第1演算部11と、判定された腐食位置について、腐食速度予測式と記憶装置20の情報を基に腐食速度を算出し、腐食速度から減肉量を演算して、減肉量に基づいて余寿命を算出する第2演算部12と、第1演算部11で腐食位置と判定されなかった腐食位置以外は、保守点検不要情報を、腐食位置は第2演算部で算出された余寿命の結果に基づき保守点検内容を、表示装置32に出力する表示処理部13と、を含んで構成される。 FIG. 1 is a configuration diagram showing a corrosion diagnosis system 100 according to the first embodiment. The corrosion diagnosis system 100 includes a processing device 10, a storage device 20, an input device 31, a display device 32, and a communication device 33. The treatment device 10 has water on the metal surface for each position of the object to be diagnosed based on the weather information, design information, construction information, and operation information information acquired from the outside or stored in the storage device 20 of the own system. The probability is calculated, the corrosion occurrence probability is calculated based on the water existence probability, and when the corrosion occurrence probability is equal to or higher than a predetermined threshold value, the position of the corrosion occurrence probability is determined to be the corrosion position. Regarding the corrosion position, the corrosion rate is calculated based on the corrosion rate prediction formula and the information of the storage device 20, the wall loss amount is calculated from the corrosion rate, and the remaining life is calculated based on the wall loss amount. And, except for the corroded position that was not determined to be the corroded position by the first calculation unit 11, the maintenance and inspection unnecessary information is displayed, and the corrosion position is the maintenance and inspection content based on the result of the remaining life calculated by the second calculation unit. It is configured to include a display processing unit 13 that outputs to 32.

記憶装置20には、プラントが保有する気象情報21(例えば、降雨量、湿度等)、設計情報22(例えば、屋内外、機器・配管形状等)、施工情報23(例えば、被覆材の巻き方)、及び運転情報24(例えば、運転温度、稼働年数等)等が記憶されている。なお、プラントが保有する各種の情報は、ネットワークNW、通信装置33を介して、処理装置10の取得部(図示せず)がプラントから取得し、記憶装置20に格納する。 The storage device 20 contains weather information 21 (for example, rainfall, humidity, etc.), design information 22 (for example, indoor / outdoor, equipment / piping shape, etc.), and construction information 23 (for example, how to wind a covering material) held by the plant. ), Operation information 24 (for example, operating temperature, operating years, etc.) and the like are stored. Various information held by the plant is acquired from the plant by an acquisition unit (not shown) of the processing device 10 via the network NW and the communication device 33, and stored in the storage device 20.

腐食診断システム100は、記憶装置20の情報より、第1演算部11が保守点検が必要な被覆材施工の機器・配管の位置ごとに金属外表面の水存在確率を算出し、その水存在確率に基づき腐食発生確率を演算し、所定の閾値以上のときの腐食発生確率の位置を腐食位置と判定する。第2演算部12は、腐食位置について、腐食速度予測式と記憶装置20の情報を基に腐食速度を算出し、腐食速度から減肉量を演算して、余寿命を判定する。表示処理部13は、第1演算部11で腐食位置以外のものは保守点検不要情報を、腐食位置は第2演算部12の余寿命結果より保守点検内容を、表示装置32に表示する。 In the corrosion diagnosis system 100, the first calculation unit 11 calculates the water existence probability of the outer surface of the metal for each position of the equipment / piping for covering material construction that requires maintenance and inspection from the information of the storage device 20, and the water existence probability thereof. The corrosion occurrence probability is calculated based on the above, and the position of the corrosion occurrence probability when the predetermined threshold value or more is determined as the corrosion position. The second calculation unit 12 calculates the corrosion rate of the corrosion position based on the corrosion rate prediction formula and the information of the storage device 20, calculates the wall thinning amount from the corrosion rate, and determines the remaining life. The display processing unit 13 displays on the display device 32 the maintenance / inspection unnecessary information for the first calculation unit 11 other than the corrosion position, and the maintenance / inspection content for the corrosion position based on the remaining life result of the second calculation unit 12.

図2は、実施形態1に係る腐食診断システム100の適応配管に対して記憶装置20で保有する内容である。本実施形態において、腐食診断システム100の実施対象は、保温材及び外装板が施工された保温配管A、保温配管B、保温配管C、保温配管D、保温配管Eとする。また、腐食診断システム100を適応するプラントは、記憶装置20に次の情報を保有するプラントとする。気象情報21として平均降水量及び離岸距離、設計情報22として機器・配管の材質、機器・配管位置が屋内か屋外か、及び保温材密度、施工情報23として外装板繋ぎ部の施工良否、運転情報24として稼動年数及び運転温度。保温配管A、保温配管B、保温配管C、保温配管D、保温配管Eに関して記憶情報に保有されている。図2には、腐食診断システム100の各適応配管に対する一覧情報25を示している。 FIG. 2 shows the contents possessed by the storage device 20 for the adaptive piping of the corrosion diagnosis system 100 according to the first embodiment. In the present embodiment, the objects of the corrosion diagnosis system 100 are the heat insulating pipe A, the heat insulating pipe B, the heat insulating pipe C, the heat insulating pipe D, and the heat insulating pipe E on which the heat insulating material and the exterior plate are installed. Further, the plant to which the corrosion diagnosis system 100 is applied is a plant that has the following information in the storage device 20. Meteorological information 21 includes average precipitation and berthing distance, design information 22 includes equipment / piping material, equipment / piping position indoors or outdoors, heat insulating material density, and construction information 23 includes construction quality and operation of exterior plate joints. Information 24 includes years of operation and operating temperature. The heat-retaining pipe A, the heat-retaining pipe B, the heat-retaining pipe C, the heat-retaining pipe D, and the heat-retaining pipe E are stored in the stored information. FIG. 2 shows list information 25 for each adaptive pipe of the corrosion diagnosis system 100.

図3は、実施形態1に係る腐食診断システム100の処理を示すフローチャートである。適宜図1、図2を参照する。処理装置10は、記憶装置20から気象情報21、設計情報22、施工情報23、及び運転情報24を取得する(ステップS11)。 FIG. 3 is a flowchart showing the processing of the corrosion diagnosis system 100 according to the first embodiment. Refer to FIGS. 1 and 2 as appropriate. The processing device 10 acquires weather information 21, design information 22, construction information 23, and operation information 24 from the storage device 20 (step S11).

第1演算部11は、金属表面の水存在確率が所定の閾値以上であるか否かを判定する(ステップS12)。所定の閾値以上のとき(ステップS12,YES)、第1演算部11は、ステップS13に進み、所定の閾値未満のとき(ステップS12,NO)、第1演算部11は、ステップS16に進む。 The first calculation unit 11 determines whether or not the probability of water presence on the metal surface is equal to or greater than a predetermined threshold value (step S12). When the threshold value is equal to or higher than the predetermined threshold value (step S12, YES), the first calculation unit 11 proceeds to step S13, and when the threshold value is lower than the predetermined threshold value (step S12, NO), the first calculation unit 11 proceeds to step S16.

記憶装置20の中で水供給に関わるのは、水供給形態が外部からの供給時は降水量と機器・配管の位置が屋内か屋外かであり、水供給形態が結露の時は運転温度である。また、水拡散に関わるのは、保温材密度及び外装板繋ぎ部の施工良否である。これらをリスク判定により、配管外表面の水存在確率(=腐食発生率)を4段階(最大、大、中、小)評価した。 In the storage device 20, when the water supply form is supplied from the outside, the amount of precipitation and the position of the equipment / piping are indoors or outdoors, and when the water supply form is dew condensation, the operating temperature is used. is there. In addition, what is related to water diffusion is the density of the heat insulating material and the quality of the construction of the exterior plate joint. Based on the risk assessment, the probability of water presence (= corrosion occurrence rate) on the outer surface of the pipe was evaluated on a 4-point scale (maximum, large, medium, small).

図4は、実施形態1に係る第1演算部11における腐食診断システム100の適応配管外表面の水存在確率リスク判定表26である。腐食位置と判定する閾値は機器・配管が漏洩事故等を引き起こした際の事故の影響度に依存する。本実施形態は閾値を4段階評価の下から2番目に相当する中レベルと設定して、第1演算部11は、腐食発生率が所定の閾値以上のときの位置を腐食位置、閾値未満の位置を腐食位置以外と判定した。その結果、保温配管A、保温配管B、保温配管Cは腐食位置、保温配管D、保温配管Eは腐食位置以外と判定された。 FIG. 4 is a water existence probability risk determination table 26 on the outer surface of the adaptive pipe of the corrosion diagnosis system 100 in the first calculation unit 11 according to the first embodiment. The threshold value for determining the corrosion position depends on the degree of influence of the accident when the equipment / piping causes a leakage accident or the like. In the present embodiment, the threshold value is set to the middle level corresponding to the second from the bottom of the four-stage evaluation, and the first calculation unit 11 sets the position when the corrosion occurrence rate is equal to or higher than the predetermined threshold value to the corrosion position and less than the threshold value. The position was judged to be other than the corrosion position. As a result, it was determined that the heat insulating pipe A, the heat insulating pipe B, and the heat insulating pipe C were in the corroded position, and the heat insulating pipe D and the heat insulating pipe E were not in the corroded position.

図3に戻り、次に、第2演算部12は、第1演算部11で腐食位置と判定された保温配管A、保温配管B、保温配管Cを対象として、余寿命推定を実施する。第2演算部12は、腐食速度を算出し(ステップS13)、減肉量を算出し(ステップS14)、そして余寿命を算出する(ステップS15)。詳細については、後記する。記憶装置20に保有されている情報の中で、電気化学反応速度に関与するパラメータは、経過年数、運転温度、離岸距離に依存する塩量、機器・配管の材料である。 Returning to FIG. 3, next, the second calculation unit 12 estimates the remaining life of the heat retention pipe A, the heat retention pipe B, and the heat retention pipe C determined by the first calculation unit 11 to be in the corroded position. The second calculation unit 12 calculates the corrosion rate (step S13), calculates the wall thinning amount (step S14), and calculates the remaining life (step S15). Details will be described later. Among the information stored in the storage device 20, the parameters related to the electrochemical reaction rate are the number of years elapsed, the operating temperature, the amount of salt depending on the offshore distance, and the material of the equipment / piping.

図5は、実施形態1に係る第2演算部12の腐食速度予測式における補正係数の算出図である。図5には、文献情報、実機減肉情報または要素試験より算出した前記パラメータと腐食速度の関係を示す。ステップS13の腐食速度予測式において、経過年数に対する腐食速度は補正前腐食速度とする。また、運転温度、塩量、機器・配管の材料は、腐食速度が最低値となる条件を1となるよう標準化した補正係数とする。腐食速度予測式は、補正前腐食速度と補正係数の積である次式で表す。 FIG. 5 is a calculation diagram of a correction coefficient in the corrosion rate prediction formula of the second calculation unit 12 according to the first embodiment. FIG. 5 shows the relationship between the parameters and the corrosion rate calculated from literature information, actual machine wall thinning information, or element tests. In the corrosion rate prediction formula in step S13, the corrosion rate with respect to the elapsed years is the pre-correction corrosion rate. Further, the operating temperature, the amount of salt, and the material of the equipment / piping shall be the correction coefficient standardized so that the condition where the corrosion rate is the minimum value is 1. The corrosion rate prediction formula is expressed by the following formula, which is the product of the corrosion rate before correction and the correction coefficient.

Figure 2020143970
Figure 2020143970

ここで、M(t)は補正後腐食速度、m(t)は補正前腐食速度、fTは運転温度補正係数、fsaltは塩量補正係数、fmaterialは機器・配管の材料補正係数である。補正前腐食速度を各補正係数で補正して、補正後腐食速度を算出するイメージを図6に示す。保温配管A、保温配管B、保温配管Cの腐食速度は、稼動年数、運転温度、塩量、機器・配管材料の情報を[数1]の腐食速度予測式に入力して、算出する。 Here, M (t) is the post-correction corrosion rate, m (t) is the pre-correction corrosion rate, f T is the operating temperature correction coefficient, f salt is the salt amount correction coefficient, and f material is the material correction coefficient for equipment and piping. is there. FIG. 6 shows an image in which the corrosion rate before correction is corrected by each correction coefficient and the corrosion rate after correction is calculated. The corrosion rate of the heat-retaining pipe A, the heat-retaining pipe B, and the heat-retaining pipe C is calculated by inputting information on the number of years of operation, the operating temperature, the amount of salt, and the equipment / piping material into the corrosion rate prediction formula of [Equation 1].

ステップS14の減肉量は次式で算出する。

Figure 2020143970
The amount of wall thinning in step S14 is calculated by the following formula.
Figure 2020143970

ステップS15の余寿命算出について、まず次式を満たす年数Tを求める。

Figure 2020143970
Regarding the calculation of the remaining life in step S15, first, the number of years T satisfying the following equation is obtained.
Figure 2020143970

そして、余寿命を次式から求める。

Figure 2020143970
ここで、αは各機器・配管に設定された安全率である。 Then, the remaining life is calculated from the following equation.
Figure 2020143970
Here, α is the safety factor set for each device / piping.

図3に戻り、最後に、表示処理部13において、第1演算部11で判定した腐食位置、及び第2演算部12で算出した余寿命を用いて保守点検スケジュールを作成する。 Returning to FIG. 3, finally, the display processing unit 13 creates a maintenance / inspection schedule using the corrosion position determined by the first calculation unit 11 and the remaining life calculated by the second calculation unit 12.

図7は、実施形態1に係る表示装置32における保守点検予定出力例である。図7に、本実施形態で対象とした保温配管A、保温配管B、保温配管C、保温配管D、保温配管Eの保守点検スケジュールを示す。列に機器・配管位置71、腐食有無72、減肉量73、余寿命74、次回の保守点検予定75を記す。また行として、機器・配管位置の名称、先に算出した腐食位置か腐食位置以外か、減肉量及び余寿命、さらに、次回の保守点検予定を記す。なお、腐食位置以外の時期は、余寿命を算出しないため、機器・配管納入時に設定された設計寿命を記す。なお、保守点検ごとに減肉検査した位置の最新データを用いて、腐食位置と余寿命の判定が更新されることから、この保守点検スケジュールには、作成年月日の記載が必要である。 FIG. 7 is an example of a maintenance / inspection scheduled output in the display device 32 according to the first embodiment. FIG. 7 shows the maintenance and inspection schedule of the heat insulating pipe A, the heat insulating pipe B, the heat insulating pipe C, the heat insulating pipe D, and the heat insulating pipe E targeted in the present embodiment. In the row, the equipment / piping position 71, the presence / absence of corrosion 72, the amount of wall loss 73, the remaining life 74, and the next maintenance / inspection schedule 75 are described. In addition, as a line, write the name of the equipment / piping position, whether it is the corroded position calculated earlier or other than the corroded position, the amount of wall loss and the remaining life, and the next maintenance and inspection schedule. Since the remaining life is not calculated at times other than the corrosion position, the design life set at the time of delivery of equipment and piping is described. In addition, since the judgment of the corroded position and the remaining life is updated by using the latest data of the position where the wall thickness inspection was performed for each maintenance and inspection, it is necessary to describe the date of preparation in this maintenance and inspection schedule.

このように、腐食診断システム100は、保守点検スケジュールを作成して、保守点検すべき位置と時期を明確化するため、高効率化と低コスト化に貢献する。 In this way, the corrosion diagnosis system 100 creates a maintenance / inspection schedule and clarifies the position and timing for maintenance / inspection, which contributes to high efficiency and low cost.

本実施形態の腐食診断システム100は、雨水等の外部供給または結露により水が機器・配管外表面に存在するまでの腐食発生過程と、水を反応場とする電気化学反応により外表面が減肉する腐食進展過程に分離した腐食診断システムを提案する。 In the corrosion diagnosis system 100 of the present embodiment, the outer surface is thinned by the corrosion generation process until water exists on the outer surface of the equipment / pipe due to external supply of rainwater or the like or dew condensation, and the electrochemical reaction using water as a reaction field. We propose a corrosion diagnosis system that is separated into the process of corrosion progress.

腐食発生過程の影響パラメータは、水供給に関わる降水量、湿度等の気象条件と、水拡散に関わる被覆材劣化度や施工不備等である。前記パラメータは環境の外乱と人的要因が絡むため、物理化学理論に立脚してモデル構築することは困難である。そこで腐食発生過程では、前記パラメータを活用した統計処理、またはリスク判定から腐食位置を特定する。一方、腐食進展過程の影響パラメータは電気化学反応速度に関わる温度や塩量等である。それらのパラメータは、電気化学反応との相関性があるため、物理化学理論に立脚した腐食速度予測式を構築して、余寿命を推定する。 The influence parameters of the corrosion occurrence process are meteorological conditions such as precipitation and humidity related to water supply, and the degree of deterioration of the covering material related to water diffusion and construction defects. It is difficult to build a model based on the theory of physicochemistry because the above parameters involve environmental disturbances and human factors. Therefore, in the corrosion generation process, the corrosion position is specified by statistical processing utilizing the above parameters or risk determination. On the other hand, the influence parameters of the corrosion progress process are the temperature and the amount of salt related to the electrochemical reaction rate. Since these parameters correlate with electrochemical reactions, a corrosion rate prediction formula based on physicochemical theory is constructed to estimate the remaining life.

本実施形態の腐食診断システム100は、プラントの保守点検を必要とする被覆材施工機器・配管の外表面を対象として、プラントが保有する機器・配管の運転情報、設計情報、施工情報及び気象情報を蓄積した記憶装置20と、記憶装置20の情報の中で水供給及び水拡散に関わる影響パラメータから機器・配管外表面の水存在確率を算出し、その水存在確率が所定の閾値以上の位置を腐食位置、所定の閾値未満の位置を腐食位置以外と判定する第1演算部11と、第1演算部11で腐食位置と判定された位置を対象として、記憶装置20の中で腐食の電気化学反応速度に関わるパラメータと、それらのパラメータの電気化学反応速度への影響度を重み付けした腐食速度予測式から腐食速度を算出し、腐食速度から減肉量を演算して、余寿命を推定する第2演算部12と、第1演算部11で特定した腐食位置以外の位置は保守点検不要情報を、第1演算部11で特定した腐食位置は第2演算部12の余寿命推定結果より次回の保守点検時期を表示装置32に出力する表示処理部13とを含んで構成される。 The corrosion diagnosis system 100 of the present embodiment targets the outer surface of the covering material construction equipment / piping that requires maintenance and inspection of the plant, and the operation information, design information, construction information, and weather information of the equipment / piping owned by the plant. The water presence probability on the outer surface of the equipment / pipe is calculated from the storage device 20 that has accumulated the water and the influence parameters related to water supply and water diffusion in the information of the storage device 20, and the position where the water presence probability is equal to or higher than a predetermined threshold value. Is the corrosion position, and the position determined to be the corrosion position by the first calculation unit 11 and the position determined to be the corrosion position by the first calculation unit 11 are the positions determined to be other than the corrosion position, and the corrosion electricity in the storage device 20. The corrosion rate is calculated from the parameters related to the chemical reaction rate and the corrosion rate prediction formula that weights the influence of these parameters on the electrochemical reaction rate, and the amount of wall loss is calculated from the corrosion rate to estimate the remaining life. The positions other than the corrosion positions specified by the second calculation unit 12 and the first calculation unit 11 are information that does not require maintenance and inspection, and the corrosion positions specified by the first calculation unit 11 are the next time from the estimation result of the remaining life of the second calculation unit 12. It is configured to include a display processing unit 13 that outputs the maintenance and inspection time of the above to the display device 32.

記憶装置20の情報の中で、水供給に関わる影響パラメータは例えば降水量、湿度、機器・配管が屋内か屋外か等であり、水拡散に関わる影響パラメータは例えば外装板隙間有無、保温材種、保温材密度、塗料有無等である。第1演算部11では、それら影響パラメータを点数化したリスク判定、または過去の腐食発生と影響パラメータの関係に係る統計解析により、機器・配管外表面の水存在確率を算出する。水が存在すれば腐食は発生するため、水存在確率を腐食発生確率と同義とする。各機器・配管の安全基準を基に腐食発生率の閾値を決定して、閾値以上の位置を腐食位置、閾値未満を腐食位置以外とすることで、腐食位置を特定する。 In the information of the storage device 20, the influence parameters related to water supply are, for example, precipitation, humidity, whether the equipment / piping is indoors or outdoors, etc., and the influence parameters related to water diffusion are, for example, the presence / absence of a gap in the exterior plate, the type of heat insulating material. , Heat insulating material density, presence or absence of paint, etc. The first calculation unit 11 calculates the probability of water presence on the outer surface of the equipment / piping by risk determination by scoring these influence parameters or statistical analysis related to the relationship between the past corrosion occurrence and the influence parameters. Since corrosion occurs in the presence of water, the probability of water existence is synonymous with the probability of corrosion. The corrosion occurrence rate threshold is determined based on the safety standards of each device / piping, and the corrosion position is specified by setting the position above the threshold as the corrosion position and the position below the threshold as other than the corrosion position.

記憶装置20の中で、電気化学反応速度に関わる影響パラメータは、例えば運転温度、塩量、機器・配管材質、稼動年数である。それら影響パラメータと腐食速度の関係を文献情報、実機減肉検査情報、または要素試験から予め算出する。第2演算部12の腐食速度予測式は、影響パラメータの積により構築する。記憶装置の影響パラメータの値を腐食速度予測式に入力して、腐食速度を算出する。 In the storage device 20, the influential parameters related to the electrochemical reaction rate are, for example, the operating temperature, the amount of salt, the material of equipment / piping, and the number of years of operation. The relationship between these influence parameters and the corrosion rate is calculated in advance from literature information, actual machine thinning inspection information, or element tests. The corrosion rate prediction formula of the second calculation unit 12 is constructed by the product of the influence parameters. Enter the value of the effect parameter of the storage device into the corrosion rate prediction formula to calculate the corrosion rate.

第2演算部12は、減肉量について、経過年数に対する腐食速度の積分値で算出する。さらに、第2演算部12は、肉厚、減肉量、必要最小肉厚、及び腐食速度を用いて、余寿命を推定する。 The second calculation unit 12 calculates the amount of wall loss as an integral value of the corrosion rate with respect to the elapsed years. Further, the second calculation unit 12 estimates the remaining life by using the wall thickness, the amount of wall reduction, the minimum required wall thickness, and the corrosion rate.

表示処理部13では、プラントの保守点検を必要とする被覆材施工機器・配管外表面に対して、第1演算部11で判定した腐食位置以外の位置は保守点検不要情報を、第2演算部12で余寿命推定した腐食位置は余寿命を、表示装置32に表示する。さらに、次回以降の保守点検推奨日時を出力することにより、保守点検の位置と時期を計画することができる。 In the display processing unit 13, maintenance / inspection unnecessary information is provided to the outer surface of the covering material construction equipment / piping that requires maintenance and inspection of the plant at positions other than the corrosion position determined by the first calculation unit 11. As for the corrosion position estimated by the remaining life in 12, the remaining life is displayed on the display device 32. Furthermore, by outputting the recommended date and time for maintenance and inspection from the next time onward, the position and timing of maintenance and inspection can be planned.

<<実施形態2>>
図8は、実施形態2に係る腐食診断システム100Aを示す構成図である。実施形態2は、実施形態1の構成に加えて、処理装置10に減肉情報活用部18を有することが異なる。図8において、図1に記載の同一構成品については、同一符号を付しており、説明を省略する。
<< Embodiment 2 >>
FIG. 8 is a configuration diagram showing a corrosion diagnosis system 100A according to the second embodiment. The second embodiment is different from the configuration of the first embodiment in that the processing device 10 has a wall thinning information utilization unit 18. In FIG. 8, the same components shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

腐食診断システム100Aの処理装置10は、第1演算部11と、第2演算部12と、表示処理部13、及び前回減肉検査結果に基づき、腐食位置か腐食位置以外かを判定する減肉情報活用部18を含んで構成される。記憶装置20には、減肉情報27が記憶されている。そのため、本実施形態では、プラントにおいて、被覆材施工の機器・配管の中で前回の減肉検査データがある位置を対象とする。 The processing device 10 of the corrosion diagnosis system 100A determines whether the corrosion position is a corrosion position or a non-corrosion position based on the first calculation unit 11, the second calculation unit 12, the display processing unit 13, and the previous wall thinning inspection result. The information utilization unit 18 is included. The thinning information 27 is stored in the storage device 20. Therefore, in the present embodiment, in the plant, the position where the previous wall thinning inspection data is present is targeted in the equipment / piping for covering material construction.

図9は、実施形態2に係る腐食診断システム100Aの処理を示すフローチャートである。図9において、図3に記載の同一処理については、同一符号を付しており、説明を省略する。減肉情報活用部18は、前回減肉検査結果に基づき、腐食位置か腐食位置以外かを判定する(ステップS21)。 FIG. 9 is a flowchart showing the processing of the corrosion diagnosis system 100A according to the second embodiment. In FIG. 9, the same processing described in FIG. 3 is designated by the same reference numeral, and the description thereof will be omitted. The wall thinning information utilization unit 18 determines whether it is a corroded position or a position other than the corroded position based on the result of the previous wall thinning inspection (step S21).

減肉情報活用部18は、前回検査で減肉なしと判定された場合(ステップS21,NO)、すなわち、減肉情報活用部18で腐食位置以外と判定された位置は、前回検査以降に腐食が発生している可能性があるため、第1演算部11で腐食位置か腐食位置以外かを実施形態1と同様に判定する(ステップS12)。 When the wall thinning information utilization unit 18 determines that there is no wall thinning in the previous inspection (step S21, NO), that is, the position determined by the wall thinning information utilization unit 18 other than the corrosion position is corroded after the previous inspection. In the same manner as in the first embodiment, the first calculation unit 11 determines whether the position is a corroded position or a position other than the corroded position (step S12).

一方、減肉情報活用部18は、前回検査で減肉有りと判定された場合(ステップS21,YES)、すなわち、減肉情報活用部18で腐食位置と判定された位置は、第2演算部12において、減肉量の算出(ステップS14A)と余寿命の算出(ステップS15)を行う。減肉量は次式で求める。 On the other hand, when the wall thinning information utilization unit 18 determines that there is wall thinning in the previous inspection (step S21, YES), that is, the position determined by the wall thinning information utilization unit 18 to be a corroded position is the second calculation unit. In step 12, the amount of wall loss is calculated (step S14A) and the remaining life is calculated (step S15). The amount of meat loss is calculated by the following formula.

Figure 2020143970
Figure 2020143970

また、余寿命については前記[数5]を基に算出する。 The remaining life is calculated based on the above [Equation 5].

最後に、表示処理部13において、前記機器・配管を対象とし、腐食位置、及び余寿命を用いて保守点検スケジュールを作成する(ステップS16)。 Finally, the display processing unit 13 creates a maintenance / inspection schedule for the equipment / piping using the corrosion position and the remaining life (step S16).

図10は、実施形態2に係る表示装置32における保守点検予定出力例である。本実施形態の保守点検スケジュールは、実施形態1の図7に示した内容の大部分と同様であるが、追加点として、列に前回保守点検日を含む前回減肉量77を、行に前回保守点検日と前回減肉量の結果を、加える。 FIG. 10 is an example of a maintenance / inspection scheduled output in the display device 32 according to the second embodiment. The maintenance and inspection schedule of the present embodiment is the same as most of the contents shown in FIG. 7 of the first embodiment, but as an additional point, the previous wall thinning amount 77 including the previous maintenance and inspection date is added to the column and the previous thickness is reduced to 77 in the row. Add the maintenance inspection date and the result of the previous wall thinning amount.

実施形態2の腐食診断システム100Aは、実施形態1の腐食診断システム100に減肉情報活用部18を付与するシステムである。この腐食診断システム100Aは、前回の減肉検査情報が保有されている被覆材施工の機器・配管の外表面を対象とする。減肉情報活用部18では、前回減肉が観察されている位置は、腐食位置と判断して、第2演算部12で余寿命を推定する。また前回減肉が観察されていない位置は、前回検査から現在までに腐食している可能性があるため、第1演算部11で腐食有無を判定する。 The corrosion diagnosis system 100A of the second embodiment is a system for imparting a wall thinning information utilization unit 18 to the corrosion diagnosis system 100 of the first embodiment. This corrosion diagnosis system 100A targets the outer surface of the equipment / piping for covering material construction, which holds the previous information on the wall thinning inspection. The wall thinning information utilization unit 18 determines that the position where the wall thinning was observed last time is a corrosion position, and the second calculation unit 12 estimates the remaining life. Further, since there is a possibility that the position where the wall thinning was not observed last time has been corroded from the previous inspection to the present, the first calculation unit 11 determines the presence or absence of corrosion.

実施形態2は、前回検査で実測した減肉量の情報を活用できるため、実施形態1と比較して、腐食位置特定と余寿命推定の信頼性がさらに向上する。 Since the information on the amount of wall loss actually measured in the previous inspection can be utilized in the second embodiment, the reliability of the corrosion position identification and the estimation of the remaining life is further improved as compared with the first embodiment.

<<実施形態3>>
図11は、実施形態3に係る腐食診断システム100Bを示す構成図である。実施形態3は、実施形態1の構成に加えて、処理装置10に腐食位置検査部30を有することが異なる。図11において、図1に記載の同一構成品については、同一符号を付しており、説明を省略する。
<< Embodiment 3 >>
FIG. 11 is a configuration diagram showing a corrosion diagnosis system 100B according to the third embodiment. The third embodiment is different in that the processing apparatus 10 has a corrosion position inspection unit 30 in addition to the configuration of the first embodiment. In FIG. 11, the same components shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

腐食診断システム100Bの処理装置10は、第1演算部11と、第2演算部12と、表示処理部13、及び第1演算部11で腐食位置以外と判定された位置を対象として、腐食センサ51からの情報、または検査器(例えば、中性子水分計52)からの情報により、真に腐食位置以外かを検査する腐食位置検査部30とを含んで構成される。腐食センサ51には直接配管肉厚を測定する超音波測定や、腐食速度を測定するための直流抵抗センサなどを含む。 The processing device 10 of the corrosion diagnosis system 100B targets the positions determined by the first calculation unit 11, the second calculation unit 12, the display processing unit 13, and the first calculation unit 11 to be other than the corrosion position, and is a corrosion sensor. It is configured to include a corrosion position inspection unit 30 that inspects whether or not the position is truly other than the corrosion position based on the information from 51 or the information from an inspection device (for example, a neutron moisture meter 52). The corrosion sensor 51 includes an ultrasonic measurement for directly measuring the wall thickness of the pipe, a DC resistance sensor for measuring the corrosion rate, and the like.

図12は、実施形態3に係る腐食診断システム100Bの処理を示すフローチャートである。図12において、図3に記載の同一処理については、同一符号を付しており、説明を省略する。ステップS12において、腐食位置以外と判定された場合(ステップS12,NO)、腐食位置検査部30で、中性子水分計52などの情報に基づいて保温材中に水を検知があるか否かを判定する(ステップS31)。保温材中に水検知がある場合(ステップS31,YES)、ステップS13に進み、保温材中に水検知がない場合(ステップS31,NO)、ステップS16に進む。 FIG. 12 is a flowchart showing the processing of the corrosion diagnosis system 100B according to the third embodiment. In FIG. 12, the same processing described in FIG. 3 is designated by the same reference numeral, and the description thereof will be omitted. If it is determined in step S12 that the position is other than the corrosion position (step S12, NO), the corrosion position inspection unit 30 determines whether or not water is detected in the heat insulating material based on information such as the neutron moisture meter 52. (Step S31). If there is water detection in the heat insulating material (steps S31, YES), the process proceeds to step S13, and if there is no water detection in the heat insulating material (steps S31, NO), the process proceeds to step S16.

本実施形態では、第1演算部11で腐食位置以外と判定された保温材施工配管の3か所を対象として、腐食位置検査部30で、中性子水分計52を用いて、腐食位置を再検証した例を示す。中性子水分計52とは、中性子線源(カリホルニウム等)から照射された高速中性子が、保温材中の水と衝突して速度の遅い熱中性子に変化する数値をカウントして、保温材中の水を検知する検査器である。腐食有無は、検知した水から間接的に予測する。中性子水分計により、保温材未剥離で、配管外表面の水存在確率を高精度に予測できる。 In the present embodiment, the corrosion position inspection unit 30 re-verifies the corrosion position using the neutron moisture meter 52 for the three locations of the heat insulating material construction pipe determined to be other than the corrosion position by the first calculation unit 11. An example is shown. The neutron moisture meter 52 counts the numerical value of fast neutrons irradiated from a neutron source (calipornium, etc.) colliding with water in the heat insulating material and changing to slow thermal neutrons, and water in the heat insulating material. It is an inspection device that detects. The presence or absence of corrosion is indirectly predicted from the detected water. With the neutron moisture meter, the probability of water presence on the outer surface of the pipe can be predicted with high accuracy without peeling the heat insulating material.

図13は、実施形態3に係る腐食位置検査部30における腐食有無を再検証した結果である。図13に第1演算部11で腐食位置以外と判定した位置に中性子水分計52を適応した結果を示す。保温配管YBと保温配管YCでは水が検知されなかったが、保温配管YAでは水が検知された。そのため、水が検知された位置は、配管外表面に水が高確率で存在すると推定されるため、腐食位置と判定し直した。腐食位置検査部30で、腐食位置と判定された位置は、第2演算部12にて実施形態1と同様の手法で余寿命を推定する。 FIG. 13 is a result of re-verifying the presence or absence of corrosion in the corrosion position inspection unit 30 according to the third embodiment. FIG. 13 shows the result of applying the neutron moisture meter 52 to a position determined by the first calculation unit 11 other than the corrosion position. Water was not detected in the heat insulating pipe YB and the heat insulating pipe YC, but water was detected in the heat insulating pipe YA. Therefore, the position where water was detected was redetermined as a corroded position because it is estimated that water exists on the outer surface of the pipe with high probability. The position determined to be the corroded position by the corrosion position inspection unit 30 is estimated by the second calculation unit 12 by the same method as in the first embodiment.

実施形態3の腐食診断システム100Bは、腐食診断システム100に腐食位置検査部30を付与するシステムである。この腐食診断システム100Bは、第1演算部11で腐食位置以外と判断した位置を対象とする。腐食位置検査部30では、被覆材非破壊または部分破壊で腐食有無を評価可能な中性子水分計52、アコースティックエミッション計測器等の検査器または腐食センサ51により、腐食有無を評価して、腐食位置を見落とすリスクを低減する。 The corrosion diagnosis system 100B of the third embodiment is a system that imparts a corrosion position inspection unit 30 to the corrosion diagnosis system 100. The corrosion diagnosis system 100B targets a position determined by the first calculation unit 11 other than the corrosion position. The corrosion position inspection unit 30 evaluates the presence or absence of corrosion by an inspection device such as a neutron moisture meter 52 or an acoustic emission measuring instrument or a corrosion sensor 51 capable of evaluating the presence or absence of corrosion by non-destructive or partial destruction of the coating material, and determines the corrosion position. Reduce the risk of oversight.

本実施形態は、腐食位置検査部30により腐食位置以外を再検証することで、腐食位置を見逃すリスクが低減するため、実施形態1と比較して安全性が高い腐食診断システムである。 This embodiment is a corrosion diagnosis system having higher safety than the first embodiment because the risk of overlooking the corroded position is reduced by re-verifying other than the corroded position by the corrosion position inspection unit 30.

<<実施形態4>>
図14は、実施形態4に係る腐食診断システム100Cの構成図である。実施形態4は、実施形態1の構成に加えて、処理装置10に余寿命補正部40を有することが異なる。図14において、図1に記載の同一構成品については、同一符号を付しており、説明を省略する。
<< Embodiment 4 >>
FIG. 14 is a block diagram of the corrosion diagnosis system 100C according to the fourth embodiment. The fourth embodiment is different from the configuration of the first embodiment in that the processing device 10 has a remaining life correction unit 40. In FIG. 14, the same components shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

腐食診断システム100Cの処理装置10は、第1演算部11と、第2演算部12と、表示処理部13、及び第2演算部12で算出した余寿命が所定の閾値以下の腐食位置を対象とし、検査器による減肉量の実測値を取得して、余寿命を補正する余寿命補正部40とを含んで構成される。 The processing device 10 of the corrosion diagnosis system 100C targets the corrosion positions where the remaining life calculated by the first calculation unit 11, the second calculation unit 12, the display processing unit 13, and the second calculation unit 12 is equal to or less than a predetermined threshold value. It is configured to include a remaining life correction unit 40 that obtains an actually measured value of the wall thinning amount by an inspection device and corrects the remaining life.

図15は、実施形態4に係る腐食診断システム100Cの処理を示すフローチャートである。ステップS15の余寿命算出後、余寿命補正部40は、余寿命が所定の閾値以下であるか否かを判定し(ステップS41)、余寿命が所定の閾値以下である場合(ステップS41,YES)、検査器による減肉量の実測値を取得して、余寿命を補正し(ステップS42)、ステップS16に進む。他方、余寿命が閾値を超える場合(ステップS41,NO)、ステップS16に進む。 FIG. 15 is a flowchart showing the processing of the corrosion diagnosis system 100C according to the fourth embodiment. After calculating the remaining life in step S15, the remaining life correction unit 40 determines whether or not the remaining life is equal to or less than a predetermined threshold value (step S41), and if the remaining life is equal to or less than the predetermined threshold value (steps S41, YES). ), The actual measurement value of the wall thinning amount by the inspection device is acquired, the remaining life is corrected (step S42), and the process proceeds to step S16. On the other hand, when the remaining life exceeds the threshold value (steps S41 and NO), the process proceeds to step S16.

本実施形態では、第2演算部12で余寿命推定した保温材施工配管の3か所を対象として、余寿命補正部40で余寿命が所定の閾値以下の位置は渦電流探傷器53(図14参照)を用いて減肉量を評価して、余寿命を補正した例を示す。渦電流探傷器53とは、金属に磁界により渦電流を発生させて、その渦電流値が減肉部で変化する量を検知して、検出した渦電流値の変化量から減肉量を算出する検査器である。渦電流探傷器53により、保温材未剥離で、配管外表面の減肉量を高精度に計測できる。 In the present embodiment, the eddy current flaw detector 53 is located at a position where the remaining life is equal to or less than a predetermined threshold value in the remaining life correction unit 40 for three locations of the heat insulating material construction pipe whose remaining life is estimated by the second calculation unit 12. 14) is used to evaluate the amount of wall loss to correct the remaining life. The eddy current flaw detector 53 generates an eddy current in a metal by a magnetic field, detects the amount of change in the eddy current value at the wall thinning portion, and calculates the wall thinning amount from the detected change amount of the eddy current value. It is an inspection device to be used. The eddy current flaw detector 53 can measure the amount of wall thinning on the outer surface of the pipe with high accuracy without peeling the heat insulating material.

図16は、実施形態4に係る余寿命補正部40における減肉量を評価して余寿命を補正した結果である。図16に第2演算部12で前記保温材施工配管の3か所に渦電流探傷器53を適応した結果を示す。本実施形態では余寿命の閾値を5年とした。前記保温材施工配管の3か所の中で、余寿命が所定の閾値以下であったのは、保温配管ZAであった。そこで、渦電流探傷器53により保温配管ZAの減肉量を計測した。その結果、第2演算部12で算出した減肉量よりも0.3mm深かった。そこで、余寿命補正のため、まず次式を満たす年数Tを求めた。 FIG. 16 is a result of evaluating the amount of wall loss in the remaining life correction unit 40 according to the fourth embodiment and correcting the remaining life. FIG. 16 shows the results of applying the eddy current flaw detector 53 to the three locations of the heat insulating material construction pipe by the second calculation unit 12. In the present embodiment, the threshold value of the remaining life is set to 5 years. Among the three locations of the heat insulating material construction pipe, the heat insulating pipe ZA had a remaining life of less than or equal to a predetermined threshold value. Therefore, the amount of wall loss of the heat insulating pipe ZA was measured by the eddy current flaw detector 53. As a result, it was 0.3 mm deeper than the wall thinning amount calculated by the second calculation unit 12. Therefore, in order to correct the remaining life, the number of years T satisfying the following equation was first obtained.

Figure 2020143970
そして[数4]より、補正した余寿命を算出した。
Figure 2020143970
Then, the corrected remaining life was calculated from [Equation 4].

実施形態4の腐食診断システム100Cは、実施形態1の腐食診断システム100に余寿命補正部40を付与するシステムである。この腐食診断システム100Cは、第2演算部12で余寿命推定した位置の中で、余寿命が所定の閾値以下の位置を対象とする。余寿命補正部40では、減肉量の実測により、もしくは、被覆材非破壊または部分的破壊で腐食の減肉量を評価可能な渦電流探傷器53(図14参照)、超音波ガイド波探傷器、放射線センサ及び超音波ピグ等の検査器により、余寿命を補正する。 The corrosion diagnosis system 100C of the fourth embodiment is a system that imparts a remaining life correction unit 40 to the corrosion diagnosis system 100 of the first embodiment. The corrosion diagnosis system 100C targets a position where the remaining life is equal to or less than a predetermined threshold value among the positions estimated by the second calculation unit 12 for the remaining life. In the remaining life correction unit 40, an eddy current flaw detector 53 (see FIG. 14) and an ultrasonic guided wave flaw detector, which can evaluate the amount of wall loss due to corrosion by actual measurement of the amount of wall loss, or by non-destructive or partial failure of the covering material. The remaining life is corrected by an inspection device such as a device, a radiation sensor, and an ultrasonic pig.

本実施形態は、余寿命補正部40により、余寿命が所定の閾値以下の腐食位置を対象として、減肉量を実測して余寿命を補正した。それにより、次回保守点検予定日の前に事故が発生するリスクが低減するため、実施形態1と比較して安全性が高い腐食診断システムである。 In the present embodiment, the remaining life correction unit 40 measures the amount of wall loss and corrects the remaining life at the corrosion position where the remaining life is equal to or less than a predetermined threshold value. As a result, the risk of an accident occurring before the next scheduled maintenance and inspection date is reduced, so that this is a corrosion diagnosis system with higher safety than that of the first embodiment.

≪変形例≫
以上、本発明に係る腐食診断システム100等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
≪Modification example≫
Although the corrosion diagnosis system 100 and the like according to the present invention have been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.

実施形態3の腐食位置検査部30は、中性子水分計52の情報に基づいて保温材中に水を検知があるか否かを判定する(ステップS31)ことを説明したが、これに限定されるわけではない。 The corrosion position inspection unit 30 of the third embodiment has described that it determines whether or not water is detected in the heat insulating material based on the information of the neutron moisture meter 52 (step S31), but the present invention is limited to this. Do not mean.

<実施形態3の変形例1>
処理装置10は、第1演算部11で腐食位置以外と判断した位置に対して、腐食による錆層から発生する弾性波を検出して腐食有無を判定するアコースティックエミッション検査器による腐食有無情報を取得し、取得した腐食有無情報に基づき腐食位置を再判定する腐食位置検査部30を有していてもよい。
<Modification 1 of Embodiment 3>
The processing apparatus 10 acquires corrosion presence / absence information by an acoustic emission inspection device that detects the presence / absence of corrosion by detecting elastic waves generated from the rust layer due to corrosion at a position determined by the first calculation unit 11 other than the corrosion position. However, it may have a corrosion position inspection unit 30 that redetermines the corrosion position based on the acquired corrosion presence / absence information.

図17は、実施形態3に係る腐食診断システム100Bの処理の変形例1を示すフローチャートである。図17において、図12に記載の同一処理については、同一符号を付しており、説明を省略する。ステップS12で腐食位置以外と判定した位置について(ステップS12,NO)、腐食位置検査部30は、腐食による錆層から発生する弾性波を検出して腐食有無を判定するアコースティックエミッション検査器による腐食有無情報を取得し、腐食が有るか否かを判定する(ステップS31A)。腐食が有ると判定した場合(ステップS31A,YES)、ステップS13に進み、腐食が無いと判定した場合(ステップS31A,NO)、ステップS16に進む。 FIG. 17 is a flowchart showing a modification 1 of the process of the corrosion diagnosis system 100B according to the third embodiment. In FIG. 17, the same processing described in FIG. 12 is designated by the same reference numerals, and the description thereof will be omitted. Regarding the position determined to be other than the corrosion position in step S12 (step S12, NO), the corrosion position inspection unit 30 detects the presence or absence of corrosion by the acoustic emission inspection device that detects the elastic wave generated from the rust layer due to corrosion and determines the presence or absence of corrosion. Information is acquired and it is determined whether or not there is corrosion (step S31A). If it is determined that there is corrosion (step S31A, YES), the process proceeds to step S13, and if it is determined that there is no corrosion (step S31A, NO), the process proceeds to step S16.

腐食位置検査部30では、アコースティックエミッション計測器の検査器の情報に基づいて、腐食有無を評価して、腐食位置を見落とすリスクを低減することができる。 The corrosion position inspection unit 30 can evaluate the presence or absence of corrosion based on the information of the inspection device of the acoustic emission measuring instrument, and reduce the risk of overlooking the corrosion position.

<実施形態3の変形例2>
処理装置10は、第1演算部11で腐食位置以外と判断した位置に対して、減肉量の直接測定や抵抗値変化、電流値から腐食量を定量化する腐食センサ51(図11参照)から腐食有無情報を取得し、取得した腐食有無情報に基づき腐食位置を再判定する腐食位置検査部30を有していてもよい。腐食センサ51には、ACM(Atmospheric Corrosion Monitor)型腐食センサ(通称ACMセンサ)がある。
<Modification 2 of Embodiment 3>
The processing device 10 directly measures the amount of wall loss, changes the resistance value, and quantifies the amount of corrosion from the current value with respect to the position determined by the first calculation unit 11 other than the corrosion position (see FIG. 11). It may have a corrosion position inspection unit 30 that acquires corrosion presence / absence information from the above and redetermines the corrosion position based on the acquired corrosion presence / absence information. The corrosion sensor 51 includes an ACM (Atmospheric Corrosion Monitor) type corrosion sensor (commonly known as an ACM sensor).

図18は、実施形態3に係る腐食診断システム100Bの処理の変形例2を示すフローチャートである。図18において、図12に記載の同一処理については、同一符号を付しており、説明を省略する。ステップS12で腐食位置以外と判定した位置について(ステップS12,NO)腐食位置検査部30は、減肉量の直接測定や抵抗値変化、電流値から腐食量を定量化する腐食センサ51(図11参照)から腐食有無情報を取得し、取得した腐食有無情報に基づき腐食が有るか否かを判定する(ステップS31B)。腐食が有ると判定した場合(ステップS31B,YES)、ステップS13に進み、腐食が無いと判定した場合(ステップS31B,NO)、ステップS16に進む。 FIG. 18 is a flowchart showing a modification 2 of the process of the corrosion diagnosis system 100B according to the third embodiment. In FIG. 18, the same processing described in FIG. 12 is designated by the same reference numerals, and the description thereof will be omitted. Regarding the position determined to be other than the corrosion position in step S12 (step S12, NO), the corrosion position inspection unit 30 directly measures the wall thinning amount, changes the resistance value, and quantifies the corrosion amount from the current value (FIG. 11). (Refer to), corrosion presence / absence information is acquired, and whether or not there is corrosion is determined based on the acquired corrosion presence / absence information (step S31B). If it is determined that there is corrosion (step S31B, YES), the process proceeds to step S13, and if it is determined that there is no corrosion (step S31B, NO), the process proceeds to step S16.

腐食位置検査部30では、腐食センサ51の情報に基づいて、腐食有無を評価して、腐食位置を見落とすリスクを低減することができる。 The corrosion position inspection unit 30 can evaluate the presence or absence of corrosion based on the information of the corrosion sensor 51 and reduce the risk of overlooking the corrosion position.

<実施形態3の変形例3>
処理装置10は、第1演算部11で腐食位置以外と判断した位置に対して、健全部と減肉部の放射線透過量の差を検知する放射線透過器から腐食有無情報を取得し、取得した腐食有無情報に基づき腐食位置を再判定する腐食位置検査部30を有していてもよい。
<Modification 3 of Embodiment 3>
The processing device 10 acquires corrosion presence / absence information from a radiation transmitter that detects the difference in the amount of radiation transmission between the sound portion and the thinned portion with respect to the position determined by the first calculation unit 11 other than the corrosion position. It may have a corrosion position inspection unit 30 that redetermines the corrosion position based on the corrosion presence / absence information.

図19は、実施形態3に係る腐食診断システム100Bの処理の変形例3を示すフローチャートである。図19において、図12に記載の同一処理については、同一符号を付しており、説明を省略する。ステップS12で腐食位置以外と判定した位置について(ステップS12,NO)、腐食位置検査部30は、健全部と減肉部の放射線透過量の差を検知する放射線透過器から腐食有無情報を取得し、取得した腐食有無情報に基づき腐食が有るか否かを判定する(ステップS31C)。腐食が有ると判定した場合(ステップS31C,YES)、ステップS13に進み、腐食が無いと判定した場合(ステップS31C,NO)、ステップS16に進む。 FIG. 19 is a flowchart showing a modification 3 of the process of the corrosion diagnosis system 100B according to the third embodiment. In FIG. 19, the same processing described in FIG. 12 is designated by the same reference numeral, and the description thereof will be omitted. Regarding the position determined to be other than the corrosion position in step S12 (step S12, NO), the corrosion position inspection unit 30 acquires corrosion presence / absence information from the radiation transmitter that detects the difference in the amount of radiation transmission between the healthy part and the thinned part. , It is determined whether or not there is corrosion based on the acquired information on the presence or absence of corrosion (step S31C). If it is determined that there is corrosion (step S31C, YES), the process proceeds to step S13, and if it is determined that there is no corrosion (step S31C, NO), the process proceeds to step S16.

腐食位置検査部30では、放射線透過器の情報に基づいて、腐食有無を評価して、腐食位置を見落とすリスクを低減することができる。 The corrosion position inspection unit 30 can evaluate the presence or absence of corrosion based on the information of the radiation transmitter and reduce the risk of overlooking the corrosion position.

<実施形態4の変形例1>
処理装置10は、第2演算部12で余寿命推定した位置の中で余寿命が閾値以下の位置に対して、その位置の機器・配外表面の金属に設置したセンサから放出される超音波の一種であるガイド波を検出して、検出したガイド波の値から前記位置及びその近傍の減肉量を評価する超音波ガイド波探傷器により減肉量を取得して、前記位置の減肉量を評価して、評価した減肉量から余寿命を補正する余寿命補正部40を有していてもよい。
<Modification 1 of Embodiment 4>
The processing device 10 is a position where the remaining life is estimated by the second calculation unit 12 and the remaining life is equal to or less than the threshold value, and the ultrasonic wave emitted from the sensor installed on the metal of the device / outer surface at that position. The wall thinning amount is acquired by an ultrasonic guided wave flaw detector that detects the guide wave, which is a type of the above, and evaluates the wall thinning amount at the position and its vicinity from the detected guide wave value, and the wall thickness at the position is thinned. It may have the remaining life correction unit 40 which evaluates the amount and corrects the remaining life from the evaluated thinning amount.

図20は、実施形態4に係る腐食診断システム100Cの処理の変形例1を示すフローチャートである。図20において、図15に記載の同一処理については、同一符号を付しており、説明を省略する。ステップS15の余寿命算出後、余寿命補正部40は、余寿命が閾値以下であるか否かを判定し(ステップS41)、余寿命が閾値以下である場合(ステップS41,YES)、超音波ガイド波探傷器の検査器による減肉量の実測値を取得して、余寿命を補正し(ステップS42A)、ステップS16に進む。他方、余寿命が閾値を超える場合(ステップS41,NO)、ステップS16に進む。 FIG. 20 is a flowchart showing a modification 1 of the process of the corrosion diagnosis system 100C according to the fourth embodiment. In FIG. 20, the same processing described in FIG. 15 is designated by the same reference numerals, and the description thereof will be omitted. After calculating the remaining life in step S15, the remaining life correction unit 40 determines whether or not the remaining life is below the threshold value (step S41), and if the remaining life is below the threshold value (steps S41, YES), ultrasonic waves. The actual measurement value of the wall thinning amount by the inspection device of the guide wave flaw detector is acquired, the remaining life is corrected (step S42A), and the process proceeds to step S16. On the other hand, when the remaining life exceeds the threshold value (steps S41 and NO), the process proceeds to step S16.

本実施形態は、余寿命補正部40により、演算部の中で余寿命が閾値以下の腐食位置を対象として、減肉量を実測して余寿命を補正した。それにより、次回保守点検予定日の前に事故が発生するリスクが低減するため、実施形態1と比較して安全性が高い腐食診断システムである。 In this embodiment, the remaining life correction unit 40 measures the amount of wall loss and corrects the remaining life at the corrosion position where the remaining life is equal to or less than the threshold value in the calculation unit. As a result, the risk of an accident occurring before the next scheduled maintenance and inspection date is reduced, so that this is a corrosion diagnosis system with higher safety than that of the first embodiment.

<実施形態4の変形例2>
処理装置10は、第2演算部12で余寿命推定した位置の中で余寿命が閾値以下の位置に対して、X線またはガンマ線源から前記位置の機器・配管に入射したフォトンを、設定されたエネルギー領域に弁別して、弁別されたフォトン数の割合を検出して、検出したフォトン数の割合から減肉量を評価する放射線ラインセンサによる減肉量を取得して、前記位置の減肉量を評価して、評価した減肉量から余寿命を補正する余寿命補正部40を有していてもよい。
<Modification 2 of Embodiment 4>
The processing device 10 is set with photons incident on the equipment / pipe at the position from the X-ray or gamma ray source at the position where the remaining life is equal to or less than the threshold value among the positions estimated by the second calculation unit 12. It discriminates into the energy region, detects the ratio of the number of discriminated photons, obtains the amount of wall thinning by the radiation line sensor that evaluates the amount of wall loss from the ratio of the detected number of photons, and obtains the amount of wall loss at the position. It may have the remaining life correction unit 40 which evaluates and corrects the remaining life from the evaluated wall thinning amount.

図21は、実施形態4に係る腐食診断システム100Cの処理の変形例2を示すフローチャートである。図21において、図15に記載の同一処理については、同一符号を付しており、説明を省略する。ステップS15の余寿命算出後、余寿命補正部40は、余寿命が閾値以下であるか否かを判定し(ステップS41)、余寿命が閾値以下である場合(ステップS41,YES)、放射線ラインセンサによる減肉量の実測値を取得して、余寿命を補正し(ステップS42B)、ステップS16に進む。他方、余寿命が閾値を超える場合(ステップS41,NO)、ステップS16に進む。 FIG. 21 is a flowchart showing a modification 2 of the process of the corrosion diagnosis system 100C according to the fourth embodiment. In FIG. 21, the same processing described in FIG. 15 is designated by the same reference numerals, and the description thereof will be omitted. After calculating the remaining life in step S15, the remaining life correction unit 40 determines whether or not the remaining life is below the threshold value (step S41), and if the remaining life is below the threshold value (steps S41, YES), the radiation line. The measured value of the wall thinning amount by the sensor is acquired, the remaining life is corrected (step S42B), and the process proceeds to step S16. On the other hand, when the remaining life exceeds the threshold value (steps S41 and NO), the process proceeds to step S16.

本実施形態は、余寿命補正部40により、余寿命が閾値以下の腐食位置を対象として、減肉量を実測して余寿命を補正した。それにより、次回保守点検予定日の前に事故が発生するリスクが低減するため、実施形態1と比較して安全性が高い腐食診断システムである。 In the present embodiment, the remaining life correction unit 40 measures the amount of wall loss and corrects the remaining life at the corrosion position where the remaining life is equal to or less than the threshold value. As a result, the risk of an accident occurring before the next scheduled maintenance and inspection date is reduced, so that this is a corrosion diagnosis system with higher safety than that of the first embodiment.

<実施形態4の変形例3>
処理装置10は、第2演算部12で余寿命推定した位置の中で余寿命が閾値以下の位置の中の配管を対象として、超音波及び洩磁束の少なくとも一方により前記配管内外の減肉深さを測定する超音波検査ピグによる減肉量の実測値を取得して、前記位置の減肉量を評価して、評価した減肉量から余寿命を補正する余寿命補正部40を有していてもよい。
<Modification 3 of Embodiment 4>
The processing device 10 targets a pipe in a position where the remaining life is equal to or less than a threshold value among the positions estimated by the second calculation unit 12, and the wall thinning depth inside and outside the pipe is reduced by at least one of ultrasonic waves and leakage magnetic flux. It has a remaining life correction unit 40 that acquires the measured value of the wall thinning amount by the ultrasonic inspection pig that measures the thickness, evaluates the wall thinning amount at the position, and corrects the remaining life from the evaluated wall thinning amount. May be.

図22は、実施形態4に係る腐食診断システム100Cの処理の変形例3を示すフローチャートである。図22において、図15に記載の同一処理については、同一符号を付しており、説明を省略する。ステップS15の余寿命算出後、余寿命補正部40は、余寿命が閾値以下であるか否かを判定し(ステップS41)、余寿命が閾値以下である場合(ステップS41,YES)、超音波検査ピグによる減肉量の実測値を取得して、余寿命を補正し(ステップS42C)、ステップS16に進む。他方、余寿命が閾値を超える場合(ステップS41,NO)、ステップS16に進む。 FIG. 22 is a flowchart showing a modification 3 of the process of the corrosion diagnosis system 100C according to the fourth embodiment. In FIG. 22, the same processing described in FIG. 15 is designated by the same reference numerals, and the description thereof will be omitted. After calculating the remaining life in step S15, the remaining life correction unit 40 determines whether or not the remaining life is below the threshold value (step S41), and if the remaining life is below the threshold value (steps S41, YES), ultrasonic waves. The measured value of the wall thinning amount by the inspection pig is acquired, the remaining life is corrected (step S42C), and the process proceeds to step S16. On the other hand, when the remaining life exceeds the threshold value (steps S41 and NO), the process proceeds to step S16.

本実施形態は、余寿命補正部40により、余寿命が閾値以下の腐食位置を対象として、減肉量を実測して余寿命を補正した。それにより、次回保守点検予定日の前に事故が発生するリスクが低減するため、実施形態1と比較して安全性が高い腐食診断システムである。 In the present embodiment, the remaining life correction unit 40 measures the amount of wall loss and corrects the remaining life at the corrosion position where the remaining life is equal to or less than the threshold value. As a result, the risk of an accident occurring before the next scheduled maintenance and inspection date is reduced, so that this is a corrosion diagnosis system with higher safety than that of the first embodiment.

本腐食診断システムによれば、プラントにおいて、被覆材施工の機器・配管の保守点検が必要な外表面における水存在確率と腐食速度を評価し、機器・配管の腐食位置特定と余寿命推定を算出することができる。これにより、機器・配管に対して、保守点検すべき位置と時期を計画することで、保守点検の高効率化と低コスト化を実現できる。 According to this corrosion diagnosis system, in the plant, the probability of water presence and the corrosion rate on the outer surface that requires maintenance and inspection of the equipment and piping for coating material construction are evaluated, and the corrosion position of the equipment and piping and the estimated remaining life are calculated. can do. As a result, it is possible to improve the efficiency and cost of maintenance and inspection by planning the position and timing for maintenance and inspection of equipment and piping.

10 処理装置
11 第1演算部
12 第2演算部
13 表示処理部
18 減肉情報活用部
20 記憶装置
21 気象情報
22 設計情報
23 施工情報
24 運転情報
25 一覧情報
26 水存在確率リスク判定表
27 減肉情報
30 腐食位置検査部
31 入力装置
32 表示装置
33 通信装置
40 余寿命補正部
51 腐食センサ
52 中性子水分計
53 渦電流探傷器
100,100A,100B,100C 腐食診断システム
10 Processing device 11 1st calculation unit 12 2nd calculation unit 13 Display processing unit 18 Wall thinning information utilization unit 20 Storage device 21 Meteorological information 22 Design information 23 Construction information 24 Operation information 25 List information 26 Water existence probability risk judgment table 27 Reduction Meat information 30 Corrosion position inspection unit 31 Input device 32 Display device 33 Communication device 40 Remaining life correction unit 51 Corrosion sensor 52 Neutron moisture meter 53 Vortex current flaw detector 100, 100A, 100B, 100C Corrosion diagnosis system

Claims (14)

金属材料と非金属材料との界面での前記金属材料側の腐食を診断する腐食診断システムであって、
前記腐食診断システムは、処理装置と、表示装置とを有し、
前記処理装置は、
外部から取得し、または、自システムの記憶装置に保持している気象情報、設計情報、施工情報、運転情報の情報により、診断対象物の位置ごとに金属表面の水存在確率を算出し、その水存在確率に基づき腐食発生確率を演算し、前記腐食発生確率が所定の閾値以上の場合その腐食発生確率の位置を腐食位置と判定する第1演算部と、
前記判定された腐食位置について、腐食速度予測式と前記記憶装置の情報を基に腐食速度を算出し、前記腐食速度から減肉量を演算して、前記減肉量に基づいて余寿命を算出する第2演算部と、
前記第1演算部で前記腐食位置と判定されなかった腐食位置以外は、保守点検不要情報を、前記腐食位置は前記第2演算部で算出された余寿命の結果に基づき保守点検内容を、前記表示装置に出力する表示処理部と、を有する
ことを特徴とする腐食診断システム。
A corrosion diagnosis system for diagnosing corrosion on the metallic material side at the interface between a metallic material and a non-metallic material.
The corrosion diagnosis system has a processing device and a display device.
The processing device is
The probability of water presence on the metal surface is calculated for each position of the object to be diagnosed based on the weather information, design information, construction information, and operation information that are acquired from the outside or stored in the storage device of the own system. A first calculation unit that calculates the corrosion occurrence probability based on the water existence probability and determines the position of the corrosion occurrence probability as the corrosion position when the corrosion occurrence probability is equal to or higher than a predetermined threshold.
For the determined corrosion position, the corrosion rate is calculated based on the corrosion rate prediction formula and the information of the storage device, the wall loss amount is calculated from the corrosion rate, and the remaining life is calculated based on the wall loss amount. 2nd calculation unit and
Other than the corrosion position that was not determined to be the corrosion position by the first calculation unit, maintenance and inspection unnecessary information is provided, and the corrosion position is the maintenance and inspection content based on the result of the remaining life calculated by the second calculation unit. A corrosion diagnosis system characterized by having a display processing unit that outputs to a display device.
請求項1において、
前記第1演算部は、前記情報の中で水供給と水拡散に関わるパラメータについて、前記パラメータを点数化したリスク判定、または過去の腐食発生と前記パラメータの関係に係る統計解析により、位置ごとに金属表面の水存在確率を算出し、その水存在確率に基づき腐食発生確率を演算し、前記腐食発生確率が所定の閾値以上の場合、腐食発生確率の位置を腐食位置とし、前記腐食発生確率が所定の閾値未満の場合、腐食位置以外とする
ことを特徴とする腐食診断システム。
In claim 1,
The first calculation unit performs risk determination by scoring the parameters for parameters related to water supply and water diffusion in the information, or statistical analysis related to the relationship between past corrosion occurrence and the parameters for each position. The water existence probability of the metal surface is calculated, the corrosion occurrence probability is calculated based on the water existence probability, and when the corrosion occurrence probability is equal to or more than a predetermined threshold value, the position of the corrosion occurrence probability is set as the corrosion position, and the corrosion occurrence probability is calculated. A corrosion diagnostic system characterized in that if it is less than a predetermined threshold, it is not in the corrosion position.
請求項1において、
前記第2演算部は、腐食速度予測式について、腐食の電気化学反応速度に関わるパラメータと腐食速度の関係を要素試験、文献情報、または実機減肉検査情報から算出して、前記パラメータの積から腐食速度予測式を構築する
ことを特徴とする腐食診断システム。
In claim 1,
Regarding the corrosion rate prediction formula, the second calculation unit calculates the relationship between the parameter related to the electrochemical reaction rate of corrosion and the corrosion rate from element tests, literature information, or actual machine wall thinning inspection information, and from the product of the parameters. A corrosion diagnostic system characterized by constructing a corrosion rate prediction formula.
請求項1において、
前記表示処理部は、プラントの保守点検が必要な被覆材施工の機器・配管の位置に対して、前記第1演算部で腐食位置以外と判定した位置は保守点検の不要情報を、前記第2演算部で余寿命推定した腐食位置は余寿命を、前記表示装置に表示し、前記被覆材施工の機器・配管の位置に対して、保守点検の位置と時期を計画して前記表示装置に出力する
ことを特徴とする腐食診断システム。
In claim 1,
The display processing unit provides unnecessary information for maintenance and inspection at positions determined by the first calculation unit other than the corrosion position with respect to the positions of equipment and piping for covering material construction that require maintenance and inspection of the plant. For the corrosion position estimated by the calculation unit, the remaining life is displayed on the display device, and the position and timing of maintenance and inspection are planned and output to the display device with respect to the position of the equipment / piping for the construction of the covering material. Corrosion diagnostic system characterized by
請求項1において、
前記処理装置は、さらに、前回までの減肉検査情報を所有する被覆材施工の機器・配管の位置を対象として、前記減肉検査情報を基に腐食位置を判定する減肉情報活用部を有し、
前記減肉情報活用部が、
前回検査で減肉なしと判定し、腐食位置以外と判定した位置について前記第1演算部で前回検査以降の腐食発生確率を算出して腐食有無判定を実施し、
前回検査で減肉有りと判定し、腐食位置と判定した位置について前記第2演算部で余寿命を推定する
ことを特徴とする腐食診断システム。
In claim 1,
The processing device also has a wall thinning information utilization unit that determines the corrosion position based on the wall thinning inspection information, targeting the positions of the equipment / piping of the covering material construction that owns the wall thinning inspection information up to the previous time. And
The meat reduction information utilization department
For the position determined to be other than the corrosion position by the previous inspection, the probability of corrosion occurrence after the previous inspection is calculated by the first calculation unit, and the presence or absence of corrosion is determined.
A corrosion diagnosis system characterized in that the second calculation unit estimates the remaining life of a position determined to be a corroded position by determining that there is wall thinning in the previous inspection.
請求項1または請求項5において、
前記処理装置は、前記第1演算部で腐食位置以外と判断した位置に対して、中性子水分計から保温材中の水分量を取得し、前記取得した水分量に基づき、位置ごとの金属表面の水存在確率を補正して、腐食位置を再判定する腐食位置検査部を有する
ことを特徴とする腐食診断システム。
In claim 1 or 5,
The processing device acquires the amount of water in the heat insulating material from the neutron moisture meter at a position determined by the first calculation unit other than the corrosion position, and based on the acquired amount of water, the metal surface of each position. A corrosion diagnosis system characterized by having a corrosion position inspection unit that corrects the water existence probability and redetermines the corrosion position.
請求項1または請求項5において、
前記処理装置は、前記第1演算部で腐食位置以外と判断した位置に対して、腐食による錆層から発生する弾性波を検出して腐食有無を判定するアコースティックエミッション検査器から腐食有無情報を取得し、前記取得した腐食有無情報に基づき腐食位置か否かを再判定する腐食位置検査部を有する
ことを特徴とする腐食診断システム。
In claim 1 or 5,
The processing device acquires corrosion presence / absence information from an acoustic emission inspection device that detects the presence / absence of corrosion by detecting an elastic wave generated from the rust layer due to corrosion at a position determined by the first calculation unit other than the corrosion position. A corrosion diagnosis system characterized by having a corrosion position inspection unit that redetermines whether or not the position is corroded based on the acquired information on the presence or absence of corrosion.
請求項1または請求項5において、
前記処理装置は、前記第1演算部で腐食位置以外と判断した位置に対して、腐食量を定量化する腐食センサから腐食有無情報を取得し、前記取得した腐食有無情報に基づき腐食位置か否かを再判定する腐食位置検査部を有する
ことを特徴とする腐食診断システム。
In claim 1 or 5,
The processing apparatus acquires corrosion presence / absence information from a corrosion sensor that quantifies the amount of corrosion at a position determined by the first calculation unit other than the corrosion position, and whether or not it is a corrosion position based on the acquired corrosion presence / absence information. A corrosion diagnosis system characterized by having a corrosion position inspection unit for re-determining.
請求項1または請求項5において、
前記処理装置は、前記第1演算部で腐食位置以外と判断した位置に対して、健全部と減肉部の放射線透過量の差を検知して、検知した放射線透過量の差から腐食有無を判定する放射線透過器から腐食有無情報を取得し、前記取得した腐食有無情報に基づき腐食位置か否かを再判定する腐食位置検査部を有する
ことを特徴とする腐食診断システム。
In claim 1 or 5,
The processing device detects the difference in the amount of radiation transmission between the healthy part and the thinned part with respect to the position determined by the first calculation unit other than the corrosion position, and determines the presence or absence of corrosion from the difference in the detected radiation transmission amount. A corrosion diagnosis system characterized by having a corrosion position inspection unit that acquires corrosion presence / absence information from a radiation penetrator for determination and re-determines whether or not it is a corrosion position based on the acquired corrosion presence / absence information.
請求項1、請求項5、請求項6、請求項7、請求項8または請求項9において、
前記処理装置は、前記第2演算部で余寿命推定した位置の中で余寿命が所定の閾値以下の位置に対して、減肉量を計測する検査器から減肉量を取得して、前記取得した減肉量から余寿命を補正する余寿命補正部を有する
ことを特徴とする腐食診断システム。
1, claim 5, claim 6, claim 7, claim 8 or claim 9.
The processing apparatus acquires the amount of wall loss from an inspection device that measures the amount of wall loss at a position where the remaining life is equal to or less than a predetermined threshold value among the positions estimated by the second calculation unit. A corrosion diagnosis system characterized by having a remaining life correction unit that corrects the remaining life from the acquired wall thickness reduction.
請求項1、請求項5、請求項6、請求項7、請求項8または請求項9において、
前記処理装置は、前記第2演算部で余寿命推定した位置の中で余寿命が所定の閾値以下の位置に対して、減肉量を計測する渦電流探傷器から減肉量を取得して、前記取得した減肉量から余寿命を補正する余寿命補正部を有する
ことを特徴とする腐食診断システム。
1, claim 5, claim 6, claim 7, claim 8 or claim 9.
The processing device acquires the amount of wall loss from an eddy current flaw detector that measures the amount of wall loss at a position where the remaining life is equal to or less than a predetermined threshold value among the positions estimated by the second calculation unit. , A corrosion diagnosis system characterized by having a remaining life correction unit that corrects the remaining life from the acquired wall thickness reduction amount.
請求項1、請求項5、請求項6、請求項7、請求項8または請求項9において、
前記処理装置は、前記第2演算部で余寿命推定した位置の中で余寿命が閾値以下の位置に対して、減肉量を計測する超音波ガイド波探傷器から減肉量を取得して、前記取得した減肉量から余寿命補正する余寿命補正部を有する
ことを特徴とする腐食診断システム。
1, claim 5, claim 6, claim 7, claim 8 or claim 9.
The processing device acquires the amount of wall loss from an ultrasonic guided wave flaw detector that measures the amount of wall loss at a position where the remaining life is equal to or less than a threshold value among the positions estimated by the second calculation unit. , A corrosion diagnosis system characterized by having a remaining life correction unit that corrects the remaining life from the acquired wall thickness reduction amount.
請求項1、請求項5、請求項6、請求項7、請求項8または請求項9について、
前記処理装置は、前記第2演算部で余寿命推定した位置の中で余寿命が閾値以下の位置に対して、X線またはガンマ線源から前記位置の機器・配管に入射したフォトンを、設定されたエネルギー領域に弁別して、弁別されたフォトン数の割合を検出して、検出したフォトン数の割合から減肉量を計測する放射線センサから減肉量を取得して、前記取得した減肉量から余寿命を補正する余寿命補正部を有する
ことを特徴とする腐食診断システム。
Regarding claim 1, claim 5, claim 6, claim 7, claim 8 or claim 9.
In the processing device, photons incident on the equipment / pipe at the position from the X-ray or gamma ray source are set with respect to the position where the remaining life is equal to or less than the threshold value among the positions estimated by the second calculation unit. It discriminates into the energy region, detects the ratio of the number of discriminated photons, acquires the amount of wall loss from the radiation sensor that measures the amount of wall loss from the ratio of the detected number of photons, and obtains the amount of wall loss from the acquired amount of wall loss. A corrosion diagnosis system characterized by having a remaining life correction unit that corrects the remaining life.
請求項1、請求項5、請求項6、請求項7、請求項8または請求項9において、
前記処理装置は、前記第2演算部で余寿命推定した位置の中で余寿命が所定の閾値以下の位置の中の配管を対象として、減肉量を計測する超音波検査ピグから減肉量を取得して、前記取得した減肉量から余寿命を補正する余寿命補正部を有する
ことを特徴とする腐食診断システム。
1, claim 5, claim 6, claim 7, claim 8 or claim 9.
The processing device targets a pipe in a position where the remaining life is equal to or less than a predetermined threshold value among the positions estimated by the second calculation unit, and the amount of wall loss is measured from an ultrasonic inspection pig that measures the amount of wall loss. A corrosion diagnosis system characterized by having a remaining life correction unit for correcting the remaining life from the acquired wall thickness reduction amount.
JP2019040024A 2019-03-05 2019-03-05 Corrosion diagnostic system Active JP7228410B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019040024A JP7228410B2 (en) 2019-03-05 2019-03-05 Corrosion diagnostic system
PCT/JP2019/035600 WO2020179108A1 (en) 2019-03-05 2019-09-11 Corrosion diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040024A JP7228410B2 (en) 2019-03-05 2019-03-05 Corrosion diagnostic system

Publications (2)

Publication Number Publication Date
JP2020143970A true JP2020143970A (en) 2020-09-10
JP7228410B2 JP7228410B2 (en) 2023-02-24

Family

ID=72337094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040024A Active JP7228410B2 (en) 2019-03-05 2019-03-05 Corrosion diagnostic system

Country Status (2)

Country Link
JP (1) JP7228410B2 (en)
WO (1) WO2020179108A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112883538A (en) * 2020-12-29 2021-06-01 浙江中控技术股份有限公司 Corrosion prediction system and method for buried crude oil pipeline
KR102643699B1 (en) * 2022-10-18 2024-03-05 한국가스안전공사 System for risk measuring of pipeline and method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096756A1 (en) * 2020-11-05 2022-05-12 Asociacion Centro Tecnologico Ceit Ultrasound method for measuring the corrosion of a metal structure
JP2023081548A (en) * 2021-12-01 2023-06-13 株式会社クボタ Buried pipe leakage accident rate predication device, buried pipe leakage accident rate prediction method and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230042A (en) * 1985-04-04 1986-10-14 Nippon Steel Corp Diagnosing method for corrosion of steel structure
JP2001141722A (en) * 2000-09-25 2001-05-25 Hitachi Ltd Method of estimating corrosion of plant structural material and corrosion diagnostic system
JP2006208346A (en) * 2004-02-24 2006-08-10 Jfe Steel Kk Method and device for predicting life of steel product, and computer program
JP2012251848A (en) * 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Corrosion rate estimation device and method
WO2015162662A1 (en) * 2014-04-21 2015-10-29 札幌施設管理株式会社 Pipe evaluation method
US20170030850A1 (en) * 2014-04-15 2017-02-02 Homero Castaneda-Lopez Methods for evaluation and estimation of external corrosion damage on buried pipelines
JP2018025497A (en) * 2016-08-10 2018-02-15 旭化成株式会社 Maintenance assist device, maintenance assist program, and maintenance assist method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6775221B2 (en) * 2017-06-09 2020-10-28 日本電信電話株式会社 Deterioration judgment method and deterioration judgment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230042A (en) * 1985-04-04 1986-10-14 Nippon Steel Corp Diagnosing method for corrosion of steel structure
JP2001141722A (en) * 2000-09-25 2001-05-25 Hitachi Ltd Method of estimating corrosion of plant structural material and corrosion diagnostic system
JP2006208346A (en) * 2004-02-24 2006-08-10 Jfe Steel Kk Method and device for predicting life of steel product, and computer program
JP2012251848A (en) * 2011-06-02 2012-12-20 Nippon Telegr & Teleph Corp <Ntt> Corrosion rate estimation device and method
US20170030850A1 (en) * 2014-04-15 2017-02-02 Homero Castaneda-Lopez Methods for evaluation and estimation of external corrosion damage on buried pipelines
WO2015162662A1 (en) * 2014-04-21 2015-10-29 札幌施設管理株式会社 Pipe evaluation method
JP2018025497A (en) * 2016-08-10 2018-02-15 旭化成株式会社 Maintenance assist device, maintenance assist program, and maintenance assist method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112883538A (en) * 2020-12-29 2021-06-01 浙江中控技术股份有限公司 Corrosion prediction system and method for buried crude oil pipeline
CN112883538B (en) * 2020-12-29 2022-07-22 浙江中控技术股份有限公司 Corrosion prediction system and method for buried crude oil pipeline
KR102643699B1 (en) * 2022-10-18 2024-03-05 한국가스안전공사 System for risk measuring of pipeline and method thereof

Also Published As

Publication number Publication date
JP7228410B2 (en) 2023-02-24
WO2020179108A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
JP7228410B2 (en) Corrosion diagnostic system
US11635366B2 (en) Infrastructure corrosion analysis
AU2008200335B2 (en) Pipeline condition detecting method and apparatus
JP6825846B2 (en) Maintenance support equipment, maintenance support programs, and maintenance support methods
Witek Validation of in-line inspection data quality and impact on steel pipeline diagnostic intervals
JP2015180856A (en) Corrosion monitoring sensor, corrosion depth calculation system, and metal corrosion speed calculation system
JP7287879B2 (en) Corrosion detection system
Kim et al. Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference
Schoefs et al. Optimal embedded sensor placement for spatial variability assessment of stationary random fields
Datla et al. Probabilistic modelling of steam generator tube pitting corrosion
US10345270B1 (en) Measurement-based, in-service method for determining the time to the next internal inspection of an AST
JP2020060429A (en) Deterioration prediction method
Heerings et al. Inspection Effectiveness and its Effect on the Integrity of Pipework
Siraj Quantification of Uncertainties in Inline Inspection Data for Metal-loss Corrosion on Energy Pipelines and Implications for Reliability Analysis
RU2262634C1 (en) Method of detecting pipeline sections disposed to corrosion cracking under stressing
Qin et al. Reliability analysis of corroding pipelines considering the growth and generation of corrosion defects
Keprate et al. Inspection planning and maintenance scheduling of offshore piping undergoing fatigue degradation: A probabilistic view
JP2008259313A (en) Of cable abnormality detector, and method of detecting oil leakage from of cable
GB2460484A (en) Pipeline condition detecting method and apparatus
Cuervo et al. Corrosion Under Insulation and Atmospheric Corrosion in the Refinery Industry. An Accurate Approach to Estimate Corrosion Growth Rates, A Texas Refinery Case Study
Dessein et al. Characterizing Corrosion Defects With Apparent High Growth Rates on Transmission Pipelines
Chaves et al. Reliability based evaluation of commonly applied corrosion mitigation techniques
Pandey et al. The Effect of Inspection Uncertainties in Predicting the Probability of Leak of Steam Generator Tubing Due to Pitting
JP2020180908A (en) Corrosion inspection system
KR20120093622A (en) A unification apparatus and method for thickness measurement and thickness reduction evaluation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150